Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
-
A. Cuneyt Tas
Abstract
An electroless, room temperature solution growth method of depositing 50 to 150 μm thick, well-crystallized brushite (CaHPO4 · 2H2O, DCPD, dicalcium phosphate dihydrate) layers on the surface of an implantable medical device, such as a titanium alloy (Ti–6Al–4V) substrate, was developed. High ionic strength (189 to 609 mM) solutions with a Ca/P molar ratio of 2.50 and a pH value between 4.70 and 6.10 were prepared by dissolving appropriate quantities of CaCl2 · 2H2O, NaH2PO4, NaHCO3, and NaCl in deionized water. Surface-etched Ti–6Al–4V substrates were simply soaked in the solutions from 24 to 72 hours at room temperature. Elongated CaHPO4 · 2H2O crystals were in-situ- grown on the entire surfaces of the etched Ti–6Al–4V substrates.
References
[1] L.Winand: Ann. Chim.6 (1961) 941.Suche in Google Scholar
[2] Y.E.Greish, P.W.Brown: J. Biomed. Mater. Res. Appl. Biomat.B67 (2003) 632.10.1002/jbm.b.10056Suche in Google Scholar
[3] R.Z.LeGeros, J.P.LeGeros, in: L.L.Hench, J.Wilson (Eds.), An Introduction to Bioceramics, World Scientific Publishing Co, London (1993) 144.Suche in Google Scholar
[4] Y.T.Wu, M.J.Glimcher, C.Rey, J.L.Ackerman: J. Mol. Biol.244 (1994) 423.10.1006/jmbi.1994.1740Suche in Google Scholar
[5] C.K.Loong, C.Rey, L.T.Kuhn, C.Combes, Y.Wu, S.H.Chen, M.J.Glimcher: Bone26 (2000) 599.10.1016/S8756-3282(00)00273-8Suche in Google Scholar
[6] T.Kokubo: Acta Mater.46 (1998) 2519.10.1016/S1359-6454(98)80036-0Suche in Google Scholar
[7] G.L.Lange, K.Donath: Biomaterials10 (1989) 121.10.1016/0142-9612(89)90044-6Suche in Google Scholar
[8] C.Y.Yang, R.M.Lin, B.C.Wang, T.M.Lee, E.Chang, Y.S.Hang, P.Q.Chen: J. Biomed. Mater. Res.37 (1997) 335.10.1002/(SICI)1097-4636(19971205)37:3<335::AID-JBM4>3.0.CO;2-MSuche in Google Scholar
[9] M.Yoshinari, T.Hayakawa, J.G.C.Wolke, K.Nemoto, J.A.Jansen: J. Biomed. Mater. Res.37 (1997) 60.10.1002/(SICI)1097-4636(199710)37:1<60::AID-JBM8>3.0.CO;2-HSuche in Google Scholar
[10] W.Weng, J.L.Baptista: Biomaterials19 (1998) 125.10.1016/S0142-9612(97)00177-4Suche in Google Scholar
[11] L.Tuantuan, J.Lee, T.Kobayashi, H.Aoki: J. Mater. Sci. Mater. M.7 (1996) 355.10.1007/BF00154548Suche in Google Scholar
[12] B.Mavis, A.C.Tas: J. Am. Ceram. Soc.83 (2000) 989.10.1111/j.1151-2916.2000.tb01314.xSuche in Google Scholar
[13] S.Ban, S.Maruno: J. Biomed. Mater. Res.42 (1998) 387.10.1002/(SICI)1097-4636(19981205)42:3<387::AID-JBM6>3.0.CO;2-FSuche in Google Scholar
[14] S.Rossler, A.Sewing, M.Stolzel, R.Born, D.Scharnweber, M.Dard, H.Worch: J. Biomed. Mater. Res.64 (2002) 655.Suche in Google Scholar
[15] S.Lin, R.Z.LeGeros, J.P.LeGeros: J. Biomed. Mater. Res.66 (2003) 819.10.1002/jbm.a.10072Suche in Google Scholar
[16] M.Shirkhanzadeh, S.Sims: J. Mater. Sci. Mater.M8 (1997) 595.10.1023/A:1018563201792Suche in Google Scholar
[17] M.Kumar, J.Xie, K.Chittur, C.Riley: Biomaterials20 (1999) 1389.10.1016/S0142-9612(99)00043-5Suche in Google Scholar
[18] M.H.P.Da Silva, J.H.C.Lima, G.A.Soares, C.N.Elias, M.C.de Andrade, S.M.Best, I.R.Gibson: Surf. Coat. Tech.137 (2001) 270.10.1016/S0257-8972(00)01125-7Suche in Google Scholar
