Startseite Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature

  • A. Cuneyt Tas
Veröffentlicht/Copyright: 31. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

An electroless, room temperature solution growth method of depositing 50 to 150 μm thick, well-crystallized brushite (CaHPO4 · 2H2O, DCPD, dicalcium phosphate dihydrate) layers on the surface of an implantable medical device, such as a titanium alloy (Ti–6Al–4V) substrate, was developed. High ionic strength (189 to 609 mM) solutions with a Ca/P molar ratio of 2.50 and a pH value between 4.70 and 6.10 were prepared by dissolving appropriate quantities of CaCl2 · 2H2O, NaH2PO4, NaHCO3, and NaCl in deionized water. Surface-etched Ti–6Al–4V substrates were simply soaked in the solutions from 24 to 72 hours at room temperature. Elongated CaHPO4 · 2H2O crystals were in-situ- grown on the entire surfaces of the etched Ti–6Al–4V substrates.


* Correspondence address: Dr. A. Cuneyt Tas, 2. Cadde, 25. Sokak, No: 21 Batikent, Ankara 06370, Turkey Tel.: 903122507563. E-mail:

Dedicated to Professor Dr. Fritz Aldinger on the occasion of his 65th birthday


References

[1] L.Winand: Ann. Chim.6 (1961) 941.Suche in Google Scholar

[2] Y.E.Greish, P.W.Brown: J. Biomed. Mater. Res. Appl. Biomat.B67 (2003) 632.10.1002/jbm.b.10056Suche in Google Scholar

[3] R.Z.LeGeros, J.P.LeGeros, in: L.L.Hench, J.Wilson (Eds.), An Introduction to Bioceramics, World Scientific Publishing Co, London (1993) 144.Suche in Google Scholar

[4] Y.T.Wu, M.J.Glimcher, C.Rey, J.L.Ackerman: J. Mol. Biol.244 (1994) 423.10.1006/jmbi.1994.1740Suche in Google Scholar

[5] C.K.Loong, C.Rey, L.T.Kuhn, C.Combes, Y.Wu, S.H.Chen, M.J.Glimcher: Bone26 (2000) 599.10.1016/S8756-3282(00)00273-8Suche in Google Scholar

[6] T.Kokubo: Acta Mater.46 (1998) 2519.10.1016/S1359-6454(98)80036-0Suche in Google Scholar

[7] G.L.Lange, K.Donath: Biomaterials10 (1989) 121.10.1016/0142-9612(89)90044-6Suche in Google Scholar

[8] C.Y.Yang, R.M.Lin, B.C.Wang, T.M.Lee, E.Chang, Y.S.Hang, P.Q.Chen: J. Biomed. Mater. Res.37 (1997) 335.10.1002/(SICI)1097-4636(19971205)37:3<335::AID-JBM4>3.0.CO;2-MSuche in Google Scholar

[9] M.Yoshinari, T.Hayakawa, J.G.C.Wolke, K.Nemoto, J.A.Jansen: J. Biomed. Mater. Res.37 (1997) 60.10.1002/(SICI)1097-4636(199710)37:1<60::AID-JBM8>3.0.CO;2-HSuche in Google Scholar

[10] W.Weng, J.L.Baptista: Biomaterials19 (1998) 125.10.1016/S0142-9612(97)00177-4Suche in Google Scholar

[11] L.Tuantuan, J.Lee, T.Kobayashi, H.Aoki: J. Mater. Sci. Mater. M.7 (1996) 355.10.1007/BF00154548Suche in Google Scholar

[12] B.Mavis, A.C.Tas: J. Am. Ceram. Soc.83 (2000) 989.10.1111/j.1151-2916.2000.tb01314.xSuche in Google Scholar

[13] S.Ban, S.Maruno: J. Biomed. Mater. Res.42 (1998) 387.10.1002/(SICI)1097-4636(19981205)42:3<387::AID-JBM6>3.0.CO;2-FSuche in Google Scholar

[14] S.Rossler, A.Sewing, M.Stolzel, R.Born, D.Scharnweber, M.Dard, H.Worch: J. Biomed. Mater. Res.64 (2002) 655.Suche in Google Scholar

[15] S.Lin, R.Z.LeGeros, J.P.LeGeros: J. Biomed. Mater. Res.66 (2003) 819.10.1002/jbm.a.10072Suche in Google Scholar

[16] M.Shirkhanzadeh, S.Sims: J. Mater. Sci. Mater.M8 (1997) 595.10.1023/A:1018563201792Suche in Google Scholar

[17] M.Kumar, J.Xie, K.Chittur, C.Riley: Biomaterials20 (1999) 1389.10.1016/S0142-9612(99)00043-5Suche in Google Scholar

[18] M.H.P.Da Silva, J.H.C.Lima, G.A.Soares, C.N.Elias, M.C.de Andrade, S.M.Best, I.R.Gibson: Surf. Coat. Tech.137 (2001) 270.10.1016/S0257-8972(00)01125-7Suche in Google Scholar

[19] X.Hou, X.Liu, J.Xu, J.Shen, X.Liu: Mater. Lett.50 (2001) 103.10.1016/S0167-577X(00)00424-9Suche in Google Scholar

[20] J.Redepenning, G.Venkataraman, J.Chen, N.Stafford: J. Biomed. Mater. Res.66 (2003) 411.10.1002/jbm.a.10571Suche in Google Scholar

[21] X.Cheng, M.Filiaggi, S.G.Roscoe: Biomaterials25 (2004) 5395.10.1016/j.biomaterials.2003.12.045Suche in Google Scholar

