Home Quantum estimates in two variable forms for Simpson-type inequalities considering generalized Ψ-convex functions with applications
Article Open Access

Quantum estimates in two variable forms for Simpson-type inequalities considering generalized Ψ-convex functions with applications

  • Yu-Ming Chu , Asia Rauf , Saima Rashid EMAIL logo , Safeera Batool and Y. S. Hamed
Published/Copyright: June 8, 2021

Abstract

This article proposes a new approach based on quantum calculus framework employing novel classes of higher order strongly generalized Ψ -convex and quasi-convex functions. Certain pivotal inequalities of Simpson-type to estimate innovative variants under the q ˇ 1 , q ˇ 2 -integral and derivative scheme that provides a series of variants correlate with the special Raina’s functions. Meanwhile, a q ˇ 1 , q ˇ 2 -integral identity is presented, and new theorems with novel strategies are provided. As an application viewpoint, we tend to illustrate two-variable q ˇ 1 q ˇ 2 -integral identities and variants of Simpson-type in the sense of hypergeometric and Mittag–Leffler functions and prove the feasibility and relevance of the proposed approach. This approach is supposed to be reliable and versatile, opening up new avenues for the application of classical and quantum physics to real-world anomalies.

1 Introduction

In order to calculate the derivatives of real functions, classical calculus employs limits. On the other hand, the calculus without limits is known as quantum calculus or q ˇ -calculus. According to history, Euler derived the fundamental formulations in q ˇ -calculus in the eighteenth century. However, Jackson [1] was the first to develop the conceptions of the definite q ˇ -derivative and q ˇ -integral. In addition, Andrews [2] examined and inspected a number of studies on quantum calculus. The aforementioned consequences stimulated a more intense discussion of quantum theory in the twentieth century.

The evolution of the research of q ˇ -calculus has been presented by its potential utilities in cosmology, multiple hypergeometric functions, Bernoulli and Euler polynomials, Mock theta functions, and more specifically in the study of analytic and harmonic univalent functions. The consensus of scholars who employ q ˇ -calculus are physicists, see [3,4]. Baxter [5] presented the exact solutions of numerous frameworks in statistical mechanics. Bettaibi and Mezlini formulated certain q ˇ -heat and q ˇ -wave equations as in ref. [6]. Moreover, several researchers, including Andrews [2], Gauchman [7], and Kac and Cheung [8] have been compensated for their efforts in proving and proposing new definitions and formulations. The topic of q ˇ -theory has become a remarkable trend for many scientists in recent years, and novel results have been explored in previous research [9,10]. Numerous special function theories [11,12] are being assembled within the context of q ˇ -calculus, mechanothermodynamics, translimiting states, and generalization of experimental data to analyze the quantum calculus in respect of general energy states [13,14].

With the assistance of special functions and convexity theory, we aim to create the applications of the q ˇ -calculus to modify Simpson-type inequality in a two-variable formulation. However, in light of the q ˇ -calculus, the current article could be the first to examine special functions with the correlation of two-variable formulation.

Convex functions have significant applications in a variety of interesting and engrossing fields of study, and they have also played a pivotal role, including coding theory, optimization, physics, information theory, engineering, and inequality theory. Mathematicians have proposed various novel versions of convex functions in the relevant literature [15,16,17].

In ref. [18,19], Jensen introduced this property as follows:

Definition 1.1

Let R and a mapping G : R is said to be convex on , if the inequality

(1.1) G ( ( 1 ζ ) x + ζ y ) ( 1 ζ ) G ( x ) + ζ G ( y )

holds x , y and ζ [ 0 , 1 ] .

In the field of applied analysis, mathematical inequalities are considered as a prevalent mechanism for collecting descriptive and analytical description. A consistent increase in significance has evolved to address the prerequisites for widespread use of these variants [20,21,22]. Furthermore, various generalizations have been established by several authors that involve convex functions, such as Hermite–Hadamard, Trapezoid type, Opial, Ostrowski, Grüss, and the supremely illustrious Simpson’s inequality.

A mapping G : [ η 1 , η 2 ] R is four times continuously differentiable and G ( 4 ) = sup z ( η 1 , η 2 ) G ( 4 ) ( z ) < . Then, one has the following inequality:

(1.2) 1 3 G ( η 1 ) + G ( η 2 ) 2 + 2 G η 1 + η 2 2 1 η 2 η 1 η 1 η 2 G ( z ) d z ( η 2 η 1 ) 4 2880 G ( 4 ) .

For further generalizations, modifications, and developments, we refer to refs [23,24,25] and references cited therein. One of the used frames of reference corresponds to the “strongly convex functions.” The origin of that term is the generalization of convex functions, contemplated by Polyak [26]. Its incentives are accessible in optimization theory and many other related fields. In ref. [27], Karamardian used this functional class to discover the existence of a solution for nonlinear complementarity problems. Zu and Marcotte [28] have applied the aforesaid class to obtain the convergence analysis of the iterative methods for solving variational inequalities and equilibrium problems. Nikodem and Pales [29] proposed a correlation of inner product spaces with strongly convex functions as a new and novel concept with concrete utilities as a follow-up. The primal dual gradient dynamical approach with exponential stability has been investigated by Qu and Li [30]. Rashid et al. [31] proposed Hermite–Hadamard-type inequalities for various classes of strongly convex functions, which provide upper and lower bounds for the integrand. For further presentations on real-world phenomena, we refer to refs. [32,33,34].

Our intention is to establish the novel q ˇ -integral identity of Simpson-type within a class of generalized Ψ -convex functions in two variable forms. Kalsoom et al. [35] established the quantum integral Simpson type inequality for convex function on co-ordinates as follows:

Lemma 1.1

[35] Assume that a mapping G : Δ R 2 R having a mixed partial q ˇ 1 q ˇ 2 -differentiable function defined on Δ o (the interior of Δ ) with q ˇ 1 , q ˇ 2 2 η 1 , η 3 h ( z , w ) q ˇ 1 η 1 z q ˇ 2 η 3 w to be continuous and integrable on [ η 1 , η 2 ] × [ η 3 , η 4 ] Δ o with 0 < q i < 1 and 1 i 2 , then

(1.3) G η 1 , η 3 + η 4 2 + G η 2 , η 3 + η 4 2 + 4 G η 1 + η 2 2 , η 3 + η 4 2 + G η 1 + η 2 2 , η 3 + G η 1 + η 2 2 , η 4 9 + G ( η 1 , η 3 ) + G ( η 2 , η 3 ) + G ( η 1 , η 4 ) + G ( η 2 , η 4 ) 36 1 6 ( η 2 η 1 ) η 1 η 2 G ( x , η 3 ) + 4 G x , η 3 + η 4 2 + G ( x , η 4 ) d q ˇ 1 0 x 1 6 ( η 4 η 3 ) η 3 η 4 G ( η 1 , y ) + 4 G η 1 + η 2 2 , y + G ( η 2 , y ) d q ˇ 2 0 y + 1 ( η 2 η 1 ) ( η 4 η 3 ) η 1 η 2 η 3 η 4 G ( x , y ) d q ˇ 2 0 y d q ˇ 1 0 x = ( η 2 η 1 ) ( η 4 η 3 ) 0 1 0 1 Ω 1 ( ζ 1 , q ˇ 1 ) Ω 2 ( ζ 2 , q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( ( 1 ζ 1 ) η 1 + ζ 1 η 2 , ( 1 ζ 2 ) η 3 + ζ 2 η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 ,

where

Ω 1 ( ζ 1 , q ˇ 1 ) = q ˇ 1 ζ 1 1 6 , ζ 1 0 , 1 2 , q ˇ 1 ζ 1 5 6 , ζ 1 1 2 , 1 ,

and

Ω 2 ( ζ 2 , q ˇ 2 ) = q ˇ 2 ζ 2 1 6 , ζ 2 0 , 1 2 , q ˇ 2 ζ 2 5 6 , ζ 2 1 2 , 1 .

This article investigates and presents a novel idea of higher-order strongly generalized Ψ -convex and quasi-convex functions in the sense of Raina’s function. Considering the novel auxiliary identity that correlates with the Raina function and the q ˇ -calculus theory, numerous new Simpson-type inequalities are apprehended via the aforesaid classes of functions derived in two variable forms. Additionally, this suggested scheme in q ˇ -calculus theory connected with Definitions 2.5 and 2.7 introduced new results for Simpson-type inequalities in hypergeometric and Mittag–Leffler sense. Finally, our findings may stimulate further investigation into special relativity theory and quantum theory.

2 Prelude

Let K be a non-empty closed set in R n and G : K R a continuous function.

Noor [36] introduced a class of non-convex mappings known as Ψ -convex functions.

Definition 2.1

[36] A mapping G : K R on the Ψ -convex set K is said to be Ψ -convex, if

(2.1) G ( x + ζ e i Ψ ( y x ) ) ( 1 ζ ) G ( x ) + ζ G ( y ) , ζ [ 0 , 1 ] , x , y K .

