Startseite Twinning in ultrathin silicon nanowires
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Twinning in ultrathin silicon nanowires

  • Jinhua Zhan , Yoshio Bando , Junqing Hu und Dmitri Golberg
Veröffentlicht/Copyright: 31. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Galium nanodroplets induced the anisotropic growth of ultrathin (diameter (<5nm) silicon nanowires in accordance with the vapor-liquid-solid (VLS) mechanism. X-ray diffraction and dispersion spectroscopy, and scanning, and transmission electron microscopy (TEM) were used to characterize the product. High-resolution TEM analysis revealed the existence of twins in the nanowires. In contrast to the theoretically predicated 5-fold twinning in ultrathin Si nanowires (diameter (<6nm), no twinning on the {111} planes along the wire axial directions was observed. The possible reasons for the formation of novel nanostructures are discussed.


* Correspondence address: Dr. Jinhua Zhan, Advanced Materials Laboratory, National Institute for Materials Science, Namiki 1-1, Tuskuba, Ibaraki 305-0044, Japan, Tel.: +812985133548599, Fax: +81298516280. E-mail:

Dedicated to Professor Dr. Fritz Aldinger on the occasion of his 65th birthday


References

[1] Y.Cui, C.M.Lieber: Science291 (2001) 851.10.1126/science.291.5505.851Suche in Google Scholar PubMed

[2] Y.Xia, P.Yang, Y.Sun, Y.Wu, B.Mayers, B.Gates, Y.Yin, F.Kim, Y.Yan: Adv. Mater.15 (2003) 353.10.1002/adma.200390087Suche in Google Scholar

[3] J.Hu, T.W.Odom, C.M.Lieber: Acc. Chem. Res.32 (1999) 435.10.1021/ar9700365Suche in Google Scholar

[4] C.M.Lieber: Sci. Am.285 (2001) 58.10.1038/scientificamerican0901-58Suche in Google Scholar PubMed

[5] Y.Cui, Z.Zhong, D.Wang, W.U.Wang, C.M.Lieber: Nano Lett.3 (2003) 149.10.1021/nl025875lSuche in Google Scholar

[6] A.M.Morales, C.M.Lieber: Science279 (1998) 208.10.1126/science.279.5348.208Suche in Google Scholar PubMed

[7] Y.Cui, L.J.Lauhon, M.S.Gudiksen, J.Wang, C.M.Lieber: Appl. Phys. Lett.78 (2001) 2214.10.1063/1.1363692Suche in Google Scholar

[8] Y.Wu, Y.Cui, L.Huynh, C.J.Barrelet, D.C.Bell, C.M.Lieber: Nano Lett.4 (2004) 433.10.1021/nl035162iSuche in Google Scholar

[9] M.K.Sunkara, S.Sharma, R.Miranda: Appl. Phys. Lett.79 (2001) 1046.10.1063/1.1401089Suche in Google Scholar

[10] J.D.Holmes, K.P.Johnston, R.C.Doty, B.A.Korgel: Science287 (2000) 1471.10.1126/science.287.5457.1471Suche in Google Scholar PubMed

[11] X.Lu, T.Hanrath, K.P.Johnston, B.A.Korgel: Nano Lett.3 (2003) 93.10.1021/nl0202307Suche in Google Scholar

[12] S.T.Lee, Y.F.Zhang, N.Wang, Y.H.Tang, I.Bello, C.S.Lee, Y. W.Chung: J. Mater. Res.14 (1999) 4503.10.1557/JMR.1999.0611Suche in Google Scholar

[13] N.Wang, Y.H.Tang, Y.F.Zhang, C.S.Lee, S.T.Lee: Phys. Rev.B58 (1998) R16024.10.1103/PhysRevB.58.R16024Suche in Google Scholar

[14] R.Q.Zhang, Y.Lifshitz, S.T.Lee: Adv. Mater.15 (2003) 635.10.1002/adma.200301641Suche in Google Scholar

