Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
-
Erwin Povoden
, A. Nicholas Grundy und Ludwig J. Gauckler
Abstract
By application of the CALPHAD method, a consistent set of thermodynamic model parameters is optimized for the Cr–Mn–O system based on experimental data. Chromium manganese spinel MnyCr3−yO4 and its tetragonally distorted polymorph are described using the compound energy model, and the liquid is described using the two-sublattice model for ionic liquids. Also solid solutions of the phases (Cr1–yMny)2+xO3, Mn2–yCryO3, and (Mn1–yCry)1–xO are considered. Relevance for solid oxide fuel cells is discussed.
References
[1] K.Hilpert, W.J.Quadakkers, L.Singheiser, in: W.Vielstich, A.Lamm, H.A.Gasteiger (Eds.), Handbook of Fuel Cells – Fundamentals, Technology and Applications, John Wiley & Sons, Chichester (2003) 1037.Suche in Google Scholar
[2] J.W.Fergus: Solid State Ionics171 (2004) 1.10.1016/j.ssi.2004.04.010Suche in Google Scholar
[3] D.Das, M.Miller, H.Nickel, K.Hilpert, in: U. Bossel (Ed.), First European Solid Oxide Fuel Cell Forum Proceedings, Vol.2, Druckerei J. Kinzel, Göttingen (1994) 703.Suche in Google Scholar
[4] E.Nickel, J.D.Grice: Can. Mineral.36 (1998) 3.Suche in Google Scholar
[5] S.P.S.Badwal, R.Deller, K.Foger, Y.Ramprakash, J.P.Zhang: Solid State Ionics99 (1997) 297.10.1016/S0167-2738(97)00247-6Suche in Google Scholar
[6] S.P.Simner, M.D.Anderson, G.-G.Xia, Z.Yang, L.R.Pederson, J.W.Stevenson: J. Electrochem. Soc.152 (2005) A740.10.1149/1.1864332Suche in Google Scholar
[7] A.T.Dinsdale: Calphad15 (1991) 317.10.1016/0364-5916(91)90030-NSuche in Google Scholar
[8] A.N.Grundy, B.Hallstedt, L.J.Gauckler: J. Phase Equilib.24 (2003) 21.Suche in Google Scholar
[9] E.Povoden, A.N.Grundy, L.J.Gauckler: submitted to J. Phase Equilib. Diff.Suche in Google Scholar
[10] B.-J.Lee: Metall. Trans.A24 (1993) 1919.10.1007/BF02666327Suche in Google Scholar
[11] J.M.Hastings, L.M.Corliss: Phys. Rev.126 (1962) 556.10.1103/PhysRev.126.556Suche in Google Scholar
[12] P.Holba, M.Nevriva, E.Pollert: Mater. Res. Bull.10 (1975) 853.10.1016/0025-5408(75)90202-0Suche in Google Scholar
[13] D.H.Speidel, A.Muan: J. Am. Ceram. Soc.46 (1963) 577.10.1111/j.1151-2916.1963.tb14619.xSuche in Google Scholar
[14] Y.V.Golikov, V.F.Balakirev: J. Solid State Chem.71 (1987) 562.10.1016/0022-4596(87)90267-2Suche in Google Scholar
[15] E.Pollert, M.Nevriva, J.Novak: Mater. Res. Bull.15 (1980) 1453.10.1016/0025-5408(80)90101-4Suche in Google Scholar
[16] E.Pollert, M.Nevriva, J.Novak: J. Phys. Chem. Solids38 (1977) 1145.10.1016/0022-3697(77)90041-5Suche in Google Scholar
[17] S.Geller, G.P.Espinosa: Phys. Rev. B1 (1970) 3763.10.1103/PhysRevB.1.3763Suche in Google Scholar
[18] M.Tanahashi, N.Furuta, C.Yamauchi, T.Fujisawa: ISIJ Int.41 (2001) 1309.10.2355/isijinternational.41.1309Suche in Google Scholar