Observe that every convex mapping is Ψ -convex, but converse does not hold in general.

In ref. [37], Raina contemplated the subsequent class of function

(2.2) σ , λ ϑ ( t ) = σ , λ ϑ ( 0 ) , ϑ ( 1 ) , ( t ) = p = 0 ϑ ( p ) Γ ( σ p + λ ) t p ,

where γ , ρ > 0 , t < R , and

ϑ = ( ϑ ( 0 ) , ϑ ( 1 ) , ϑ ( p ) , )

is a bounded sequence of R + . Moreover, take σ = 1 , λ = 0 in (2.2) and

ϑ ( p ) = ( β 1 ) p ( β 2 ) p ( β 3 ) p for p = 0 , 1 , 2 , 3 ,

where the parameters β i ( i = 1 , 2 , 3 ) as if it were real or complex (assuming β 3 = 0 , 1 , 2 , ), and the symbol ( z ) p specified by

( z ) p = Γ ( z + p ) Γ ( z ) = z ( z + 1 ) ( z + p 1 ) , p = 0 , 1 , 2 , ,

and its domain is restricted as t 1 (with t C ), then we get the hypergeometric function as follows:

(2.3) σ , λ ϑ ( t ) = F ( β 1 ; β 2 ; β 3 ; t ) = p = 0 ( β 1 ) p ( β 2 ) p p ! ( β 3 ) p t p .

furthermore, if ϑ = ( 1 , 1 , ) with σ = β 1 , ( ( β 1 ) > 0 ) , λ = 1 and its domain is restricted as t C in equation (2.2), then we get the Mittag–Leffler function as follows:

(2.4) E ¯ β 1 ( t ) = p = 0 1 Γ ( 1 + β 1 p ) t p .

Next, we evoke a new class of set and a new class of functions, including Raina’s functions.

Definition 2.2

A non-empty set K is said to be generalized Ψ -convex set, if

(2.5) x + σ , λ ϑ ( y x ) K

for all x , y K , ζ [ 0 , 1 ] .

We now define the generalized Ψ -convex function presented by Vivas-Cortez et al. [38].

Definition 2.3

[38] Let a set K ¯ R and we say that a function G : K R is generalized Ψ -convex, if

(2.6) G ( x + ζ σ , λ ϑ ( y x ) ) ( 1 ζ ) G ( x ) + ζ G ( y )

for all x , y K , ζ [ 0 , 1 ] .

Definition 2.4

We say that a function G : K R is higher order strongly generalized Ψ -convex having δ 0 , if

(2.7) G ( x + ζ σ , λ ϑ ( y x ) ) ( 1 ζ ) G ( x ) + ζ G ( y ) δ ζ ( 1 ζ ) σ , λ ϑ ( y x ) θ

for all x , y K , ζ [ 0 , 1 ] and θ > 0 .

Some remarkable special cases are discussed as follows:

  1. I. Taking δ = 0 , then Definition 2.5 reduces to Definition 2.3.

  2. II. Taking θ = 0 , then the generalized higher-order strongly Ψ -convex mappings reduces to generalized strongly Ψ -convex mappings, that is,

Definition 2.5

We say that a function G : K R is higher order strongly generalized Ψ -convex having δ 0 , if

(2.8) G ( x + ζ σ , λ ϑ ( y x ) ) ( 1 ζ ) G ( x ) + ζ G ( y ) δ ζ ( 1 ζ ) σ , λ ϑ ( y x ) 2

for all x , y K , ζ [ 0 , 1 ] .

III. Letting σ , λ ϑ ( y x ) = y x , then Definition 2.5 changes to higher-order strongly convex mappings.

Definition 2.6

We say that a function G : K R is higher order strongly convex having δ 0 , if

(2.9) G ( ( 1 ζ ) x + ζ y ) ( 1 ζ ) G ( x ) + ζ G ( y ) δ ζ ( 1 ζ ) ( y x ) 2

for all x , y K , ζ [ 0 , 1 ] .

Definition 2.7

We say that a function G : K R is higher order strongly generalized Ψ -quasi-convex having δ 0 , if

(2.10) G ( x + ζ σ , λ ϑ ( y x ) ) max { G ( x ) , G ( y ) } δ ζ ( 1 ζ ) σ , λ ϑ ( y x ) θ

for all x , y K , ζ [ 0 , 1 ] and θ > 0 .

For an exceptional appropriate selections of the Raina’s function σ , λ ϑ ( . , . ) , δ and θ , one can attain several earlier and new classes of higher-order generalized strongly convex and quasi-convex mappings. This demonstrates that the new idea involving Raina’s function is wide and modifying one.

In addition, we highlight some key concepts and definitions in the q ˇ -analog for one and two-variables.

Let J = [ ζ 1 , ζ 2 ] R , and let U = [ ζ 1 , ζ 2 ] × [ ζ 3 , ζ 4 ] R 2 with constants q ˇ , q ˇ i ( 0 , 1 ) , i = 1 , 2 .

In ref. [39,40], authors investigated the notions of q ˇ -derivative, q ˇ -integral, and their features for finite interval, which has been demonstrated as

Definition 2.8

Suppose that G : J R , t J is a continuous mapping, then one has q ˇ -derivative of G on J at t which is written as

(2.11) D q ˇ ζ 1 G ( t ) = G ( t ) G ( q t + ( 1 q ) ζ 1 ) ( 1 q ) ( t ζ 1 ) , t ζ 1 .

It can be observed that

lim t ζ 1 D q ˇ ζ 1 G ( t ) = D q ˇ ζ 1 G ( ζ 1 ) ,

which implies that the mapping G is q ˇ -differentiable over J , also D q ˇ ζ 1 G ( t ) exists t J .

It is noted that if ζ 1 = 0 in equation (2.11), then D q ˇ 0 G = D q ˇ G , where D q ˇ G is well-defined q ˇ -derivative of G ( t ) , i.e., is mentioned as

D q ˇ G ( t ) = G ( t ) G ( q t ) ( 1 q ) ( t ) .

Definition 2.9

Suppose that G : J R is a continuous function, indicated as D q ˇ 2 ζ 1 G , provided that D q ˇ 2 ζ 1 G be q ˇ -differentiable from J R identified by

D q ˇ 2 ζ 1 G = D q ˇ ζ 1 ( D q ˇ ζ 1 G ) .

Thus, D q ˇ j ζ 1 G : J R denotes the higher order q ˇ -differentiable function.

Definition 2.10

Suppose that G : J R is a continuous function and the q ˇ -integral on J is expressed as

(2.12) ζ 1 t G ( z ) d q ˇ ζ 1 z = ( 1 q ˇ ) ( t ζ 1 ) j = 0 q ˇ j G ( q ˇ j t + ( 1 q ˇ j ) ζ 1 ) , t J .

Next, if ζ 1 = 0 in equation (2.12), so there is an integral formulation of q ˇ , which is signified as

0 t G ( z ) 0 d q ˇ z = ( 1 q ˇ ) t j = 0 q ˇ j G ( q ˇ j t ) .

Theorem 2.1

Suppose that G : J R is a continuous function, then the subsequent assertions fulfill:

  1. D q ˇ ζ 1 ζ 1 t G ( z ) d q ˇ ζ 1 z = G ( t ) ;

  2. ζ 1 t D q ˇ ζ 1 G ( z ) d q ˇ ζ 1 z = G ( t ) ;

  3. ζ 2 t D q ˇ ζ 1 G ( z ) d q ˇ ζ 1 z = G ( t ) G ( ζ 2 ) , ζ 2 ( ζ 1 , t ) .

Theorem 2.2

Suppose that G : J R is a continuous function and a R , then the subsequent assertions fulfill:

  1. ζ 1 t [ G 1 ( z ) + G 2 ( z ) ] d q ˇ ζ 1 z = ζ 1 t G 1 ( z ) d q ˇ ζ 1 z + ζ 1 t G 2 ( z ) d q ˇ ζ 1 z ;

  2. ζ 1 t ( a G 1 ( z ) ) d q ˇ ζ 1 z = a ζ 1 t G 1 ( z ) d q ˇ ζ 1 z .

