Home Twinning in ultrathin silicon nanowires
Article
Licensed
Unlicensed Requires Authentication

Twinning in ultrathin silicon nanowires

  • Jinhua Zhan , Yoshio Bando , Junqing Hu and Dmitri Golberg
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

Galium nanodroplets induced the anisotropic growth of ultrathin (diameter (<5nm) silicon nanowires in accordance with the vapor-liquid-solid (VLS) mechanism. X-ray diffraction and dispersion spectroscopy, and scanning, and transmission electron microscopy (TEM) were used to characterize the product. High-resolution TEM analysis revealed the existence of twins in the nanowires. In contrast to the theoretically predicated 5-fold twinning in ultrathin Si nanowires (diameter (<6nm), no twinning on the {111} planes along the wire axial directions was observed. The possible reasons for the formation of novel nanostructures are discussed.


* Correspondence address: Dr. Jinhua Zhan, Advanced Materials Laboratory, National Institute for Materials Science, Namiki 1-1, Tuskuba, Ibaraki 305-0044, Japan, Tel.: +812985133548599, Fax: +81298516280. E-mail:

Dedicated to Professor Dr. Fritz Aldinger on the occasion of his 65th birthday


References

[1] Y.Cui, C.M.Lieber: Science291 (2001) 851.10.1126/science.291.5505.851Search in Google Scholar PubMed

[2] Y.Xia, P.Yang, Y.Sun, Y.Wu, B.Mayers, B.Gates, Y.Yin, F.Kim, Y.Yan: Adv. Mater.15 (2003) 353.10.1002/adma.200390087Search in Google Scholar

[3] J.Hu, T.W.Odom, C.M.Lieber: Acc. Chem. Res.32 (1999) 435.10.1021/ar9700365Search in Google Scholar

[4] C.M.Lieber: Sci. Am.285 (2001) 58.10.1038/scientificamerican0901-58Search in Google Scholar PubMed

[5] Y.Cui, Z.Zhong, D.Wang, W.U.Wang, C.M.Lieber: Nano Lett.3 (2003) 149.10.1021/nl025875lSearch in Google Scholar

[6] A.M.Morales, C.M.Lieber: Science279 (1998) 208.10.1126/science.279.5348.208Search in Google Scholar PubMed

[7] Y.Cui, L.J.Lauhon, M.S.Gudiksen, J.Wang, C.M.Lieber: Appl. Phys. Lett.78 (2001) 2214.10.1063/1.1363692Search in Google Scholar

[8] Y.Wu, Y.Cui, L.Huynh, C.J.Barrelet, D.C.Bell, C.M.Lieber: Nano Lett.4 (2004) 433.10.1021/nl035162iSearch in Google Scholar

[9] M.K.Sunkara, S.Sharma, R.Miranda: Appl. Phys. Lett.79 (2001) 1046.10.1063/1.1401089Search in Google Scholar

[10] J.D.Holmes, K.P.Johnston, R.C.Doty, B.A.Korgel: Science287 (2000) 1471.10.1126/science.287.5457.1471Search in Google Scholar PubMed

[11] X.Lu, T.Hanrath, K.P.Johnston, B.A.Korgel: Nano Lett.3 (2003) 93.10.1021/nl0202307Search in Google Scholar

[12] S.T.Lee, Y.F.Zhang, N.Wang, Y.H.Tang, I.Bello, C.S.Lee, Y. W.Chung: J. Mater. Res.14 (1999) 4503.10.1557/JMR.1999.0611Search in Google Scholar

[13] N.Wang, Y.H.Tang, Y.F.Zhang, C.S.Lee, S.T.Lee: Phys. Rev.B58 (1998) R16024.10.1103/PhysRevB.58.R16024Search in Google Scholar

[14] R.Q.Zhang, Y.Lifshitz, S.T.Lee: Adv. Mater.15 (2003) 635.10.1002/adma.200301641Search in Google Scholar

