Startseite Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials

  • Erwin Povoden , A. Nicholas Grundy und Ludwig J. Gauckler
Veröffentlicht/Copyright: 31. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

By application of the CALPHAD method, a consistent set of thermodynamic model parameters is optimized for the Cr–Mn–O system based on experimental data. Chromium manganese spinel MnyCr3−yO4 and its tetragonally distorted polymorph are described using the compound energy model, and the liquid is described using the two-sublattice model for ionic liquids. Also solid solutions of the phases (Cr1–yMny)2+xO3, Mn2–yCryO3, and (Mn1–yCry)1–xO are considered. Relevance for solid oxide fuel cells is discussed.


* Correspondence address: Mag. Erwin Povoden, ETH Hönggerberg, Wolfgang-Pauli-Strasse 10, Department of Nonmetallic Inorganic Materials, HCI G530, CH-8093 Zurich, Switzerland, Tel.: +41446336996, Fax: +41446321132. E-mail:

Dedicated to Professor Dr. Fritz Aldinger on the occasion of his 65th birthday


References

[1] K.Hilpert, W.J.Quadakkers, L.Singheiser, in: W.Vielstich, A.Lamm, H.A.Gasteiger (Eds.), Handbook of Fuel Cells – Fundamentals, Technology and Applications, John Wiley & Sons, Chichester (2003) 1037.Suche in Google Scholar

[2] J.W.Fergus: Solid State Ionics171 (2004) 1.10.1016/j.ssi.2004.04.010Suche in Google Scholar

[3] D.Das, M.Miller, H.Nickel, K.Hilpert, in: U. Bossel (Ed.), First European Solid Oxide Fuel Cell Forum Proceedings, Vol.2, Druckerei J. Kinzel, Göttingen (1994) 703.Suche in Google Scholar

[4] E.Nickel, J.D.Grice: Can. Mineral.36 (1998) 3.Suche in Google Scholar

[5] S.P.S.Badwal, R.Deller, K.Foger, Y.Ramprakash, J.P.Zhang: Solid State Ionics99 (1997) 297.10.1016/S0167-2738(97)00247-6Suche in Google Scholar

[6] S.P.Simner, M.D.Anderson, G.-G.Xia, Z.Yang, L.R.Pederson, J.W.Stevenson: J. Electrochem. Soc.152 (2005) A740.10.1149/1.1864332Suche in Google Scholar

[7] A.T.Dinsdale: Calphad15 (1991) 317.10.1016/0364-5916(91)90030-NSuche in Google Scholar

[8] A.N.Grundy, B.Hallstedt, L.J.Gauckler: J. Phase Equilib.24 (2003) 21.Suche in Google Scholar

[9] E.Povoden, A.N.Grundy, L.J.Gauckler: submitted to J. Phase Equilib. Diff.Suche in Google Scholar

[10] B.-J.Lee: Metall. Trans.A24 (1993) 1919.10.1007/BF02666327Suche in Google Scholar

[11] J.M.Hastings, L.M.Corliss: Phys. Rev.126 (1962) 556.10.1103/PhysRev.126.556Suche in Google Scholar

[12] P.Holba, M.Nevriva, E.Pollert: Mater. Res. Bull.10 (1975) 853.10.1016/0025-5408(75)90202-0Suche in Google Scholar

[13] D.H.Speidel, A.Muan: J. Am. Ceram. Soc.46 (1963) 577.10.1111/j.1151-2916.1963.tb14619.xSuche in Google Scholar

[14] Y.V.Golikov, V.F.Balakirev: J. Solid State Chem.71 (1987) 562.10.1016/0022-4596(87)90267-2Suche in Google Scholar

[15] E.Pollert, M.Nevriva, J.Novak: Mater. Res. Bull.15 (1980) 1453.10.1016/0025-5408(80)90101-4Suche in Google Scholar

[16] E.Pollert, M.Nevriva, J.Novak: J. Phys. Chem. Solids38 (1977) 1145.10.1016/0022-3697(77)90041-5Suche in Google Scholar

[17] S.Geller, G.P.Espinosa: Phys. Rev. B1 (1970) 3763.10.1103/PhysRevB.1.3763Suche in Google Scholar

[18] M.Tanahashi, N.Furuta, C.Yamauchi, T.Fujisawa: ISIJ Int.41 (2001) 1309.10.2355/isijinternational.41.1309Suche in Google Scholar

[19] A.P.Bobov, A.G.Zalazinsky, V.F.Balakirev, Y.V.Golikov, G.I.Chufarov: Zh. Fiz. Khim.58 (1984) 750.Suche in Google Scholar

[20] S.Ranganathan, J.P.Hajra: Bull. Mater. Sci.9 (1987) 149.10.1007/BF02744295Suche in Google Scholar

[21] M.Tanahashi, N.Furuta, T.Taniguchi, C.Yamauchi, T.Fujisawa: ISIJ Int.43 (2003) 7.10.2355/isijinternational.43.7Suche in Google Scholar

