Infrared properties of sintered α-MnSe
-
Maria Vesna Nikolić
, Pantelija M. Nikolić , Vladimir Blagojević , Konstantinos M. Paraskevopoulos , Triantafyllia T. Zorba , Dana Vasiljević-Radović and Momčvilo M. Risticć
Abstract
Far-infrared reflection spectra of sintered α-MnSe were measured at room temperature. The measured spectrum had one pronounced peak in accordance with literature data and group theory estimation and one smaller peak resulting from the applied sintering procedure. The measured reflection spectrum was analyzed using Kramers–Kronig analysis and a three-component effective medium model based on Bruggeman's theory assuming the presence of a small amount of pores, dominant crystalline grains and intergranular material. In the model the crystalline grains were modeled as a single oscillator appropriate to the single crystal and the intergranular material was also defined as a single ionic oscillator.
References
[1] S.A.Wolf, D.D.Awschalom, R.A.Buhrman, J.M.Daughton, S.Molna'r, M.L.Roukes, A.Y.Chtchelkanova, D.M.Treger: Science294 (2001) 1488.10.1126/science.1065389Search in Google Scholar
[2] H.Babucke, P.Thiele, T.Prasse, M.Rabe, F.Henneberger: Semiconductor Science and Techn.13 (1998) 200.10.1088/0268-1242/13/2/008Search in Google Scholar
[3] M.Wu, Y.Xiong, N.Jang, M.Ning, Q.Chen: J. Crystal Growth262 (2004) 567.10.1016/j.jcrysgro.2003.10.065Search in Google Scholar
[4] D.J.Norris, N.Yao, F.T.Charnock, T.A.Kennedy: Nano Lett.1 (2001) 521.10.1021/nl005503hSearch in Google Scholar
[5] L.Levy, N.Feltin, D.Ingert, M.P.Pileni: J. Phys. Chem.B101 (1997) 9153.Search in Google Scholar
[6] W.Heimbrodt, O.Goede, I.Tschentscher, V.Weinhold, A.Klimakow, U.Pohl, K.Jacobs, N.Hoffman: Physica B: Condensed Matter185 (1993) 357.10.1016/0921-4526(93)90261-4Search in Google Scholar
[7] JCPDS International Center for Diffraction Data (1997).Search in Google Scholar
[8] R.J.Pollard, V.H.McCann, J.B.Ward: J. Phys. C16 (1983) 345.10.1088/0022-3719/16/2/017Search in Google Scholar
[9] P.Klosowski, T.Giebultowicz, J.J.Rhyne, N.Samarth, H.Luo, J.Furdyna: J. Appl. Phys.69 (1991) 6109.10.1063/1.347782Search in Google Scholar
[10] D.L.Decker, R.L.Wild: Phys. Rev. B4 (1971) 3425.10.1103/PhysRevB.4.3425Search in Google Scholar
[11] H.Kim, R.Vogelgesang, A.K.Ramdas, F.C.Peiris, U.Bindley, J.K.Furdyna: Phys. Rev. B58 (1998) 6700.10.1103/PhysRevB.58.6700Search in Google Scholar
[12] A.Milutinović, Z. V.PopovićN.Tomić, S.Dević: Materials Science Forum453–454 (2004) 299.10.4028/www.scientific.net/MSF.453-454.299Search in Google Scholar
[13] J. E.Spanier, I.P.Herman: Phys. Rev. B61 (2000) 10437.10.1103/PhysRevB.61.10437Search in Google Scholar
[14] J.Maxwell-Garnett: Philos. Trans. R. Soc. LondonA203 (1904) 385.10.1098/rsta.1904.0024Search in Google Scholar
[15] D.A.G.Bruggeman: Ann. Physik (Leipzig)24 (1935) 636.10.1002/andp.19354160705Search in Google Scholar
[16] M.V.Nikolić, BlagojevićV., K.M.Paraskevopoulos, T.T.Zorba, D.Vasiljević-Radović, P.M.Nikolić, M.M.Ristić, accepted for publication in the J. Eur. Ceram. Soc (2006).Search in Google Scholar
[17] D.M.Adams, D.C.Newton: Tables for Factor Group and Point Group Analysis, Beckman MIIC, Croydon, UK (1970).Search in Google Scholar
[18] Y.T.Hou, Z.C.Feng, J.Chen, X.Zhang, S.J.Chua, J.Y.Lin: Solid State Commun.115 (2000) 45.10.1016/S0038-1098(00)00134-4Search in Google Scholar
[19] Y.Okamoto, S.V.Ordin, T.Kawara, M.I.Fedorov, Y.Miida, T.Miyakawa: J. of Appl. Phys.85 (1999) 6728.10.1063/1.370186Search in Google Scholar
© 2006, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News