In ref. [35], Kalsoom et al. presented the quantum integral identities in a two-variable context as follows:

Definition 2.11

[35] Suppose a mapping in two-variables sense G : U R is continuous, then the partial q ˇ 1 q ˇ 2 and q ˇ 1 q ˇ 2 -derivative at ( z , w ) [ ζ 1 , ζ 2 ] × [ ζ 3 , ζ 4 ] are, respectively, described as:

q ˇ 1 ζ 1 G ( z , w ) q ˇ 1 ζ 1 z = G ( z , w ) G ( q ˇ 1 z + ( 1 q ˇ 1 ) ζ 1 , w ) ( 1 q ˇ 1 ) ( z ζ 1 ) , z ζ 1 , q ˇ 2 ζ 3 G ( z , w ) q ˇ 2 ζ 3 w = G ( z , w ) G ( z , q ˇ 2 w + ( 1 q ˇ 2 ) ζ 3 ) ( 1 q ˇ 2 ) ( w ζ 3 ) , w ζ 3 ,

q ˇ 1 , q ˇ 2 2 ζ 1 , ζ 3 G ( z , w ) q ˇ 1 ζ 1 z q ˇ 2 ζ 3 w = 1 ( 1 q ˇ 1 ) ( 1 q ˇ 2 ) ( z ζ 1 ) ( w ζ 3 ) × [ G ( q ˇ 1 z + ( 1 q ˇ 1 ) ζ 1 , q ˇ 2 w + ( 1 q ˇ 2 ) ζ 3 ) G ( q ˇ 1 z + ( 1 q ˇ 1 ) ζ 1 , w ) G ( z , q ˇ 2 w + ( 1 q ˇ 2 ) ζ 3 ) + G ( z , w ) ] , z ζ 1 , w ζ 3 .

We say that a function G : U R is partially q ˇ 1 , q ˇ 2 and q ˇ 1 q ˇ 2 -differentiable on [ ζ 1 , ζ 2 ] × [ ζ 3 , ζ 4 ] if q ˇ 1 ζ 1 G ( z , w ) q ˇ 1 ζ 1 z , q ˇ 2 ζ 3 G ( z , w ) q ˇ 2 ζ 3 w and q ˇ 1 , q ˇ 2 2 ζ 1 , ζ 3 G ( z , w ) q ˇ 1 ζ 1 z q ˇ 2 ζ 3 w exist for all ( z , w ) [ ζ 1 , ζ 2 ] × [ ζ 3 , ζ 4 ] .

Definition 2.12

Suppose a function in two-variables sense G : U R is continuous, then the definite q ˇ 1 q ˇ 2 -integral on [ ζ 1 , ζ 2 ] × [ ζ 3 , ζ 4 ] is stated as

ζ 3 t ζ 1 t G ( z , w ) d q ˇ 1 ζ 1 z d q ˇ 2 ζ 3 w = ( 1 q ˇ 1 ) ( 1 q ˇ 2 ) ( t ζ 1 ) ( t 1 ζ 3 ) κ = 0 j = 0 q ˇ 1 j q ˇ 2 κ G ( q ˇ 1 j t + ( 1 q ˇ 1 j ) ζ 1 , q ˇ 2 κ t 1 + ( 1 q ˇ 2 κ ) ζ 3 )

for ( t , t 1 ) [ ζ 1 , ζ 2 ] × [ ζ 3 , ζ 4 ] .

Theorem 2.3

Suppose a function in two-variables sense G : R is continuous, then the subsequent assertions fulfill:

( i ) q ˇ 1 , q ˇ 2 2 ζ 1 , ζ 3 q ˇ 1 ζ 1 t q ˇ 2 ζ 3 t 1 ζ 4 t 1 ζ 1 t G ( z , w ) d q ˇ 1 ζ 1 z d q ˇ 2 ζ 3 w = G ( t , t 1 ) ; ( i i ) ζ 3 t 1 ζ 1 t q ˇ 1 , q ˇ 2 2 ζ 1 , ζ 3 G ( z , w ) q ˇ 1 ζ 1 z q ˇ 2 ζ 3 w d q ˇ 1 ζ 1 z d q ˇ 2 ζ 3 w = G ( t , t 1 ) ; ( i i i ) t 2 t 1 y 1 t q ˇ 1 , q ˇ 2 2 ζ 1 , ζ 3 G ( z , w ) q ˇ 1 ζ 1 z q ˇ 2 ζ 3 w d q ˇ 1 ζ 1 z d q ˇ 2 ζ 3 w ; = G ( t , t 1 ) G ( t , t 2 ) G ( y 1 , t 1 ) + G ( y 1 , t 2 ) , ( y 1 , t 2 ) ( ζ 1 , t ) × ( ζ 4 , t 1 ) .

Theorem 2.4

Suppose that G 1 , G 2 : U R are continuous mappings of two-variables. Then the subsequent assertions fulfill for ( t , t 1 ) [ ζ 1 , ζ 2 ] × [ ζ 3 , ζ 4 ] ,

( i ) ζ 3 t 1 ζ 1 t [ G 1 ( z , w ) + G 2 ( z , w ) ] d q ˇ 1 ζ 1 z d q ˇ 2 ζ 4 w = ζ 3 t 1 ζ 1 t G 1 ( z , w ) d q ˇ 1 ζ 1 z d q ˇ 2 ζ 3 w + ζ 3 t ζ 1 t G 2 ( z , w ) d q ˇ 1 ζ 1 z d q ˇ 2 ζ 3 w ; ( i i ) ζ 3 t 1 ζ 1 t a G ( z , w ) d q ˇ 1 ζ 1 z d q ˇ 2 ζ 3 w = a ζ 3 t 1 ζ 1 t G ( z , w ) d q ˇ 1 ζ 1 z d q ˇ 2 ζ 3 w .

3 A q ˇ 1 q ˇ 2 -integral identity for generalized Ψ -convex functions associated with Raina’s function

To illustrate the important consequences of this article, we proceed with some integral identities and inequalities for generalized Ψ -convex functions with the well-known Raina function.

Throughout this investigation, we utilized the following hypothesis:

  1. Let σ , λ > 0 and ϑ = ( ϑ ( 0 ) , , ϑ ( p ) ) is a bounded sequence of positive real numbers.

  2. Suppose that a twice partial q ˇ 1 q ˇ 2 -differentiable mapping G : O ˜ R 2 R defined on O ˜ (the interior of O ˜ ) having q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( ζ 1 , ζ 2 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 to be continuous and integrable on [ η 1 , η 1 + σ , λ ϑ ( η 2 η 1 ) ] × [ η 3 , η 3 + σ , λ ϑ ( η 4 η 3 ) ] O ˜ such that σ , λ ϑ ( η 2 η 1 ) , σ , λ ϑ ( η 4 η 3 ) > 0 for 0 < q ˇ 1 , q ˇ 2 < 1 .

Lemma 3.1

Suppose that Assumptions (I) and (II) are satisfied, then the following equality holds:

(3.1) Θ ˜ G ( η 1 , η 2 , η 3 , η 4 ; q ˇ 1 , q ˇ 2 ) = 1 9 G η 1 , 2 η 3 + σ , λ ϑ ( η 4 η 3 ) 2 + G η 1 + σ , λ ϑ ( η 2 η 1 ) , 2 η 3 + σ , λ ϑ ( η 4 η 3 ) 2 + 4 G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , 2 η 3 + σ , λ ϑ ( η 4 , η 3 ) 2 + G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , η 3 + G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , η 3 + σ , λ ϑ ( η 4 η 3 ) + 1 36 G ( η 1 , η 3 ) + G ( η 1 + σ , λ ϑ ( η 2 η 1 ) , η 3 ) + G ( η 1 , η 3 + σ , λ ϑ ( η 4 η 3 ) ) + G ( η 1 + σ , λ ϑ ( η 2 η 1 ) , η 3 + σ , λ ϑ ( η 4 η 3 ) ) 1 6 σ , λ ϑ ( η 2 η 1 ) η 1 η 1 + σ , λ ϑ ( η 2 η 1 ) G ( x , η 3 ) + 4 G x , 2 η 3 + σ , λ ϑ ( η 4 η 3 ) 2 + G ( x , η 3 + σ , λ ϑ ( η 4 η 3 ) ) d q ˇ 1 0 x 1 6 σ , λ ϑ ( η 4 , η 3 ) η 3 η 3 + σ , λ ϑ ( η 4 , η 3 ) G ( η 1 , y ) + 4 G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , y + G ( η 1 + σ , λ ϑ ( η 2 η 1 ) , y ) d q ˇ 2 0 y + 1 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) η 1 η 1 + σ , λ ϑ ( η 2 η 1 ) η 3 η 3 + σ , λ ϑ ( η 4 η 3 ) G ( x , y ) d q ˇ 2 0 y d q ˇ 1 0 x = σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) 0 1 0 1 Ω 1 ( ζ 1 , q ˇ 1 ) Ω 2 ( ζ 2 , q ˇ 2 ) × q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 + ζ 1 σ , λ ϑ ( η 2 η 1 ) , η 3 + ζ 2 σ , λ ϑ ( η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 ,

where

(3.2) Ω 1 ( ζ 1 , q ˇ 1 ) = q ˇ 1 ζ 1 1 6 , if 0 ζ 1 < 1 2 , q ˇ 1 ζ 1 5 6 , if 1 2 ζ 1 1 ,

(3.3) Ω 2 ( ζ 2 , q ˇ 2 ) = q ˇ 2 ζ 2 1 6 , if 0 ζ 2 < 1 2 , q ˇ 2 ζ 2 5 6 , if 1 2 ζ 2 1 .

