Startseite Thermodynamic description of the Ni–Si–Ti ternary system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermodynamic description of the Ni–Si–Ti ternary system

  • Yong Du , Cuiyun He , J. C. Schuster , Shuhong Liu und Honghui Xu
Veröffentlicht/Copyright: 31. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A thermodynamic modeling of the Ni–Si–Ti system is conducted. All of the experimental phase diagram data available from the literature are critically reviewed and assessed using thermodynamic models for the Gibbs energies of individual phases. The thermodynamic parameters for five ternary compounds (τ1: Ti1Ni1Si1, τ2: Ti4Ni4Si7, τ3: Ti13Ni40Si31, τ4: Ti6Ni16Si7, and τ5: Ti2Ni3Si1), the ternary solution phases (liquid, bcc_A2, bcc_B2, fcc_A1, and L12) as well as the binary phases (Ti5Si3, Ni3Si, Ni5Si2, and TiNi3) showing noticeable solubilities for the third element are adjusted in the optimization. The order/disorder transitions between disordered bcc_A2 and ordered bcc_B2 phases as well as between disordered fcc_A1 and ordered L12 phases are treated using a two-sublattice model. The calculations indicate that the disordered and ordered phases can be described with a single equation. Comprehensive comparisons between the calculated and measured phase diagrams show that in the measured isothermal sections at 750°C, 900°C, 1000°C and 1100°C, most of the observed primary phase regions, as well as 16 out of the 26 experimentally observed invariant reaction temperatures are satisfactorily accounted for by the thermodynamic description. The liquidus projection and reaction scheme for the entire system are also presented. Further experimental work to solve a few discrepancies between calculation and experiment is emphasized.


* Correspondence address: Professor Dr. Yong Du, State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, P.R. China, Tel.: +867318836213, Fax: +867318710855. E-mail:

Dedicated to Professor Dr. Fritz Aldinger on the occasion of his 65th birthday


References

[1] J.H.Westbrook, R.K.DiCerbo, A.J.Peat: GE Research Report 58-RL-2117 (1958) 1.Suche in Google Scholar

[2] V. Ya.Markiv, E.I.Gladyshevskii, P.I.Kripyakevich, T.I.Fedoruk: Izv. Akad. Nauk SSSR, Neorg. Mater.2 (1966) 1317.Suche in Google Scholar

[3] H.H.Xu, Z.P.Jin: Trans. Nonferrous Met. Soc. China, 8 (1) (1998) 1.Suche in Google Scholar

[4] X.Hu, G.Chen, C.Ion, K.Ni: J. Phase Equilibria20 (1999) 508.10.1361/105497199770340761Suche in Google Scholar

[5] J.C.Schuster, H.Takase, I.Nakade, M.Naka, in: M.Naka (Ed.), DIS 2002, Osaka, Japan (2002).Suche in Google Scholar

[6] L.Kaufman, H.Nesor: Computer Calculation of Phase Diagrams, Academic Press, New York and London (1970).Suche in Google Scholar

[7] K.J.Williams: J. Inst. Metals.99 (1971) 310.Suche in Google Scholar

[8] G.Haour, F.Mollard, B.Lux, I.G.Wright: Z. Metallkd.69 (1978) 149.Suche in Google Scholar

[9] P.B.Budberg, S.P.Alisova, A.N.Kobylkin: Dokl. Akad. Nauk SSSR.250 (1980) 1137.Suche in Google Scholar

[10] Y.D.Li, T.X.Zhang, Z.Zheng, Y.X.Zhu: Acta Met. Sin.26 (3) A (1990) 172.Suche in Google Scholar

[11] T.Takasugi, D.Shindo, O.Izumi, M.Hirabayashi: Acta Metall. Mater.38 (1990) 739.10.1016/0956-7151(90)90025-CSuche in Google Scholar

[12] N.V.Lutskaya, S.P.Alisova: Russ. Metall.3 (1992) 194.Suche in Google Scholar

[13] T.Tokunaga, K.Hashima, H.Ohtani, M.Hasebe: Mater. Trans.45 (2004) 1507.10.2320/matertrans.45.1507Suche in Google Scholar

[14] T.B.Massalski: Binary Alloys Phase Diagrams, ASM, Metals Park, Ohio 44073, USA (1986).Suche in Google Scholar

