Startseite Infrared properties of sintered α-MnSe
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Infrared properties of sintered α-MnSe

  • Maria Vesna Nikolić , Pantelija M. Nikolić , Vladimir Blagojević , Konstantinos M. Paraskevopoulos , Triantafyllia T. Zorba , Dana Vasiljević-Radović und Momčvilo M. Risticć
Veröffentlicht/Copyright: 31. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Far-infrared reflection spectra of sintered α-MnSe were measured at room temperature. The measured spectrum had one pronounced peak in accordance with literature data and group theory estimation and one smaller peak resulting from the applied sintering procedure. The measured reflection spectrum was analyzed using Kramers–Kronig analysis and a three-component effective medium model based on Bruggeman's theory assuming the presence of a small amount of pores, dominant crystalline grains and intergranular material. In the model the crystalline grains were modeled as a single oscillator appropriate to the single crystal and the intergranular material was also defined as a single ionic oscillator.


* Correspondence address: Dr. Maria Vesna Nikolić, Kneza Višeslava 1, 11000 Beograd, Serbia and Montenegro, Tel.: +38111637367, Fax: +38111185263. E-mail:

Dedicated to Professor Dr. Fritz Aldinger on the occasion of his 65th birthday


References

[1] S.A.Wolf, D.D.Awschalom, R.A.Buhrman, J.M.Daughton, S.Molna'r, M.L.Roukes, A.Y.Chtchelkanova, D.M.Treger: Science294 (2001) 1488.10.1126/science.1065389Suche in Google Scholar

[2] H.Babucke, P.Thiele, T.Prasse, M.Rabe, F.Henneberger: Semiconductor Science and Techn.13 (1998) 200.10.1088/0268-1242/13/2/008Suche in Google Scholar

[3] M.Wu, Y.Xiong, N.Jang, M.Ning, Q.Chen: J. Crystal Growth262 (2004) 567.10.1016/j.jcrysgro.2003.10.065Suche in Google Scholar

[4] D.J.Norris, N.Yao, F.T.Charnock, T.A.Kennedy: Nano Lett.1 (2001) 521.10.1021/nl005503hSuche in Google Scholar

[5] L.Levy, N.Feltin, D.Ingert, M.P.Pileni: J. Phys. Chem.B101 (1997) 9153.Suche in Google Scholar

[6] W.Heimbrodt, O.Goede, I.Tschentscher, V.Weinhold, A.Klimakow, U.Pohl, K.Jacobs, N.Hoffman: Physica B: Condensed Matter185 (1993) 357.10.1016/0921-4526(93)90261-4Suche in Google Scholar

[7] JCPDS International Center for Diffraction Data (1997).Suche in Google Scholar

[8] R.J.Pollard, V.H.McCann, J.B.Ward: J. Phys. C16 (1983) 345.10.1088/0022-3719/16/2/017Suche in Google Scholar

[9] P.Klosowski, T.Giebultowicz, J.J.Rhyne, N.Samarth, H.Luo, J.Furdyna: J. Appl. Phys.69 (1991) 6109.10.1063/1.347782Suche in Google Scholar

[10] D.L.Decker, R.L.Wild: Phys. Rev. B4 (1971) 3425.10.1103/PhysRevB.4.3425Suche in Google Scholar

[11] H.Kim, R.Vogelgesang, A.K.Ramdas, F.C.Peiris, U.Bindley, J.K.Furdyna: Phys. Rev. B58 (1998) 6700.10.1103/PhysRevB.58.6700Suche in Google Scholar

[12] A.Milutinović, Z. V.PopovićN.Tomić, S.Dević: Materials Science Forum453–454 (2004) 299.10.4028/www.scientific.net/MSF.453-454.299Suche in Google Scholar

[13] J. E.Spanier, I.P.Herman: Phys. Rev. B61 (2000) 10437.10.1103/PhysRevB.61.10437Suche in Google Scholar

[14] J.Maxwell-Garnett: Philos. Trans. R. Soc. LondonA203 (1904) 385.10.1098/rsta.1904.0024Suche in Google Scholar

[15] D.A.G.Bruggeman: Ann. Physik (Leipzig)24 (1935) 636.10.1002/andp.19354160705Suche in Google Scholar

[16] M.V.Nikolić, BlagojevićV., K.M.Paraskevopoulos, T.T.Zorba, D.Vasiljević-Radović, P.M.Nikolić, M.M.Ristić, accepted for publication in the J. Eur. Ceram. Soc (2006).Suche in Google Scholar

[17] D.M.Adams, D.C.Newton: Tables for Factor Group and Point Group Analysis, Beckman MIIC, Croydon, UK (1970).Suche in Google Scholar

[18] Y.T.Hou, Z.C.Feng, J.Chen, X.Zhang, S.J.Chua, J.Y.Lin: Solid State Commun.115 (2000) 45.10.1016/S0038-1098(00)00134-4Suche in Google Scholar

[19] Y.Okamoto, S.V.Ordin, T.Kawara, M.I.Fedorov, Y.Miida, T.Miyakawa: J. of Appl. Phys.85 (1999) 6728.10.1063/1.370186Suche in Google Scholar

Received: 2005-10-31
Accepted: 2006-1-27
Published Online: 2013-05-31
Published in Print: 2006-05-01

© 2006, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial
  5. Basic
  6. Three-dimensional printing of TiAl3/Al2O3 composites
  7. Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
  8. Solid-State 17O NMR studies on Yttria-stabilized zirconia
  9. Twinning in ultrathin silicon nanowires
  10. Re-optimization of the Mg–Sb system under topological constraints
  11. Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
  12. The In–Pt–Sb phase diagram
  13. Thermodynamic evaluation of the Al–Cr–C system
  14. Thermodynamic description of the Ni–Si–Ti ternary system
  15. Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
  16. Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
  17. Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
  18. Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
  19. Implications of linear relationships between local and macroscopic flow stresses in the composite model
  20. Applied
  21. Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
  22. Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
  23. The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
  24. Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
  25. High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
  26. Nanopowder dispersion and spray-drying process: the case of Cr2O3
  27. Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
  28. The role of chemisorbed anions in the aqueous processing of AlN powder
  29. The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
  30. Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
  31. The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
  32. Infrared properties of sintered α-MnSe
  33. Quasi-equilibrium sintering of particle clusters containing Bernal holes
  34. Design of metal ceramic composites
  35. Notifications
  36. DGM News
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101288/html
Button zum nach oben scrollen