Proof

In view of definition of partial q ˇ 1 q ˇ 2 -derivatives and definite q ˇ 1 q ˇ 2 -integrals, one has

0 1 2 0 1 2 q ˇ 1 ζ 1 1 6 q ˇ 2 ζ 2 1 6 q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 + ζ 1 σ , λ ϑ ( η 2 η 1 ) , η 3 + ζ 2 σ , λ ϑ ( η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 + 0 1 2 1 2 1 q ˇ 1 ζ 1 1 6 q ˇ 2 ζ 2 5 6 q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 + ζ 1 σ , λ ϑ ( η 2 η 1 ) , η 3 + ζ 2 σ , λ ϑ ( η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 + 1 2 1 0 1 2 q ˇ 1 ζ 1 5 6 q ˇ 2 ζ 2 1 6 q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 + ζ 1 σ , λ ϑ ( η 2 η 1 ) , η 3 + ζ 2 σ , λ ϑ ( η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 + 1 2 1 1 2 1 q ˇ 1 ζ 1 5 6 q ˇ 2 ζ 2 5 6 q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 + ζ 1 σ , λ ϑ ( η 2 η 1 ) , η 3 + ζ 2 σ , λ ϑ ( η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 .

By the definition of partial q ˇ 1 q ˇ 2 -derivatives and definite q ˇ 1 q ˇ 2 -integrals, we have

0 1 2 0 1 2 q ˇ 1 ζ 1 1 6 q ˇ 2 ζ 2 1 6 q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 + ζ 1 σ , λ ϑ ( η 2 η 1 ) , η 3 + ζ 2 σ , λ ϑ ( η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 = 1 ( 1 q ˇ 1 ) ( 1 q ˇ 2 ) σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) 0 1 2 0 1 2 q ˇ 1 ζ 1 1 6 q ˇ 2 ζ 2 1 6 ζ 1 ζ 2 × ( G ( η 1 + ζ 1 q ˇ 1 σ , λ ϑ ( η 2 η 1 ) , η 3 + ζ 2 q ˇ 2 σ , λ ϑ ( η 4 η 3 ) ) G ( η 1 + ζ 1 q ˇ 1 σ , λ ϑ ( η 2 η 1 ) , ζ 2 ) G ( ζ 1 , η 3 + ζ 2 q ˇ 2 σ , λ ϑ ( η 4 η 3 ) ) + G ( ζ 1 , ζ 2 ) ) d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 .

We observe that

1 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 1 j = 1 q ˇ 1 κ q ˇ 2 j G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) = 1 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , 2 η 3 + σ , λ ϑ ( η 4 η 3 ) 2 1 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 0 q 1 κ G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , 2 η 3 + σ , λ ϑ ( η 4 η 3 ) 2 1 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) j = 0 q ˇ 2 j G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) + 1 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 0 j = 0 q ˇ 1 κ q ˇ 2 j G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) , q ˇ 2 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 1 j = 0 q ˇ 1 κ q ˇ 2 j G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) = q ˇ 2 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) j = 0 q ˇ 2 j G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) q ˇ 2 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 0 j = 0 q ˇ 1 κ q ˇ 2 j G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) , q ˇ 1 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 0 j = 1 q ˇ 1 κ q ˇ 2 j G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 )

= q ˇ 1 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 0 q ˇ 1 κ G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , 2 η 3 + σ , λ ϑ ( η 4 η 3 ) 2 q ˇ 1 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 0 j = 0 q ˇ 1 κ q ˇ 2 j G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) , q ˇ 1 q ˇ 2 σ , λ ϑ ( η 4 η 3 ) σ , λ ϑ ( η 2 η 1 ) κ = 0 j = 0 q ˇ 1 κ q ˇ 2 j G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) 1 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 1 j = 1 q ˇ 1 κ G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 )

= 1 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , η 3 1 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 0 q ˇ 1 κ G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 1 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 1 j = 1 q ˇ 1 κ G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) , 1 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 1 j = 0 q ˇ 1 κ G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) = 1 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , 2 η 3 + σ , λ ϑ ( η 4 η 3 ) 2 + 1 6 σ , λ ϑ ( η 2 η 1 ) ( η 4 η 3 ) κ = 0 q ˇ 1 κ G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , 2 η 3 + σ , λ ϑ ( η 4 η 3 ) 2 q ˇ 2 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 0 j = 0 q ˇ 1 κ q ˇ 2 j G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) , + 1 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 1 j = 1 q ˇ 1 κ G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) , q ˇ 1 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 0 j = 1 q ˇ 1 κ G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) = q ˇ 1 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 0 q ˇ 1 κ G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , 2 η 3 + σ , λ ϑ ( η 4 η 3 ) 2 + κ = 0 q ˇ 1 κ G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 q ˇ 1 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 0 j = 0 q ˇ 1 κ G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) , 1 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 1 j = 1 q ˇ 2 j G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 )

= 1 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) G η 1 , 2 η 3 + σ , λ ϑ ( η 4 η 3 ) 2 1 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) j = 0 q ˇ 2 j G η 1 , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) 1 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 1 j = 1 q ˇ 2 j G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) ,

q ˇ 2 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 1 j = 0 q ˇ 2 j G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) = q ˇ 2 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) j = 0 q ˇ 2 j G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) + j = 0 q ˇ 2 j G η 1 , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 )

+ q ˇ 2 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 0 j = 0 q ˇ 2 j G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) , 1 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 0 j = 1 q ˇ 2 j G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) = 1 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , 2 η 3 + σ , λ ϑ ( η 4 η 3 ) 2 + 1 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) j = 0 q ˇ 2 j G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) + 1 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 1 j = 1 q ˇ 2 j G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) , q ˇ 2 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 0 j = 0 q ˇ 2 j G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) × 1 36 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 1 j = 1 G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 )

= G ( η 1 , η 3 ) 36 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) + 1 36 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 1 j = 1 G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) , 1 36 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 1 j = 0 G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) = 1 36 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) G η 1 , 2 η 3 + σ , λ ϑ ( η 4 η 3 ) 2 1 36 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 1 j = 1 G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) , 1 36 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 0 j = 1 G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) = 1 36 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , η 3 1 36 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 1 j = 1 G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) , 1 36 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 0 j = 0 G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 )

= 1 36 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , 2 η 3 + σ , λ ϑ ( η 4 η 3 ) 2 + 1 36 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 1 j = 1 G η 1 + q ˇ 1 κ 2 σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j 2 σ , λ ϑ ( η 4 η 3 ) .

Analogously, adopting the same technique we can obtain the remaining three q 1 q 2 -integrals, and later on, adding all of the above computed q 1 q 2 -integrals, we acquire the following identity:

0 1 0 1 Ω 1 ( ζ 1 , q ˇ 1 ) Ω 2 ( ζ 2 , q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 + ζ 1 σ , λ ϑ ( η 2 η 1 ) , η 3 + ζ 2 σ , λ ϑ ( η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 = 1 9 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 3 η 4 ) G η 1 , 2 η 3 + σ , λ ϑ ( η 4 η 3 ) 2 + G η 1 + σ , λ ϑ ( η 2 η 1 ) , 2 η 3 + σ , λ ϑ ( η 4 η 3 ) 2 + 4 G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , 2 η 3 + σ , λ ϑ ( η 4 η 3 ) 2 + G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , η 3 + G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , η 3 + σ , λ ϑ ( η 4 η 3 ) + 1 36 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 3 η 4 ) G ( η 1 , η 3 ) + G ( η 1 + σ , λ ϑ ( η 2 η 1 ) , η 3 ) + G ( η 1 , η 3 + σ , λ ϑ ( η 4 η 3 ) ) + G ( η 1 + σ , λ ϑ ( η 2 η 1 ) , η 3 + σ , λ ϑ ( η 4 η 3 ) ) 1 q ˇ 1 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 3 η 4 ) κ = 0 q ˇ 1 κ G ( η 1 + q ˇ 1 κ σ , λ ϑ ( η 2 η 1 ) , η 3 ) + 4 κ = 0 q ˇ 1 κ G η 1 + q ˇ 1 κ σ , λ ϑ ( η 2 η 1 ) , 2 η 3 + σ , λ ϑ ( η 4 η 3 ) 2 + κ = 0 q ˇ 1 κ G ( η 1 + q ˇ 1 κ σ , λ ϑ ( η 2 η 1 ) , η 3 + σ , λ ϑ ( η 4 η 3 ) )

(3.4) 1 q ˇ 2 6 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) j = 0 q ˇ 2 j G ( η 1 , η 3 + q ˇ 2 j σ , λ ϑ ( η 4 η 3 ) ) + 4 j = 0 q ˇ 2 j G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , η 3 + q ˇ 2 j σ , λ ϑ ( η 4 η 3 ) + j = 0 q ˇ 2 j G ( η 2 , η 3 + q ˇ 2 j σ , λ ϑ ( η 4 η 3 ) ) + ( 1 q ˇ 1 ) ( 1 q ˇ 2 ) σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) κ = 0 j = 0 [ G ( η 1 + q ˇ 1 κ σ , λ ϑ ( η 2 η 1 ) , η 3 + q ˇ 2 j σ , λ ϑ ( η 4 η 3 ) ) ] . = 1 9 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 3 η 4 ) G η 1 , 2 η 3 + σ , λ ϑ ( η 4 η 3 ) 2 + G η 1 + σ , λ ϑ ( η 2 η 1 ) , 2 η 3 + σ , λ ϑ ( η 4 η 3 ) 2 + 4 G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , 2 η 3 + σ , λ ϑ ( η 4 η 3 ) 2 + G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , η 3 + G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , η 3 + σ , λ ϑ ( η 4 η 3 )

