Home Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
Article
Licensed
Unlicensed Requires Authentication

Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials

  • Erwin Povoden , A. Nicholas Grundy and Ludwig J. Gauckler
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

By application of the CALPHAD method, a consistent set of thermodynamic model parameters is optimized for the Cr–Mn–O system based on experimental data. Chromium manganese spinel MnyCr3−yO4 and its tetragonally distorted polymorph are described using the compound energy model, and the liquid is described using the two-sublattice model for ionic liquids. Also solid solutions of the phases (Cr1–yMny)2+xO3, Mn2–yCryO3, and (Mn1–yCry)1–xO are considered. Relevance for solid oxide fuel cells is discussed.


* Correspondence address: Mag. Erwin Povoden, ETH Hönggerberg, Wolfgang-Pauli-Strasse 10, Department of Nonmetallic Inorganic Materials, HCI G530, CH-8093 Zurich, Switzerland, Tel.: +41446336996, Fax: +41446321132. E-mail:

Dedicated to Professor Dr. Fritz Aldinger on the occasion of his 65th birthday


References

[1] K.Hilpert, W.J.Quadakkers, L.Singheiser, in: W.Vielstich, A.Lamm, H.A.Gasteiger (Eds.), Handbook of Fuel Cells – Fundamentals, Technology and Applications, John Wiley & Sons, Chichester (2003) 1037.Search in Google Scholar

[2] J.W.Fergus: Solid State Ionics171 (2004) 1.10.1016/j.ssi.2004.04.010Search in Google Scholar

[3] D.Das, M.Miller, H.Nickel, K.Hilpert, in: U. Bossel (Ed.), First European Solid Oxide Fuel Cell Forum Proceedings, Vol.2, Druckerei J. Kinzel, Göttingen (1994) 703.Search in Google Scholar

[4] E.Nickel, J.D.Grice: Can. Mineral.36 (1998) 3.Search in Google Scholar

[5] S.P.S.Badwal, R.Deller, K.Foger, Y.Ramprakash, J.P.Zhang: Solid State Ionics99 (1997) 297.10.1016/S0167-2738(97)00247-6Search in Google Scholar

[6] S.P.Simner, M.D.Anderson, G.-G.Xia, Z.Yang, L.R.Pederson, J.W.Stevenson: J. Electrochem. Soc.152 (2005) A740.10.1149/1.1864332Search in Google Scholar

[7] A.T.Dinsdale: Calphad15 (1991) 317.10.1016/0364-5916(91)90030-NSearch in Google Scholar

[8] A.N.Grundy, B.Hallstedt, L.J.Gauckler: J. Phase Equilib.24 (2003) 21.Search in Google Scholar

[9] E.Povoden, A.N.Grundy, L.J.Gauckler: submitted to J. Phase Equilib. Diff.Search in Google Scholar

[10] B.-J.Lee: Metall. Trans.A24 (1993) 1919.10.1007/BF02666327Search in Google Scholar

[11] J.M.Hastings, L.M.Corliss: Phys. Rev.126 (1962) 556.10.1103/PhysRev.126.556Search in Google Scholar

[12] P.Holba, M.Nevriva, E.Pollert: Mater. Res. Bull.10 (1975) 853.10.1016/0025-5408(75)90202-0Search in Google Scholar

[13] D.H.Speidel, A.Muan: J. Am. Ceram. Soc.46 (1963) 577.10.1111/j.1151-2916.1963.tb14619.xSearch in Google Scholar

[14] Y.V.Golikov, V.F.Balakirev: J. Solid State Chem.71 (1987) 562.10.1016/0022-4596(87)90267-2Search in Google Scholar

[15] E.Pollert, M.Nevriva, J.Novak: Mater. Res. Bull.15 (1980) 1453.10.1016/0025-5408(80)90101-4Search in Google Scholar

[16] E.Pollert, M.Nevriva, J.Novak: J. Phys. Chem. Solids38 (1977) 1145.10.1016/0022-3697(77)90041-5Search in Google Scholar

[17] S.Geller, G.P.Espinosa: Phys. Rev. B1 (1970) 3763.10.1103/PhysRevB.1.3763Search in Google Scholar

[18] M.Tanahashi, N.Furuta, C.Yamauchi, T.Fujisawa: ISIJ Int.41 (2001) 1309.10.2355/isijinternational.41.1309Search in Google Scholar

[19] A.P.Bobov, A.G.Zalazinsky, V.F.Balakirev, Y.V.Golikov, G.I.Chufarov: Zh. Fiz. Khim.58 (1984) 750.Search in Google Scholar

[20] S.Ranganathan, J.P.Hajra: Bull. Mater. Sci.9 (1987) 149.10.1007/BF02744295Search in Google Scholar

[21] M.Tanahashi, N.Furuta, T.Taniguchi, C.Yamauchi, T.Fujisawa: ISIJ Int.43 (2003) 7.10.2355/isijinternational.43.7Search in Google Scholar