[15] C.P.Li, C.S.Lee, X.L.Ma, N.Wang, R.Q.Zhang, S.T.Lee: Adv. Mater.15 (2003) 607.10.1002/adma.200304409Suche in Google Scholar

[16] X.L.Ma, Y.L.Zhu, Z.Zhang: Philos. Mag. Lett.82 (2002) 461.10.1080/09500830210144391Suche in Google Scholar

[17] Y.Wu, P.Yang: J. Am. Chem. Soc.123 (2001) 3165.10.1021/ja0059084Suche in Google Scholar

[18] T.Y.Tan, S.T.Lee, U.Gösele: Appl. Phys. A74 (2002) 423.10.1007/s003390101133Suche in Google Scholar

[19] B.K.Teo, X.H.Sun, T.F.Hung, X.M.Meng, N.B.Wong, S.T.Lee: Nano Lett.3 (2003) 1735.10.1021/nl034603vSuche in Google Scholar

[20] D.D.Ma, C.S.Lee, F.C.K.Au, S.Y.Tong, S.T.Lee: Science299 (2003) 1874.10.1126/science.1080313Suche in Google Scholar PubMed

[21] X.Zhao, C.M.Wei, L.Yang, M.Y.Chou: Phys. Rev. Lett.92 (2004) 2368051.10.1103/PhysRevLett.92.236805Suche in Google Scholar

[22] Y.Zhao, B.I.Yakobson: Phys. Rev. Lett.91 (2003) 0355011.10.1103/PhysRevLett.91.035501Suche in Google Scholar

[23] M.H.Huang, Y.Wu, H.Feick, N.Tran, E.Weber, P.Yang: Adv. Mater.13 (2001) 113.10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-HSuche in Google Scholar

[24] R.W.Olesinski, N.Kanani, G.J.Abbaschian, in: T.B.Massalski, H.Okamoto, P.R.Subramanian, L.Kacprazak (Eds.), Binary Alloy Phase Diagrams, 2nd ed., Vol. 3, ASM International, Ohio (1990) 1856.Suche in Google Scholar

[25] H.Alexander, J.C.H.Spence, D.Shindo: Phil. Mag. A53 (1986) 627.10.1080/01418618608242861Suche in Google Scholar

[26] S.Ijima: Jap. J. Appl. Phys.26 (1987) 357.10.1143/JJAP.26.357Suche in Google Scholar

[27] Y.Q.Wang, R.Smirani, G.G.Ross: Nano. Lett.4 (2004) 2041.10.1021/nl048764qSuche in Google Scholar

Received: 2005-10-19
Accepted: 2006-2-16
Published Online: 2013-05-31
Published in Print: 2006-05-01

© 2006, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial
  5. Basic
  6. Three-dimensional printing of TiAl3/Al2O3 composites
  7. Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
  8. Solid-State 17O NMR studies on Yttria-stabilized zirconia
  9. Twinning in ultrathin silicon nanowires
  10. Re-optimization of the Mg–Sb system under topological constraints
  11. Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
  12. The In–Pt–Sb phase diagram
  13. Thermodynamic evaluation of the Al–Cr–C system
  14. Thermodynamic description of the Ni–Si–Ti ternary system
  15. Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
  16. Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
  17. Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
  18. Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
  19. Implications of linear relationships between local and macroscopic flow stresses in the composite model
  20. Applied
  21. Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
  22. Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
  23. The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
  24. Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
  25. High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
  26. Nanopowder dispersion and spray-drying process: the case of Cr2O3
  27. Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
  28. The role of chemisorbed anions in the aqueous processing of AlN powder
  29. The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
  30. Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
  31. The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
  32. Infrared properties of sintered α-MnSe
  33. Quasi-equilibrium sintering of particle clusters containing Bernal holes
  34. Design of metal ceramic composites
  35. Notifications
  36. DGM News
Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101266/html?lang=de
Button zum nach oben scrollen