Home Thermodynamic description of the Ni–Si–Ti ternary system
Article
Licensed
Unlicensed Requires Authentication

Thermodynamic description of the Ni–Si–Ti ternary system

  • Yong Du , Cuiyun He , J. C. Schuster , Shuhong Liu and Honghui Xu
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

A thermodynamic modeling of the Ni–Si–Ti system is conducted. All of the experimental phase diagram data available from the literature are critically reviewed and assessed using thermodynamic models for the Gibbs energies of individual phases. The thermodynamic parameters for five ternary compounds (τ1: Ti1Ni1Si1, τ2: Ti4Ni4Si7, τ3: Ti13Ni40Si31, τ4: Ti6Ni16Si7, and τ5: Ti2Ni3Si1), the ternary solution phases (liquid, bcc_A2, bcc_B2, fcc_A1, and L12) as well as the binary phases (Ti5Si3, Ni3Si, Ni5Si2, and TiNi3) showing noticeable solubilities for the third element are adjusted in the optimization. The order/disorder transitions between disordered bcc_A2 and ordered bcc_B2 phases as well as between disordered fcc_A1 and ordered L12 phases are treated using a two-sublattice model. The calculations indicate that the disordered and ordered phases can be described with a single equation. Comprehensive comparisons between the calculated and measured phase diagrams show that in the measured isothermal sections at 750°C, 900°C, 1000°C and 1100°C, most of the observed primary phase regions, as well as 16 out of the 26 experimentally observed invariant reaction temperatures are satisfactorily accounted for by the thermodynamic description. The liquidus projection and reaction scheme for the entire system are also presented. Further experimental work to solve a few discrepancies between calculation and experiment is emphasized.


* Correspondence address: Professor Dr. Yong Du, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, P.R. China, Tel.: +867318836213, Fax: +867318710855. E-mail:

Dedicated to Professor Dr. Fritz Aldinger on the occasion of his 65th birthday


References

[1] J.H.Westbrook, R.K.DiCerbo, A.J.Peat: GE Research Report 58-RL-2117 (1958) 1.Search in Google Scholar

[2] V. Ya.Markiv, E.I.Gladyshevskii, P.I.Kripyakevich, T.I.Fedoruk: Izv. Akad. Nauk SSSR, Neorg. Mater.2 (1966) 1317.Search in Google Scholar

[3] H.H.Xu, Z.P.Jin: Trans. Nonferrous Met. Soc. China, 8 (1) (1998) 1.Search in Google Scholar

[4] X.Hu, G.Chen, C.Ion, K.Ni: J. Phase Equilibria20 (1999) 508.10.1361/105497199770340761Search in Google Scholar

[5] J.C.Schuster, H.Takase, I.Nakade, M.Naka, in: M.Naka (Ed.), DIS 2002, Osaka, Japan (2002).Search in Google Scholar

[6] L.Kaufman, H.Nesor: Computer Calculation of Phase Diagrams, Academic Press, New York and London (1970).Search in Google Scholar

[7] K.J.Williams: J. Inst. Metals.99 (1971) 310.Search in Google Scholar

[8] G.Haour, F.Mollard, B.Lux, I.G.Wright: Z. Metallkd.69 (1978) 149.Search in Google Scholar

[9] P.B.Budberg, S.P.Alisova, A.N.Kobylkin: Dokl. Akad. Nauk SSSR.250 (1980) 1137.Search in Google Scholar

[10] Y.D.Li, T.X.Zhang, Z.Zheng, Y.X.Zhu: Acta Met. Sin.26 (3) A (1990) 172.Search in Google Scholar

[11] T.Takasugi, D.Shindo, O.Izumi, M.Hirabayashi: Acta Metall. Mater.38 (1990) 739.10.1016/0956-7151(90)90025-CSearch in Google Scholar

[12] N.V.Lutskaya, S.P.Alisova: Russ. Metall.3 (1992) 194.Search in Google Scholar

[13] T.Tokunaga, K.Hashima, H.Ohtani, M.Hasebe: Mater. Trans.45 (2004) 1507.10.2320/matertrans.45.1507Search in Google Scholar

[14] T.B.Massalski: Binary Alloys Phase Diagrams, ASM, Metals Park, Ohio 44073, USA (1986).Search in Google Scholar