[19] A.P.Bobov, A.G.Zalazinsky, V.F.Balakirev, Y.V.Golikov, G.I.Chufarov: Zh. Fiz. Khim.58 (1984) 750.Suche in Google Scholar
[20] S.Ranganathan, J.P.Hajra: Bull. Mater. Sci.9 (1987) 149.10.1007/BF02744295Suche in Google Scholar
[21] M.Tanahashi, N.Furuta, T.Taniguchi, C.Yamauchi, T.Fujisawa: ISIJ Int.43 (2003) 7.10.2355/isijinternational.43.7Suche in Google Scholar
[22] I.Barin: Thermochemical Data of Pure Substances, 2nd Ed., Parts I and II, VCH Verlagsgesellschaft mbH, Weinheim (1993).Suche in Google Scholar
[23] H.T.Tsai, A.Muan: J. Am. Ceram. Soc.75 (1992) 1407.10.1111/j.1151-2916.1992.tb04201.xSuche in Google Scholar
[24] H.T.Tsai, A.Muan: J. Am. Ceram. Soc.75 (1992) 1412.10.1111/j.1151-2916.1992.tb04202.xSuche in Google Scholar
[25] L.M.Lenev, I.A.Novokhatskiy: Izv. Akad. Nauk SSSR, Met.3 (1966) 73.Suche in Google Scholar
[26] C.K.Kim, A.McLean: Metall. Trans. B10 (1979) 575.10.1007/BF02662560Suche in Google Scholar
[27] K.T.Jacob: Can. Metall. Q.20 (1981) 89.10.1179/000844381795270561Suche in Google Scholar
[28] S.Dimitrov, A.Weyl, D.Janke: Steel Res.66 (1995) 87.Suche in Google Scholar
[29] J.V.Biggers: Ph.D. Thesis, Pennsylvania State University, University Park, PA (1966).Suche in Google Scholar
[30] N.Y.Toker, L.S.Darken, A.Muan: Metall. Trans. B22 (1991) 225.10.1007/BF02652487Suche in Google Scholar
[31] R.K.F.Lam: United States Patent6039788 (2000).Suche in Google Scholar
[32] J.-O.Andersson, A.F.Guillermet, M.Hillert, B.Jansson, B.Sundman: Acta metall.34 (1986) 437.10.1016/0001-6160(86)90079-9Suche in Google Scholar
[33] M.Hillert, B.Jansson, B.Sundman: Z. Metallkd.79 (1988) 81.Suche in Google Scholar
[34] M.Hillert: J. Alloys Comp.320 (2001) 161.10.1016/S0925-8388(00)01481-XSuche in Google Scholar
[35] Z.Lu, J.Zhu, E.A.Payzant, M.P.Paranthaman: J. Am. Ceram. Soc.88 (2005) 1050.10.1111/j.1551-2916.2005.00205.xSuche in Google Scholar
[36] R.D.Shannon: Acta Crystallogr. A32 (1976) 751.10.1107/S0567739476001551Suche in Google Scholar
[37] M.O'Keefe, M.Valigi: J. Phys. Chem. Solids31 (1970) 947.10.1016/0022-3697(70)90306-9Suche in Google Scholar
[38] D.Caplan, M.J.Fraser, A.A.Burr, in: Ductile Chromium, ASM, Cleveland, Ohio (1957) 196.Suche in Google Scholar
[39] M.Hillert, B.Jansson, B.Sundman, J.Ågren: Metall. Trans.A16 (1985) 261.Suche in Google Scholar
[40] B.Sundman: Calphad15 (1991) 109.10.1016/0364-5916(91)90010-HSuche in Google Scholar
[41] B.Sundman, B.Jansson, J.O.Andersson: Calphad9 (1985) 153.10.1016/0364-5916(85)90021-5Suche in Google Scholar
[42] V.M.Eremenko, G.M.Lukashenko, V.R.Sidorko: Russ. J. Phys. Chem.42 (1968) 343.Suche in Google Scholar
[43] W.Qu, L.Jian, J.M.Hill, D.G.Ivey: J. Power sources153 (2006) 114.10.1016/j.jpowsour.2005.03.137Suche in Google Scholar
© 2006, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News