(3.4) + 1 36 σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 3 η 4 ) G ( η 1 , η 3 ) + G ( η 1 + σ , λ ϑ ( η 2 η 1 ) , η 3 ) + G ( η 1 , η 3 + σ , λ ϑ ( η 4 η 3 ) ) + G ( η 1 + σ , λ ϑ ( η 2 η 1 ) , η 3 + σ , λ ϑ ( η 4 η 3 ) ) 1 6 ( σ , λ ϑ ( η 2 η 1 ) ) 2 σ , λ ϑ ( η 4 η 3 ) η 1 η 1 + σ , λ ϑ ( η 2 η 1 ) G ( x , η 3 ) + 4 G x , 2 η 3 + σ , λ ϑ ( η 4 η 3 ) 2 + G ( x , η 3 ) d q ˇ 1 0 x 1 6 σ , λ ϑ ( η 2 η 1 ) ( σ , λ ϑ ( η 4 η 3 ) ) 2 η 3 η 3 + σ , λ ϑ ( η 4 η 3 ) G ( η 1 , y ) + 4 G 2 η 1 + σ , λ ϑ ( η 2 η 1 ) 2 , y + G ( η 2 , y ) d q ˇ 1 0 y + 1 σ , λ ϑ ( η 2 η 1 ) ( σ , λ ϑ ( η 4 η 3 ) ) 2 η 1 η 1 + σ , λ ϑ ( η 2 η 1 ) η 3 η 3 + σ , λ ϑ ( η 4 η 3 ) G ( x , y ) d q ˇ 1 0 x d q ˇ 1 0 y .

By multiplying both sides of (3.4) by σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) , we get the desired result.□

Remark 3.1

Lemma 5.1 leads to the conclusion as follows:

  1. I. If σ , λ ϑ ( η 2 η 1 ) = η 2 η 1 and σ , λ ϑ ( η 4 η 3 ) = η 4 η 3 , then we get Lemma 4 of ref. [35].

  2. II. If q 1 ˇ 1 , q 2 ˇ 1 , σ , λ ϑ ( η 2 η 1 ) = η 2 η 1 and σ , λ ϑ ( η 4 η 3 ) = η 4 η 3 , then we get Lemma 1 of ref. [41].

4 New quantum estimates for generalized higher order strongly Ψ -convex functions

According to the generalized concepts given in Section 2, our special attention is to deriving the two-variables q ˇ 1 q ˇ 2 -integral inequalities of Simpson-like type for two-variable generalized higher-order strongly Ψ -convex functions.

Theorem 4.1

Suppose that Assumptions (I) and (II) are satisfied. Also, if q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( ζ 1 , ζ 2 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 is a co-ordinated generalized higher-order strongly Ψ -convex function, then

Θ ˜ G ( η 1 , η 2 , η 3 , η 4 ; q ˇ 1 , q ˇ 2 ) σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) ( Φ 1 q ˇ 1 + Φ 4 q ˇ 1 ) ( Φ 1 q ˇ 2 + Φ 4 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + ( Φ 1 q ˇ 1 + Φ 4 q ˇ 1 ) ( Φ 2 q ˇ 2 + Φ 5 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + ( Φ 2 q ˇ 1 + Φ 5 q ˇ 1 ) ( Φ 1 q ˇ 2 + Φ 4 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + ( Φ 2 q ˇ 1 + Φ 5 q ˇ 1 ) ( Φ 2 q ˇ 2 + Φ 5 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + δ 1 ( Φ 3 q ˇ 1 + Φ 6 q ˇ 1 ) δ 2 ( Φ 3 q ˇ 2 + Φ 6 q ˇ 2 ) ( σ , λ ϑ ( η 2 η 1 ) ) τ ( σ , λ ϑ ( η 4 η 3 ) ) τ ,

where

Φ 1 q ˇ i = 1 4 q ˇ i 3 24 ( 1 + q ˇ i ) ( 1 + q ˇ i + q ˇ i 2 ) , 0 < q ˇ i < 1 3 , 1 i 2 , 1 + 12 q ˇ i + 12 q ˇ i 2 + 36 q ˇ i 3 216 ( 1 + q ˇ i ) ( 1 + q ˇ i + q ˇ i 2 ) , 1 3 q ˇ i < 1 , 1 i 2 ,

Φ 2 q ˇ i = 1 2 q ˇ i 2 q ˇ i 2 24 ( 1 + q ˇ i ) ( 1 + q ˇ i + q ˇ i 2 ) , 0 < q ˇ i < 1 3 , 1 i 2 , 18 q ˇ i + 18 q ˇ i 2 7 216 ( 1 + q ˇ i ) ( 1 + q ˇ i + q ˇ i 2 ) , 1 3 q ˇ i < 1 , 1 i 2 ,

Φ 3 q ˇ i = 1 2 q ˇ i 2 q ˇ i 3 4 q ˇ i 4 48 ( 1 + q ˇ i ) ( 1 + q i 2 ) ( 1 + q ˇ i + q ˇ i 2 ) , 0 < q ˇ i < 1 3 , 1 i 2 , 108 q ˇ i 4 + 54 q ˇ i 3 + 12 q ˇ i 2 + 54 q ˇ i 17 1296 ( 1 + q ˇ i ) ( 1 + q ˇ i 2 ) ( 1 + q ˇ i + q ˇ i 2 ) , 1 3 q ˇ i < 1 , 1 i 2 ,
Φ 4 q ˇ i = 5 + 8 q + 8 q ˇ i 2 8 q ˇ i 3 24 ( 1 + q ˇ i ) ( 1 + q ˇ i + q ˇ i 2 ) , 0 < q ˇ i < 5 6 , 1 i 2 , 12 q ˇ i + 12 q ˇ i 2 + 5 216 ( 1 + q ˇ i ) ( 1 + q ˇ i + q ˇ i 2 ) , 5 6 q ˇ i < 1 , 1 i 2 ,
Φ 5 q ˇ i = 5 2 q ˇ i 2 q ˇ i 2 8 ( 1 + q ˇ i ) ( 1 + q ˇ i + q ˇ i 2 ) , 0 < q ˇ i < 5 6 , 1 i 2 , 18 q ˇ i + 18 q ˇ i 2 + 25 216 ( 1 + q ˇ i ) ( 1 + q ˇ i + q ˇ i 2 ) , 5 6 q ˇ i < 1 , 1 i 2 ,
Φ 6 q ˇ i = 5 2 q ˇ i + 28 q k 2 2 q ˇ i 3 12 q ˇ i 4 48 ( 1 + q ˇ i ) ( 1 + q i 2 ) ( 1 + q ˇ i + q ˇ i 2 ) , 0 < q ˇ i < 5 6 , 1 i 2 , 108 q ˇ i 4 54 q ˇ i 3 + 96 q ˇ i 2 54 q ˇ i + 115 1296 ( 1 + q ˇ i ) ( 1 + q ˇ i 2 ) ( 1 + q ˇ i + q ˇ i 2 ) , 5 6 q ˇ i < 1 , 1 i 2 .

Proof

By means of modulus property, the co-ordinated generalized higher-order strongly Ψ -convexity of q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( ζ 1 , ζ 2 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 , and utilizing Lemma 5.1, we get

(4.1) Θ ˜ G ( η 1 , η 2 , η 3 , η 4 ; q ˇ 1 , q ˇ 2 ) σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) × 0 1 0 1 Ω 1 ( ζ 1 , q ˇ 1 ) Ω 2 ( w , q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 + ζ 1 σ , λ ϑ ( η 2 η 1 ) , η 3 + w σ , λ ϑ ( η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 d q ˇ 1 0 ζ 1 d q ˇ 2 0 w σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) × 0 1 Ω 2 ( w , q ˇ 2 ) 0 1 Ω 1 ( ζ 1 , q ˇ 1 ) ( 1 ζ 1 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 3 + w σ , λ ϑ ( η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + ζ 1 q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 3 + ζ 2 σ , λ ϑ ( η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 δ 1 ζ 1 ( 1 ζ 1 ) ( σ , λ ϑ ( η 2 η 1 ) ) τ d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 .