[22] I.Barin: Thermochemical Data of Pure Substances, 2nd Ed., Parts I and II, VCH Verlagsgesellschaft mbH, Weinheim (1993).Search in Google Scholar

[23] H.T.Tsai, A.Muan: J. Am. Ceram. Soc.75 (1992) 1407.10.1111/j.1151-2916.1992.tb04201.xSearch in Google Scholar

[24] H.T.Tsai, A.Muan: J. Am. Ceram. Soc.75 (1992) 1412.10.1111/j.1151-2916.1992.tb04202.xSearch in Google Scholar

[25] L.M.Lenev, I.A.Novokhatskiy: Izv. Akad. Nauk SSSR, Met.3 (1966) 73.Search in Google Scholar

[26] C.K.Kim, A.McLean: Metall. Trans. B10 (1979) 575.10.1007/BF02662560Search in Google Scholar

[27] K.T.Jacob: Can. Metall. Q.20 (1981) 89.10.1179/000844381795270561Search in Google Scholar

[28] S.Dimitrov, A.Weyl, D.Janke: Steel Res.66 (1995) 87.Search in Google Scholar

[29] J.V.Biggers: Ph.D. Thesis, Pennsylvania State University, University Park, PA (1966).Search in Google Scholar

[30] N.Y.Toker, L.S.Darken, A.Muan: Metall. Trans. B22 (1991) 225.10.1007/BF02652487Search in Google Scholar

[31] R.K.F.Lam: United States Patent6039788 (2000).Search in Google Scholar

[32] J.-O.Andersson, A.F.Guillermet, M.Hillert, B.Jansson, B.Sundman: Acta metall.34 (1986) 437.10.1016/0001-6160(86)90079-9Search in Google Scholar

[33] M.Hillert, B.Jansson, B.Sundman: Z. Metallkd.79 (1988) 81.Search in Google Scholar

[34] M.Hillert: J. Alloys Comp.320 (2001) 161.10.1016/S0925-8388(00)01481-XSearch in Google Scholar

[35] Z.Lu, J.Zhu, E.A.Payzant, M.P.Paranthaman: J. Am. Ceram. Soc.88 (2005) 1050.10.1111/j.1551-2916.2005.00205.xSearch in Google Scholar

[36] R.D.Shannon: Acta Crystallogr. A32 (1976) 751.10.1107/S0567739476001551Search in Google Scholar

[37] M.O'Keefe, M.Valigi: J. Phys. Chem. Solids31 (1970) 947.10.1016/0022-3697(70)90306-9Search in Google Scholar

[38] D.Caplan, M.J.Fraser, A.A.Burr, in: Ductile Chromium, ASM, Cleveland, Ohio (1957) 196.Search in Google Scholar

[39] M.Hillert, B.Jansson, B.Sundman, J.Ågren: Metall. Trans.A16 (1985) 261.Search in Google Scholar

[40] B.Sundman: Calphad15 (1991) 109.10.1016/0364-5916(91)90010-HSearch in Google Scholar

[41] B.Sundman, B.Jansson, J.O.Andersson: Calphad9 (1985) 153.10.1016/0364-5916(85)90021-5Search in Google Scholar

[42] V.M.Eremenko, G.M.Lukashenko, V.R.Sidorko: Russ. J. Phys. Chem.42 (1968) 343.Search in Google Scholar

[43] W.Qu, L.Jian, J.M.Hill, D.G.Ivey: J. Power sources153 (2006) 114.10.1016/j.jpowsour.2005.03.137Search in Google Scholar

Received: 2005-11-1
Accepted: 2006-2-9
Published Online: 2013-05-31
Published in Print: 2006-05-01

© 2006, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial
  5. Basic
  6. Three-dimensional printing of TiAl3/Al2O3 composites
  7. Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
  8. Solid-State 17O NMR studies on Yttria-stabilized zirconia
  9. Twinning in ultrathin silicon nanowires
  10. Re-optimization of the Mg–Sb system under topological constraints
  11. Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
  12. The In–Pt–Sb phase diagram
  13. Thermodynamic evaluation of the Al–Cr–C system
  14. Thermodynamic description of the Ni–Si–Ti ternary system
  15. Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
  16. Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
  17. Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
  18. Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
  19. Implications of linear relationships between local and macroscopic flow stresses in the composite model
  20. Applied
  21. Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
  22. Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
  23. The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
  24. Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
  25. High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
  26. Nanopowder dispersion and spray-drying process: the case of Cr2O3
  27. Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
  28. The role of chemisorbed anions in the aqueous processing of AlN powder
  29. The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
  30. Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
  31. The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
  32. Infrared properties of sintered α-MnSe
  33. Quasi-equilibrium sintering of particle clusters containing Bernal holes
  34. Design of metal ceramic composites
  35. Notifications
  36. DGM News
Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101273/html
Scroll to top button