[22] S.H.Wang, W.J.Shih, W.L.Li, M.H.Hon, M.C.Wang: J. Eur. Ceram. Soc.25 (2005) 3287.10.1016/j.jeurceramsoc.2004.08.016Suche in Google Scholar

[23] B.R.Constantz, B.M.Barr, I.C.Ison, M.T.Fulmer, J.Baker, L.McKinney, S.B.Goodman, S.Gunasekaren, D.C.Delaney, J.Ross, R.D.Poser: J. Biomed. Mater. Res.43 (1998) 451.10.1002/(SICI)1097-4636(199824)43:4<451::AID-JBM13>3.0.CO;2-QSuche in Google Scholar

[24] D.D.Lee, A.Tofighi, M.Aiolova, P.Chakravarthy, A.Catalano, A.Majahad, D.Knaack: Clin. Orthop.367 (1999) 396.10.1097/00003086-199910001-00038Suche in Google Scholar

[25] B.Flautre, C.Maynou, J.Lemaitre, P.van Landuyt, P.Hardouin: J. Biomed. Mat. Res. Appl. Biomat.63 (2002) 413.10.1002/jbm.10262Suche in Google Scholar

[26] R.Tang, M.Hass, W.Wu, S.Gulde, G.H.Nancollas: J. Coll. Int. Sci.260 (2003) 379.10.1016/S0021-9797(03)00048-1Suche in Google Scholar

[27] D.Bayraktar, A.C.Tas: J. Eur. Ceram. Soc.19 (1999) 2573.10.1016/S0955-2219(99)00132-6Suche in Google Scholar

[28] A.C.Tas, S.B.Bhaduri: J. Am. Ceram. Soc.87 (2004) 2195.10.1111/j.1151-2916.2004.tb07490.xSuche in Google Scholar

[29] G.H.Nancollas: Adv. Coll. Int. Sci.10 (1979) 215.10.1016/0001-8686(79)87007-4Suche in Google Scholar

[30] F.Abbona, F.Christensson, M.Franchini-Angela, H.E.L.Madsen: J. Cryst. Growth131 (1993) 331.10.1016/0022-0248(93)90183-WSuche in Google Scholar

[31] H.M.Kim, H.Takadama, F.Miyaji, T.Kokubo, S.Nishiguchi, T.Nakamura: J. Mater. Sci. Mater.M11 (2000) 555.10.1023/A:1008924102096Suche in Google Scholar

[32] A.C.Tas, S.B.Bhaduri: J. Mater. Res.19 (2004) 2742.10.1557/JMR.2004.0349Suche in Google Scholar

[33] N.A.Curry, D.W.Jones: J. Chem. Soc.A1971 (1971) 3725.Suche in Google Scholar

[34] A.C.Tas: US Patent No. 6,929,692 August 16, 2005.Suche in Google Scholar

[35] M.Iijima, in: L.C.Chow, E.D.Eanes (Eds.), Octacalcium Phosphate. Monogr. Oral Sci. Karger, Basel (2001), Vol. 18, p.17.10.1159/000061647Suche in Google Scholar PubMed

[36] L.C.Chow, S.Takagi: US Patent No: 5,525,148. June 11, 1996.Suche in Google Scholar

[37] C.Combes, M.Freche, C.Rey, B.Biscans: J. Mater. Sci. Mater. M.10 (1999) 231.10.1023/A:1008922029096Suche in Google Scholar

[38] R.Rohanizadeh, R.Z.LeGeros, M.Harsono, A.Bendavid: J. Biomed. Mater. Res.A72 (2005) 428.10.1002/jbm.a.30258Suche in Google Scholar

[39] S.M.Arifuzzaman, S.Rohani: J. Cryst. Growth267 (2004) 624.10.1016/j.jcrysgro.2004.04.024Suche in Google Scholar

[40] R.Tang, C.A.Orme, G.H.Nancollas: J. Phys. Chem.B107 (2003) 10653.Suche in Google Scholar

[41] F.Grases, A.Costa-Bauza, M.Ramis, V.Montesinos, A.Conte: Clinica Chim. Acta322 (2002) 29.10.1016/S0009-8981(02)00063-3Suche in Google Scholar

Received: 2005-9-30
Accepted: 2006-2-8
Published Online: 2013-05-31
Published in Print: 2006-05-01

© 2006, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial
  5. Basic
  6. Three-dimensional printing of TiAl3/Al2O3 composites
  7. Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
  8. Solid-State 17O NMR studies on Yttria-stabilized zirconia
  9. Twinning in ultrathin silicon nanowires
  10. Re-optimization of the Mg–Sb system under topological constraints
  11. Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
  12. The In–Pt–Sb phase diagram
  13. Thermodynamic evaluation of the Al–Cr–C system
  14. Thermodynamic description of the Ni–Si–Ti ternary system
  15. Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
  16. Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
  17. Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
  18. Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
  19. Implications of linear relationships between local and macroscopic flow stresses in the composite model
  20. Applied
  21. Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
  22. Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
  23. The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
  24. Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
  25. High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
  26. Nanopowder dispersion and spray-drying process: the case of Cr2O3
  27. Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
  28. The role of chemisorbed anions in the aqueous processing of AlN powder
  29. The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
  30. Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
  31. The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
  32. Infrared properties of sintered α-MnSe
  33. Quasi-equilibrium sintering of particle clusters containing Bernal holes
  34. Design of metal ceramic composites
  35. Notifications
  36. DGM News
Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101283/html
Button zum nach oben scrollen