Simple computations of the q ˇ 1 -integral mentioned in equation (4.1) yield

0 1 Ω 1 ( ζ 1 , q ˇ 1 ) ( 1 ζ 1 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 3 + ζ 2 σ , λ ϑ ( η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + ζ 1 q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 3 + ζ 2 σ , λ ϑ ( η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 δ 1 ζ 1 ( 1 ζ 1 ) ( σ , λ ϑ ( η 2 η 1 ) ) τ d q ˇ 1 0 ζ 1 = 0 1 2 q ˇ 1 ζ 1 1 6 ( 1 ζ 1 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 3 + ζ 2 σ , λ ϑ ( η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + ζ 1 q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 3 + ζ 2 σ , λ ϑ ( η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 δ 1 ζ 1 ( 1 ζ 1 ) ( σ , λ ϑ ( η 2 , η 1 ) ) τ d q ˇ 1 0 ζ 1 + 1 2 1 q ˇ 1 ζ 1 5 6 ( 1 ζ 1 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 3 + ζ 2 σ , λ ϑ ( η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + ζ 1 q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 3 + ζ 2 σ , λ ϑ ( η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 δ 1 ζ 1 ( 1 ζ 1 ) ( σ , λ ϑ ( η 2 η 1 ) ) τ d q ˇ 1 0 ζ 1

= q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 3 + ζ 2 η 2 ( η 4 , η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 0 1 2 ( 1 ζ 1 ) q ˇ 1 ζ 1 1 6 d q ˇ 1 0 ζ 1 + 1 2 1 ( 1 ζ 1 ) q ˇ 1 ζ 1 5 6 d q ˇ 1 0 ζ 1 + q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 3 + ζ 2 η 2 ( η 4 , η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 0 1 2 ζ 1 q ˇ 1 ζ 1 1 6 d q ˇ 1 0 ζ 1 + 1 2 1 ζ 1 q ˇ 1 ζ 1 5 6 d q ˇ 1 0 ζ 1 δ 1 ( σ , λ ϑ ( η 2 η 1 ) ) τ 0 1 2 ζ 1 ( 1 ζ 1 ) q ˇ 1 ζ 1 1 6 d q ˇ 1 0 ζ 1 + 1 2 1 ζ 1 ( 1 ζ 1 ) q ˇ 1 ζ 1 5 6 d q ˇ 1 0 ζ 1 .

Taking into account Definitions 2.11 and 2.12, we get

Φ 1 q ˇ i = 0 1 2 ( 1 ζ 1 ) q ˇ i ζ 1 1 6 d q ˇ i 0 ζ 1 = 1 4 q ˇ i 3 24 ( 1 + q ˇ i ) ( 1 + q ˇ i + q ˇ i 2 ) , 0 < q ˇ i < 1 3 , 1 i 2 , 1 + 12 q ˇ i + 12 q ˇ i 2 + 36 q ˇ i 3 216 ( 1 + q ˇ i ) ( 1 + q ˇ i + q ˇ i 2 ) , 1 3 q ˇ i < 1 , 1 i 2 ,

Φ 2 q ˇ i = 0 1 2 ζ 1 q ˇ i ζ 1 1 6 d q ˇ i 0 ζ 1 = 1 2 q ˇ i 2 q ˇ i 2 24 ( 1 + q ˇ i ) ( 1 + q ˇ i + q ˇ i 2 ) , 0 < q ˇ i < 1 3 , 1 i 2 , 18 q ˇ i + 18 q ˇ i 2 7 216 ( 1 + q ˇ i ) ( 1 + q ˇ i + q ˇ i 2 ) , 1 3 q ˇ i < 1 , 1 i 2 ,

Φ 3 q ˇ i = 0 1 2 ζ 1 ( 1 ζ 1 ) q ˇ i ζ 1 1 6 d q ˇ i 0 ζ 1 = 1 2 q ˇ i 2 q ˇ i 3 4 q ˇ i 4 48 ( 1 + q ˇ i ) ( 1 + q i 2 ) ( 1 + q ˇ i + q ˇ i 2 ) , 0 < q ˇ i < 1 3 , 1 i 2 , 108 q ˇ i 4 + 54 q ˇ i 3 + 12 q ˇ i 2 + 54 q ˇ i 17 1296 ( 1 + q ˇ i ) ( 1 + q ˇ i 2 ) ( 1 + q ˇ i + q ˇ i 2 ) , 1 3 q ˇ i < 1 , 1 i 2 ,

Φ 4 q ˇ i = 1 2 1 ( 1 ζ 1 ) q ˇ i ζ 1 5 6 d q ˇ i 0 ζ 1 = 5 + 8 q + 8 q ˇ i 2 8 q ˇ i 3 24 ( 1 + q ˇ i ) ( 1 + q ˇ i + q ˇ i 2 ) , 0 < q ˇ i < 5 6 , 1 i 2 , 12 q ˇ i + 12 q ˇ i 2 + 5 216 ( 1 + q ˇ i ) ( 1 + q ˇ i + q ˇ i 2 ) , 5 6 q ˇ i < 1 , 1 i 2 ,

Φ 5 q ˇ i = 1 2 1 ζ 1 q ˇ i ζ 1 5 6 d q ˇ i 0 ζ 1 = 5 2 q ˇ i 2 q ˇ i 2 8 ( 1 + q ˇ i ) ( 1 + q ˇ i + q ˇ i 2 ) , 0 < q ˇ i < 5 6 , 1 i 2 , 18 q ˇ i + 18 q ˇ i 2 + 25 216 ( 1 + q ˇ i ) ( 1 + q ˇ i + q ˇ i 2 ) , 5 6 q ˇ i < 1 , 1 i 2 ,

Φ 6 q ˇ i = 1 2 1 ζ 1 ( 1 ζ 1 ) q ˇ i ζ 1 5 6 d q ˇ i 0 ζ 1 = 5 2 q ˇ i + 28 q k 2 2 q ˇ i 3 12 q ˇ i 4 48 ( 1 + q ˇ i ) ( 1 + q i 2 ) ( 1 + q ˇ i + q ˇ i 2 ) , 0 < q ˇ i < 5 6 , 1 i 2 , 108 q ˇ i 4 54 q ˇ i 3 + 96 q ˇ i 2 54 q ˇ i + 115 1296 ( 1 + q ˇ i ) ( 1 + q ˇ i 2 ) ( 1 + q ˇ i + q ˇ i 2 ) , 5 6 q ˇ i < 1 , 1 i 2 , = ( Φ 1 q ˇ 1 + Φ 4 q ˇ 1 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 3 + ζ 2 σ , λ ϑ ( η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + ( Φ 2 q ˇ 1 + Φ 5 q ˇ 1 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 3 + ζ 2 σ , λ ϑ ( η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 δ 1 ( Φ 3 q ˇ 1 + Φ 6 q ˇ 1 ) ( σ , λ ϑ ( η 2 η 1 ) ) 2 .

Substituting the above integrals in equation (4.1), we have

(4.2) σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) 0 1 Ω 2 ( ζ 2 , q ˇ 2 ) ( Φ 1 q ˇ 1 + Φ 4 q ˇ 1 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 3 + ζ 2 σ , λ ϑ ( η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + ( Φ 2 q ˇ 1 + Φ 5 q ˇ 1 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 3 + ζ 2 σ , λ ϑ ( η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 δ 1 ( Φ 3 q ˇ 1 + Φ 6 q ˇ 1 ) ( σ , λ ϑ ( η 2 , η 1 ) ) 2 d q ˇ 2 0 ζ 2 .

Analogously, simple computations of q ˇ 2 -integral with the aid of Definitions 2.11 and 2.12 on the right-hand side of equation (4.2), yield

σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) ( Φ 1 q ˇ 1 + Φ 4 q ˇ 1 ) ( Φ 1 q ˇ 2 + Φ 4 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + ( Φ 1 q ˇ 1 + Φ 4 q ˇ 1 ) ( Φ 2 q ˇ 2 + Φ 5 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + ( Φ 2 q ˇ 1 + Φ 5 q ˇ 1 ) ( Φ 1 q ˇ 2 + Φ 4 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + ( Φ 2 q ˇ 1 + q ˇ 1 ) ( Φ 2 q ˇ 2 + Φ 5 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + δ 1 ( Φ 3 q ˇ 1 + Φ 6 q ˇ 1 ) δ 2 ( Φ 3 q ˇ 2 + Φ 6 q ˇ 2 ) ( σ , λ ϑ ( η 2 η 1 ) ) 2 ( σ , λ ϑ ( η 4 , η 3 ) ) τ .

This gives the proof of Theorem 4.1.□

Remark 4.1

Theorem 4.1 leads to the conclusion as follows:

  1. I. If δ 1 = δ 2 = 0 , σ , λ ϑ ( η 2 η 1 ) = η 2 η 1 along with σ , λ ϑ ( η 4 η 3 ) = η 4 η 3 , then we get Theorem 8 of ref. [35].

  2. II. If δ 1 = δ 2 = 0 , q 1 ˇ 1 , q 2 ˇ 1 , σ , λ ϑ ( η 2 η 1 ) = η 2 η 1 along with σ , λ ϑ ( η 4 η 3 ) = η 4 η 3 , then we get Theorem 3 of ref. [41].