[15] E.Scheil: Z. Metallkd.34 (1942) 70.10.1515/ijmr-1942-340303Suche in Google Scholar

[16] P.Bellen, K.C.Hari Kumar, P.Wollants: Z. Metallkd.87 (1996) 972.Suche in Google Scholar

[17] Y.Du, J.C.Schuster: Metall. Mater. Trans. A30 (1999) 2409.10.1007/s11661-999-0249-8Suche in Google Scholar

[18] H. J.Seifert, unpublished results, Max-Planck Institute for Metals Research, Stuttgart, Germany (1998).Suche in Google Scholar

[19] O.Redlich, A.T.Kister: Indust. Eng. Chem.40 (1948) 345.10.1021/ie50458a036Suche in Google Scholar

[20] A.T.Dinsdale: CALPHAD15 (1991) 317.10.1016/0364-5916(91)90030-NSuche in Google Scholar

[21] G.Inden: Proc. Project Meeting, CALPHAD V, Max Planck Institute for Metal Research, Düsseldorf, Germany (1976) 1.Suche in Google Scholar

[22] M.Hillert, M.Jarl: CALPHAD2 (1978) 227.10.1016/0364-5916(78)90011-1Suche in Google Scholar

[23] M.Hillert, L.I.Staffansson: Acta Chem. Scand.24 (1970) 3618.10.3891/acta.chem.scand.24-3618Suche in Google Scholar

[24] B.Sundman, J.Agren: J. Phys. Chem. Solids.42 (1981) 297.10.1016/0022-3697(81)90144-XSuche in Google Scholar

[25] I.Ansara, B.Sundman, P.Willemin: Acta Metall.36 (4) (1988) 977.10.1016/0001-6160(88)90152-6Suche in Google Scholar

[26] I.Ansara, N.Dupin, H.L.Lukas, B.Sundman: J. Alloy Compounds247 (1997) 20.10.1016/S0925-8388(96)02652-7Suche in Google Scholar

[27] Y.Du, Y.A.Chang, W.P.Gong, B.Y.Huang, H.H.Xu, Z.P.Jin, F.Zhang, S.-L.Chen: Intermetallics11 (2003) 995.10.1016/S0966-9795(03)00123-7Suche in Google Scholar

[28] N.Dupin, I.Ansara, B.Sundman: CALPHAD25 (2001) 279.10.1016/S0364-5916(01)00049-9Suche in Google Scholar

[29] N.Dupin, I.Ansara: Z. Metallkd.90 (1999) 76.Suche in Google Scholar

[30] B.Sundman, B.Jansson, J.O.Andersson: CALPHAD9 (1985) 153.10.1016/0364-5916(85)90021-5Suche in Google Scholar

[31] Y.Du, R.Schmid-Fetzer, H.Ohtani: Z. Metallkd.88 (1997) 545.Suche in Google Scholar

[32] Z.K.Liu, Y.A.Chang: Metall. Mater. Trans. A30 (1999) 1081.10.1007/s11661-999-0160-3Suche in Google Scholar

Received: 2005-11-2
Accepted: 2006-1-30
Published Online: 2013-05-31
Published in Print: 2006-05-01

© 2006, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial
  5. Basic
  6. Three-dimensional printing of TiAl3/Al2O3 composites
  7. Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
  8. Solid-State 17O NMR studies on Yttria-stabilized zirconia
  9. Twinning in ultrathin silicon nanowires
  10. Re-optimization of the Mg–Sb system under topological constraints
  11. Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
  12. The In–Pt–Sb phase diagram
  13. Thermodynamic evaluation of the Al–Cr–C system
  14. Thermodynamic description of the Ni–Si–Ti ternary system
  15. Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
  16. Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
  17. Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
  18. Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
  19. Implications of linear relationships between local and macroscopic flow stresses in the composite model
  20. Applied
  21. Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
  22. Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
  23. The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
  24. Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
  25. High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
  26. Nanopowder dispersion and spray-drying process: the case of Cr2O3
  27. Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
  28. The role of chemisorbed anions in the aqueous processing of AlN powder
  29. The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
  30. Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
  31. The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
  32. Infrared properties of sintered α-MnSe
  33. Quasi-equilibrium sintering of particle clusters containing Bernal holes
  34. Design of metal ceramic composites
  35. Notifications
  36. DGM News
Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101271/html
Button zum nach oben scrollen