[22] I.Barin: Thermochemical Data of Pure Substances, 2nd Ed., Parts I and II, VCH Verlagsgesellschaft mbH, Weinheim (1993).Suche in Google Scholar

[23] H.T.Tsai, A.Muan: J. Am. Ceram. Soc.75 (1992) 1407.10.1111/j.1151-2916.1992.tb04201.xSuche in Google Scholar

[24] H.T.Tsai, A.Muan: J. Am. Ceram. Soc.75 (1992) 1412.10.1111/j.1151-2916.1992.tb04202.xSuche in Google Scholar

[25] L.M.Lenev, I.A.Novokhatskiy: Izv. Akad. Nauk SSSR, Met.3 (1966) 73.Suche in Google Scholar

[26] C.K.Kim, A.McLean: Metall. Trans. B10 (1979) 575.10.1007/BF02662560Suche in Google Scholar

[27] K.T.Jacob: Can. Metall. Q.20 (1981) 89.10.1179/000844381795270561Suche in Google Scholar

[28] S.Dimitrov, A.Weyl, D.Janke: Steel Res.66 (1995) 87.Suche in Google Scholar

[29] J.V.Biggers: Ph.D. Thesis, Pennsylvania State University, University Park, PA (1966).Suche in Google Scholar

[30] N.Y.Toker, L.S.Darken, A.Muan: Metall. Trans. B22 (1991) 225.10.1007/BF02652487Suche in Google Scholar

[31] R.K.F.Lam: United States Patent6039788 (2000).Suche in Google Scholar

[32] J.-O.Andersson, A.F.Guillermet, M.Hillert, B.Jansson, B.Sundman: Acta metall.34 (1986) 437.10.1016/0001-6160(86)90079-9Suche in Google Scholar

[33] M.Hillert, B.Jansson, B.Sundman: Z. Metallkd.79 (1988) 81.Suche in Google Scholar

[34] M.Hillert: J. Alloys Comp.320 (2001) 161.10.1016/S0925-8388(00)01481-XSuche in Google Scholar

[35] Z.Lu, J.Zhu, E.A.Payzant, M.P.Paranthaman: J. Am. Ceram. Soc.88 (2005) 1050.10.1111/j.1551-2916.2005.00205.xSuche in Google Scholar

[36] R.D.Shannon: Acta Crystallogr. A32 (1976) 751.10.1107/S0567739476001551Suche in Google Scholar

[37] M.O'Keefe, M.Valigi: J. Phys. Chem. Solids31 (1970) 947.10.1016/0022-3697(70)90306-9Suche in Google Scholar

[38] D.Caplan, M.J.Fraser, A.A.Burr, in: Ductile Chromium, ASM, Cleveland, Ohio (1957) 196.Suche in Google Scholar

[39] M.Hillert, B.Jansson, B.Sundman, J.Ågren: Metall. Trans.A16 (1985) 261.Suche in Google Scholar

[40] B.Sundman: Calphad15 (1991) 109.10.1016/0364-5916(91)90010-HSuche in Google Scholar

[41] B.Sundman, B.Jansson, J.O.Andersson: Calphad9 (1985) 153.10.1016/0364-5916(85)90021-5Suche in Google Scholar

[42] V.M.Eremenko, G.M.Lukashenko, V.R.Sidorko: Russ. J. Phys. Chem.42 (1968) 343.Suche in Google Scholar

[43] W.Qu, L.Jian, J.M.Hill, D.G.Ivey: J. Power sources153 (2006) 114.10.1016/j.jpowsour.2005.03.137Suche in Google Scholar

Received: 2005-11-1
Accepted: 2006-2-9
Published Online: 2013-05-31
Published in Print: 2006-05-01

© 2006, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial
  5. Basic
  6. Three-dimensional printing of TiAl3/Al2O3 composites
  7. Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
  8. Solid-State 17O NMR studies on Yttria-stabilized zirconia
  9. Twinning in ultrathin silicon nanowires
  10. Re-optimization of the Mg–Sb system under topological constraints
  11. Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
  12. The In–Pt–Sb phase diagram
  13. Thermodynamic evaluation of the Al–Cr–C system
  14. Thermodynamic description of the Ni–Si–Ti ternary system
  15. Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
  16. Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
  17. Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
  18. Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
  19. Implications of linear relationships between local and macroscopic flow stresses in the composite model
  20. Applied
  21. Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
  22. Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
  23. The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
  24. Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
  25. High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
  26. Nanopowder dispersion and spray-drying process: the case of Cr2O3
  27. Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
  28. The role of chemisorbed anions in the aqueous processing of AlN powder
  29. The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
  30. Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
  31. The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
  32. Infrared properties of sintered α-MnSe
  33. Quasi-equilibrium sintering of particle clusters containing Bernal holes
  34. Design of metal ceramic composites
  35. Notifications
  36. DGM News
Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101273/html
Button zum nach oben scrollen