[19] X.Hou, X.Liu, J.Xu, J.Shen, X.Liu: Mater. Lett.50 (2001) 103.10.1016/S0167-577X(00)00424-9Suche in Google Scholar
[20] J.Redepenning, G.Venkataraman, J.Chen, N.Stafford: J. Biomed. Mater. Res.66 (2003) 411.10.1002/jbm.a.10571Suche in Google Scholar
[21] X.Cheng, M.Filiaggi, S.G.Roscoe: Biomaterials25 (2004) 5395.10.1016/j.biomaterials.2003.12.045Suche in Google Scholar
[22] S.H.Wang, W.J.Shih, W.L.Li, M.H.Hon, M.C.Wang: J. Eur. Ceram. Soc.25 (2005) 3287.10.1016/j.jeurceramsoc.2004.08.016Suche in Google Scholar
[23] B.R.Constantz, B.M.Barr, I.C.Ison, M.T.Fulmer, J.Baker, L.McKinney, S.B.Goodman, S.Gunasekaren, D.C.Delaney, J.Ross, R.D.Poser: J. Biomed. Mater. Res.43 (1998) 451.10.1002/(SICI)1097-4636(199824)43:4<451::AID-JBM13>3.0.CO;2-QSuche in Google Scholar
[24] D.D.Lee, A.Tofighi, M.Aiolova, P.Chakravarthy, A.Catalano, A.Majahad, D.Knaack: Clin. Orthop.367 (1999) 396.10.1097/00003086-199910001-00038Suche in Google Scholar
[25] B.Flautre, C.Maynou, J.Lemaitre, P.van Landuyt, P.Hardouin: J. Biomed. Mat. Res. Appl. Biomat.63 (2002) 413.10.1002/jbm.10262Suche in Google Scholar
[26] R.Tang, M.Hass, W.Wu, S.Gulde, G.H.Nancollas: J. Coll. Int. Sci.260 (2003) 379.10.1016/S0021-9797(03)00048-1Suche in Google Scholar
[27] D.Bayraktar, A.C.Tas: J. Eur. Ceram. Soc.19 (1999) 2573.10.1016/S0955-2219(99)00132-6Suche in Google Scholar
[28] A.C.Tas, S.B.Bhaduri: J. Am. Ceram. Soc.87 (2004) 2195.10.1111/j.1151-2916.2004.tb07490.xSuche in Google Scholar
[29] G.H.Nancollas: Adv. Coll. Int. Sci.10 (1979) 215.10.1016/0001-8686(79)87007-4Suche in Google Scholar
[30] F.Abbona, F.Christensson, M.Franchini-Angela, H.E.L.Madsen: J. Cryst. Growth131 (1993) 331.10.1016/0022-0248(93)90183-WSuche in Google Scholar
[31] H.M.Kim, H.Takadama, F.Miyaji, T.Kokubo, S.Nishiguchi, T.Nakamura: J. Mater. Sci. Mater.M11 (2000) 555.10.1023/A:1008924102096Suche in Google Scholar
[32] A.C.Tas, S.B.Bhaduri: J. Mater. Res.19 (2004) 2742.10.1557/JMR.2004.0349Suche in Google Scholar
[33] N.A.Curry, D.W.Jones: J. Chem. Soc.A1971 (1971) 3725.Suche in Google Scholar
[34] A.C.Tas: US Patent No. 6,929,692 August 16, 2005.Suche in Google Scholar
[35] M.Iijima, in: L.C.Chow, E.D.Eanes (Eds.), Octacalcium Phosphate. Monogr. Oral Sci. Karger, Basel (2001), Vol. 18, p.17.10.1159/000061647Suche in Google Scholar PubMed
[36] L.C.Chow, S.Takagi: US Patent No: 5,525,148. June 11, 1996.Suche in Google Scholar
[37] C.Combes, M.Freche, C.Rey, B.Biscans: J. Mater. Sci. Mater. M.10 (1999) 231.10.1023/A:1008922029096Suche in Google Scholar
[38] R.Rohanizadeh, R.Z.LeGeros, M.Harsono, A.Bendavid: J. Biomed. Mater. Res.A72 (2005) 428.10.1002/jbm.a.30258Suche in Google Scholar
[39] S.M.Arifuzzaman, S.Rohani: J. Cryst. Growth267 (2004) 624.10.1016/j.jcrysgro.2004.04.024Suche in Google Scholar
[40] R.Tang, C.A.Orme, G.H.Nancollas: J. Phys. Chem.B107 (2003) 10653.Suche in Google Scholar
[41] F.Grases, A.Costa-Bauza, M.Ramis, V.Montesinos, A.Conte: Clinica Chim. Acta322 (2002) 29.10.1016/S0009-8981(02)00063-3Suche in Google Scholar
© 2006, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News