Theorem 4.2

Suppose that Assumptions (I) and (II) are satisfied. Also, if q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( ζ 1 , ζ 2 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α is a co-ordinated generalized higher-order strongly Ψ -convex function for α , β > 1 with α 1 + β 1 = 1 , then

Θ ˜ G ( η 1 , η 2 , η 3 , η 4 ; q ˇ 1 , q ˇ 2 ) σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) [ ( Φ 7 q ˇ 1 + Φ 8 q ˇ 1 ) ( Φ 7 q ˇ 2 + Φ 8 q ˇ 2 ) ] 1 1 α × ( Φ 1 q ˇ 1 + Φ 4 q ˇ 1 ) ( Φ 1 q ˇ 2 + Φ 4 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α + ( Φ 1 q ˇ 1 + Φ 4 q ˇ 1 ) ( Φ 2 q ˇ 2 + Φ 5 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α + ( Φ 2 q ˇ 1 + Φ 5 q ˇ 1 ) ( Φ 1 q ˇ 2 + Φ 4 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α + ( Φ 2 q ˇ 1 + Φ 5 q ˇ 1 ) ( Φ 2 q ˇ 2 + Φ 5 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α + δ 1 ( Φ 3 q ˇ 1 + Φ 6 q ˇ 1 ) δ 2 ( Φ 3 q ˇ 2 + Φ 6 q ˇ 2 ) ( σ , λ ϑ ( η 2 η 1 ) ) τ ( σ , λ ϑ ( η 4 η 3 ) ) τ 1 α ,

where

Φ 7 q ˇ i = 1 2 q ˇ i 12 ( 1 + q ˇ i ) , 0 < q ˇ i < 1 3 , 1 i 2 , 6 q ˇ i 1 36 ( 1 + q ˇ i ) , 1 3 q ˇ i < 1 , 1 i 2 , Φ 8 q ˇ i = 5 4 q ˇ i 12 ( 1 + q ˇ i ) , 0 < q ˇ i < 5 6 , 1 i 2 , 4 q ˇ i 5 12 ( 1 + q ˇ i ) , 5 6 q ˇ i < 1 , 1 i 2 ,

and Φ 1 q ˇ i , Φ 2 q ˇ i , Φ 3 q ˇ i , Φ 4 q ˇ i , Φ 5 q ˇ i , and Φ 6 q ˇ i are given in Theorem 4.1.

Proof

By means of well-known Hölder inequality, the co-ordinated generalized higher-order strongly Ψ -convexity of q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( ζ 1 , ζ 2 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α , and utilizing Lemma 5.1, we get

(4.3) Θ ˜ G ( η 1 , η 2 , η 3 , η 4 ; q ˇ 1 , q ˇ 2 ) σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) 0 1 0 1 Ω 1 ( ζ 1 , q ˇ 1 ) Ω 2 ( ζ 2 , q ˇ 2 ) × q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 + ζ 1 ) σ , λ ϑ ( η 2 η 1 ) , η 3 + ζ 2 σ , λ ϑ ( η 4 η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 .

σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) 0 1 0 1 Ω 1 ( ζ 1 , q ˇ 1 ) Ω 2 ( ζ 2 , q ˇ 2 ) d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 1 1 α × 0 1 0 1 Ω 1 ( ζ 1 , q ˇ 1 ) Ω 2 ( ζ 2 , q ˇ 2 ) ( 1 ζ 1 ) ( 1 ζ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α + ( 1 ζ 1 ) ζ 2 q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α + ( 1 ζ 2 ) ζ 1 q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α + ζ 1 ζ 2 q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α + δ 1 ζ 1 ( 1 ζ 1 ) δ 2 ζ 2 ( 1 ζ 2 ) ( σ , λ ϑ ( η 2 η 1 ) ) τ ( σ , λ ϑ ( η 4 η 3 ) ) τ 1 α d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 .

Taking into account Definitions 2.11 and 2.12, we get

Φ 7 q ˇ i = 0 1 2 q ˇ i ζ 1 1 6 d q ˇ i 0 ζ 1 = 1 2 q ˇ i 12 ( 1 + q ˇ i ) , 0 < q ˇ i < 1 3 , 1 i 2 , 6 q ˇ i 1 36 ( 1 + q ˇ i ) , 1 3 q ˇ i < 1 , 1 i 2 ,

Φ 8 q ˇ i = 1 2 1 q ˇ i ζ 1 5 6 d q ˇ i 0 ζ 1 = 5 4 q ˇ i 12 ( 1 + q ˇ i ) , 0 < q ˇ i < 5 6 , 1 i 2 , 4 q ˇ i 5 12 ( 1 + q ˇ i ) , 5 6 q ˇ i < 1 , 1 i 2 ,

and derived values of Φ 1 q ˇ i , Φ 2 q ˇ i , Φ 3 q ˇ i , Φ 4 q ˇ i , Φ 5 q ˇ i , and Φ 6 q ˇ i , which have the same formulae as those given in Theorem 4.1. It follows that

0 1 0 1 Ω 1 ( ζ 1 , q ˇ 1 ) Ω 2 ( ζ 2 , q ˇ 2 ) d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 = 0 1 Ω 1 ( ζ 1 , q ˇ 1 ) d q ˇ 1 0 ζ 1 0 1 Ω 2 ( ζ 2 , q ˇ 2 ) d q ˇ 2 0 ζ 2 = ( Φ 7 q ˇ 1 + Φ 8 q ˇ 1 ) ( Φ 7 q ˇ 2 + Φ 8 q ˇ 2 ) , 0 1 0 1 ( 1 ζ 1 ) ( 1 ζ 2 ) Ω 1 ( ζ 1 , q ˇ 1 ) Ω 2 ( ζ 2 , q ˇ 2 ) d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 = 0 1 ( 1 ζ 1 ) Ω 1 ( ζ 1 , q ˇ 1 ) d q ˇ 1 0 ζ 1 0 1 ( 1 ζ 2 ) Ω 2 ( ζ 2 , q ˇ 2 ) d q ˇ 2 0 ζ 2 = ( Φ 1 q ˇ 1 + Φ 4 q ˇ 1 ) ( Φ 1 q ˇ 2 + Φ 4 q ˇ 2 ) , 0 1 0 1 ( 1 ζ 1 ) ζ 2 Ω 1 ( ζ 1 , q ˇ 1 ) Ω 2 ( ζ 2 , q ˇ 2 ) d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 = 0 1 ( 1 ζ 1 ) Ω 1 ( ζ 1 , q ˇ 1 ) d q ˇ 1 0 ζ 1 0 1 ζ 2 Ω 2 ( ζ 2 , q ˇ 2 ) d q ˇ 2 0 ζ 2 = ( Φ 1 q ˇ 1 + Φ 4 q ˇ 1 ) ( Φ 2 q ˇ 2 + Φ 5 q ˇ 2 ) , 0 1 0 1 ζ 1 ( 1 ζ 2 ) Ω 1 ( ζ 1 , q ˇ 1 ) Ω 2 ( ζ 2 , q ˇ 2 ) d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 = 0 1 ζ 1 Ω 1 ( ζ 1 , q ˇ 1 ) d q ˇ 1 0 ζ 1 0 1 ( 1 ζ 2 ) Ω 2 ( ζ 2 , q ˇ 2 ) d q ˇ 2 0 ζ 2 = ( Φ 2 q ˇ 1 + Φ 5 q ˇ 1 ) ( Φ 1 q ˇ 2 + Φ 4 q ˇ 2 ) ,

0 1 0 1 ζ 1 ζ 2 Ω 1 ( ζ 1 , q ˇ 1 ) Ω 2 ( ζ 2 , q ˇ 2 ) d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 = 0 1 ζ 1 Ω 1 ( ζ 1 , q ˇ 1 ) d q ˇ 1 0 ζ 1 0 1 ζ 2 Ω 2 ( ζ 2 , q ˇ 2 ) d q ˇ 2 0 ζ 2 = ( Φ 2 q ˇ 2 + Φ 5 q 2 ) ( Φ 1 q ˇ 2 + Φ 4 q ˇ 2 ) , 0 1 0 1 ζ 1 ζ 2 ( 1 ζ 1 ) ( 1 ζ 2 ) Ω 1 ( ζ 1 , q ˇ 1 ) Ω 2 ( ζ 2 , q ˇ 2 ) d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 = 0 1 ζ 1 ( 1 ζ 1 ) Ω 1 ( ζ 1 , q ˇ 1 ) d q ˇ 1 0 ζ 1 0 1 ζ 2 ( 1 ζ 2 ) Ω 2 ( ζ 2 , q ˇ 2 ) d q ˇ 2 0 ζ 2 = ( Φ 3 q ˇ 1 + Φ 6 q ˇ 1 ) ( Φ 3 q ˇ 2 + Φ 6 q ˇ 2 ) .