[15] C.P.Li, C.S.Lee, X.L.Ma, N.Wang, R.Q.Zhang, S.T.Lee: Adv. Mater.15 (2003) 607.10.1002/adma.200304409Search in Google Scholar

[16] X.L.Ma, Y.L.Zhu, Z.Zhang: Philos. Mag. Lett.82 (2002) 461.10.1080/09500830210144391Search in Google Scholar

[17] Y.Wu, P.Yang: J. Am. Chem. Soc.123 (2001) 3165.10.1021/ja0059084Search in Google Scholar

[18] T.Y.Tan, S.T.Lee, U.Gösele: Appl. Phys. A74 (2002) 423.10.1007/s003390101133Search in Google Scholar

[19] B.K.Teo, X.H.Sun, T.F.Hung, X.M.Meng, N.B.Wong, S.T.Lee: Nano Lett.3 (2003) 1735.10.1021/nl034603vSearch in Google Scholar

[20] D.D.Ma, C.S.Lee, F.C.K.Au, S.Y.Tong, S.T.Lee: Science299 (2003) 1874.10.1126/science.1080313Search in Google Scholar PubMed

[21] X.Zhao, C.M.Wei, L.Yang, M.Y.Chou: Phys. Rev. Lett.92 (2004) 2368051.10.1103/PhysRevLett.92.236805Search in Google Scholar

[22] Y.Zhao, B.I.Yakobson: Phys. Rev. Lett.91 (2003) 0355011.10.1103/PhysRevLett.91.035501Search in Google Scholar

[23] M.H.Huang, Y.Wu, H.Feick, N.Tran, E.Weber, P.Yang: Adv. Mater.13 (2001) 113.10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-HSearch in Google Scholar

[24] R.W.Olesinski, N.Kanani, G.J.Abbaschian, in: T.B.Massalski, H.Okamoto, P.R.Subramanian, L.Kacprazak (Eds.), Binary Alloy Phase Diagrams, 2nd ed., Vol. 3, ASM International, Ohio (1990) 1856.Search in Google Scholar

[25] H.Alexander, J.C.H.Spence, D.Shindo: Phil. Mag. A53 (1986) 627.10.1080/01418618608242861Search in Google Scholar

[26] S.Ijima: Jap. J. Appl. Phys.26 (1987) 357.10.1143/JJAP.26.357Search in Google Scholar

[27] Y.Q.Wang, R.Smirani, G.G.Ross: Nano. Lett.4 (2004) 2041.10.1021/nl048764qSearch in Google Scholar

Received: 2005-10-19
Accepted: 2006-2-16
Published Online: 2013-05-31
Published in Print: 2006-05-01

© 2006, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial
  5. Basic
  6. Three-dimensional printing of TiAl3/Al2O3 composites
  7. Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
  8. Solid-State 17O NMR studies on Yttria-stabilized zirconia
  9. Twinning in ultrathin silicon nanowires
  10. Re-optimization of the Mg–Sb system under topological constraints
  11. Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
  12. The In–Pt–Sb phase diagram
  13. Thermodynamic evaluation of the Al–Cr–C system
  14. Thermodynamic description of the Ni–Si–Ti ternary system
  15. Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
  16. Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
  17. Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
  18. Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
  19. Implications of linear relationships between local and macroscopic flow stresses in the composite model
  20. Applied
  21. Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
  22. Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
  23. The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
  24. Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
  25. High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
  26. Nanopowder dispersion and spray-drying process: the case of Cr2O3
  27. Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
  28. The role of chemisorbed anions in the aqueous processing of AlN powder
  29. The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
  30. Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
  31. The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
  32. Infrared properties of sintered α-MnSe
  33. Quasi-equilibrium sintering of particle clusters containing Bernal holes
  34. Design of metal ceramic composites
  35. Notifications
  36. DGM News
Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101266/html
Scroll to top button