[15] E.Scheil: Z. Metallkd.34 (1942) 70.10.1515/ijmr-1942-340303Search in Google Scholar

[16] P.Bellen, K.C.Hari Kumar, P.Wollants: Z. Metallkd.87 (1996) 972.Search in Google Scholar

[17] Y.Du, J.C.Schuster: Metall. Mater. Trans. A30 (1999) 2409.10.1007/s11661-999-0249-8Search in Google Scholar

[18] H. J.Seifert, unpublished results, Max-Planck Institute for Metals Research, Stuttgart, Germany (1998).Search in Google Scholar

[19] O.Redlich, A.T.Kister: Indust. Eng. Chem.40 (1948) 345.10.1021/ie50458a036Search in Google Scholar

[20] A.T.Dinsdale: CALPHAD15 (1991) 317.10.1016/0364-5916(91)90030-NSearch in Google Scholar

[21] G.Inden: Proc. Project Meeting, CALPHAD V, Max Planck Institute for Metal Research, Düsseldorf, Germany (1976) 1.Search in Google Scholar

[22] M.Hillert, M.Jarl: CALPHAD2 (1978) 227.10.1016/0364-5916(78)90011-1Search in Google Scholar

[23] M.Hillert, L.I.Staffansson: Acta Chem. Scand.24 (1970) 3618.10.3891/acta.chem.scand.24-3618Search in Google Scholar

[24] B.Sundman, J.Agren: J. Phys. Chem. Solids.42 (1981) 297.10.1016/0022-3697(81)90144-XSearch in Google Scholar

[25] I.Ansara, B.Sundman, P.Willemin: Acta Metall.36 (4) (1988) 977.10.1016/0001-6160(88)90152-6Search in Google Scholar

[26] I.Ansara, N.Dupin, H.L.Lukas, B.Sundman: J. Alloy Compounds247 (1997) 20.10.1016/S0925-8388(96)02652-7Search in Google Scholar

[27] Y.Du, Y.A.Chang, W.P.Gong, B.Y.Huang, H.H.Xu, Z.P.Jin, F.Zhang, S.-L.Chen: Intermetallics11 (2003) 995.10.1016/S0966-9795(03)00123-7Search in Google Scholar

[28] N.Dupin, I.Ansara, B.Sundman: CALPHAD25 (2001) 279.10.1016/S0364-5916(01)00049-9Search in Google Scholar

[29] N.Dupin, I.Ansara: Z. Metallkd.90 (1999) 76.Search in Google Scholar

[30] B.Sundman, B.Jansson, J.O.Andersson: CALPHAD9 (1985) 153.10.1016/0364-5916(85)90021-5Search in Google Scholar

[31] Y.Du, R.Schmid-Fetzer, H.Ohtani: Z. Metallkd.88 (1997) 545.Search in Google Scholar

[32] Z.K.Liu, Y.A.Chang: Metall. Mater. Trans. A30 (1999) 1081.10.1007/s11661-999-0160-3Search in Google Scholar

Received: 2005-11-2
Accepted: 2006-1-30
Published Online: 2013-05-31
Published in Print: 2006-05-01

© 2006, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial
  5. Basic
  6. Three-dimensional printing of TiAl3/Al2O3 composites
  7. Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
  8. Solid-State 17O NMR studies on Yttria-stabilized zirconia
  9. Twinning in ultrathin silicon nanowires
  10. Re-optimization of the Mg–Sb system under topological constraints
  11. Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
  12. The In–Pt–Sb phase diagram
  13. Thermodynamic evaluation of the Al–Cr–C system
  14. Thermodynamic description of the Ni–Si–Ti ternary system
  15. Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
  16. Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
  17. Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
  18. Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
  19. Implications of linear relationships between local and macroscopic flow stresses in the composite model
  20. Applied
  21. Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
  22. Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
  23. The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
  24. Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
  25. High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
  26. Nanopowder dispersion and spray-drying process: the case of Cr2O3
  27. Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
  28. The role of chemisorbed anions in the aqueous processing of AlN powder
  29. The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
  30. Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
  31. The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
  32. Infrared properties of sintered α-MnSe
  33. Quasi-equilibrium sintering of particle clusters containing Bernal holes
  34. Design of metal ceramic composites
  35. Notifications
  36. DGM News
Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101271/html
Scroll to top button