Utilizing the values of the above q ˇ 1 q ˇ 2 -integrals, we get our required inequality.□

Remark 4.2

If δ 1 = δ 2 = 0 , σ , λ ϑ ( η 2 η 1 ) = η 2 η 1 along with σ , λ ϑ ( η 4 η 3 ) = η 4 η 3 , then Theorem 4.2 leads to Theorem 10 of ref. [35].

Theorem 4.3

Suppose that Assumptions (I) and (II) are satisfied. Also, if q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( ζ 1 , ζ 2 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α is a co-ordinated generalized higher-order strongly Ψ -quasi-convex function for α , β > 1 with α 1 + β 1 = 1 , then

Θ ˜ G ( η 1 , η 2 , η 3 , η 4 ; q ˇ 1 , q ˇ 2 ) σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) ( ( Φ 7 q ˇ 1 + Φ 8 q ˇ 1 ) ( Φ 7 q ˇ 2 + Φ 8 q ˇ 2 ) ) 1 1 α × max q ˇ 1 , q ˇ 2 2 η 1 , η 3 h ( η 1 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α , q ˇ 1 , q ˇ 2 2 η 1 , η 3 h ( η 1 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α , q ˇ 1 , q ˇ 2 2 η 1 , η 3 h ( η 2 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α , q ˇ 1 , q ˇ 2 2 η 1 , η 3 h ( η 2 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α × ( Φ 7 q ˇ 1 + Φ 8 q ˇ 1 ) ( Φ 7 q ˇ 2 + Φ 8 q ˇ 2 ) + δ 1 ( Φ 3 q ˇ 1 + Φ 6 q ˇ 1 ) δ 2 ( Φ 3 q ˇ 2 + ϕ 6 q ˇ 2 ) ( σ , λ ϑ ( η 2 η 1 ) ) τ ( σ , λ ϑ ( η 4 η 3 ) ) τ 1 α d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 ,

where Φ 3 q ˇ i , Φ 6 q ˇ i and Φ 7 q ˇ i , Φ 8 q ˇ i are given by the same expressions as described in Theorems 4.1 and 4.2.

Proof

By means of the well-known Hölder inequality, the co-ordinated generalized higher-order strongly Ψ -quasi-convexity of q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( ζ 1 , ζ 2 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α , and utilizing Lemma 5.1, we get

Θ ˜ G ( η 1 , η 2 , η 3 , η 4 ; q ˇ 1 , q ˇ 2 ) σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) 0 1 0 1 Ω 1 ( ζ 1 , q ˇ 1 ) Ω 2 ( ζ 2 , q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 h ( η 1 + ζ 1 ) σ , λ ϑ ( η 2 η 1 ) , η 3 + ζ 2 σ , λ ϑ ( η 4 η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 × d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 .

σ , λ ϑ ( η 2 η 1 ) σ , λ ϑ ( η 4 η 3 ) 0 1 0 1 Ω 1 ( ζ 1 , q ˇ 1 ) Ω 2 ( ζ 2 , q ˇ 2 ) d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 1 1 α × 0 1 0 1 Ω 1 ( ζ 1 , q ˇ 1 ) Ω 2 ( ζ 2 , q ˇ 2 ) max q ˇ 1 , q ˇ 2 2 η 1 , η 3 h ( η 1 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α , q ˇ 1 , q ˇ 2 2 η 1 , η 3 h ( η 1 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α , q ˇ 1 , q ˇ 2 2 η 1 , η 3 h ( η 2 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α , q ˇ 1 , q ˇ 2 2 η 1 , η 3 h ( η 2 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α + δ 1 ζ 1 ( 1 ζ 1 ) δ 2 ζ 2 ( 1 ζ 2 ) ( σ , λ ϑ ( η 2 η 1 ) ) τ ( σ , λ ϑ ( η 4 η 3 ) ) τ 1 α d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 ,

and can obtain the integral expressions of Φ 3 q ˇ i , Φ 6 q ˇ i and Φ 7 q ˇ i , Φ 8 q ˇ i , which have the same formulae as those given in Theorems 4.1 and 4.2. This completes our result.□

5 Applications

This study identifies some potential uses of our findings obtained in Sections 3 and 4. For appropriate and suitable choices of parameters σ , λ and ϑ in the special functions described in (2.2), (2.3), and (2.4). Considering the Raina’s function, as mentioned in (2.2), we aim to establish novel results for the hypergeometric function and Mittag–Leffler function as special cases.

5.1 Hypergeometric function

In this section, we assumed the following to be satisfied:

  1. Letting σ = 1 and λ = 0 , and

    ϑ ( p ) = ( β 1 ) p ( β 2 ) p ( β 3 ) p for p = 0 , 1 , 2 , .

  2. Let a bounded sequences of positive real numbers are ϑ = ( ϑ ( 0 ) , , ϑ ( p ) ) .

  3. Suppose that a twice partial q ˇ 1 q ˇ 2 -differentiable mapping G : Q ˜ R 2 R defined on Q ˜ (the interior of Q ˜ ) having q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( ζ 1 , ζ 2 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 to be continuous and integrable on [ η 1 , η 1 + ( β 1 ; β 2 ; β 3 ; η 2 η 1 ) ] × [ η 3 , η 3 + ( β 1 ; β 2 ; β 3 ; η 4 η 3 t ) ] Q ˜ such that ( β 1 ; β 2 ; β 3 ; η 2 η 1 ) , ( β 1 ; β 2 ; β 3 ; η 4 η 3 ) > 0 for 0 < q ˇ 1 , q ˇ 2 < 1 . Then, from Lemma 5.1, Theorems 4.1, 4.2, and 4.3, the following results hold.

Lemma 5.1

Suppose that Assumptions ( H 1 ) , ( H 2 ) and ( H 3 ) are satisfied, then the following equality holds:

Θ ˜ G ( η 1 , η 2 , η 3 , η 4 ; q ˇ 1 , q ˇ 2 ) = 1 9 G η 1 , 2 η 3 + ( β 1 ; β 2 ; β 3 ; η 4 η 3 ) 2 + G η 1 + ( β 1 ; β 2 ; β 3 ; η 2 η 1 ) , 2 η 3 + ( β 1 ; β 2 ; β 3 ; η 4 η 3 ) 2 + 4 G 2 η 1 + ( β 1 ; β 2 ; β 3 ; η 2 η 1 ) 2 , 2 η 3 + ( β 1 ; β 2 ; β 3 ; η 4 , η 3 ) 2 + G 2 η 1 + ( β 1 ; β 2 ; β 3 ; η 2 η 1 ) 2 , η 3 + G 2 η 1 + ( β 1 ; β 2 ; β 3 ; η 2 η 1 ) 2 , η 3 + ( β 1 ; β 2 ; β 3 ; η 4 η 3 ) + 1 36 G ( η 1 , η 3 ) + G ( η 1 + ( β 1 ; β 2 ; β 3 ; η 2 η 1 ) , η 3 ) + G ( η 1 , η 3 + ( β 1 ; β 2 ; β 3 ; η 4 η 3 ) ) + G ( η 1 + ( β 1 ; β 2 ; β 3 ; η 2 η 1 ) , η 3 + ( β 1 ; β 2 ; β 3 ; η 4 η 3 ) ) 1 6 ( β 1 ; β 2 ; β 3 ; η 2 η 1 ) η 1 η 1 + ( β 1 ; β 2 ; β 3 ; η 2 η 1 ) G ( x , η 3 ) + 4 G x , 2 η 3 + ( β 1 ; β 2 ; β 3 ; η 4 η 3 ) 2 + G ( x , η 3 + ( β 1 ; β 2 ; β 3 ; η 4 η 3 ) ) d q ˇ 1 0 x 1 6 ( β 1 ; β 2 ; β 3 ; η 4 η 3 ) η 3 η 3 + ( β 1 ; β 2 ; β 3 ; η 4 , η 3 ) G ( η 1 , y ) + 4 G 2 η 1 + ( β 1 ; β 2 ; β 3 ; η 2 η 1 ) 2 , y + G ( η 1 + ( β 1 ; β 2 ; β 3 ; η 2 η 1 ) , y ) d q ˇ 2 0 y + 1 ( β 1 ; β 2 ; β 3 ; η 2 η 1 ) ( β 1 ; β 2 ; β 3 ; η 4 η 3 ) η 1 η 1 + ( β 1 ; β 2 ; β 3 ; η 2 η 1 ) η 3 η 3 + ( β 1 ; β 2 ; β 3 ; η 4 η 3 ) G ( x , y ) d q ˇ 2 0 y d q ˇ 1 0 x = ( β 1 ; β 2 ; β 3 ; η 2 η 1 ) ( β 1 ; β 2 ; β 3 ; η 4 η 3 ) 0 1 0 1 Ω 1 ( ζ 1 , q ˇ 1 ) Ω 2 ( ζ 2 , q ˇ 2 ) × q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 + ζ 1 ( β 1 ; β 2 ; β 3 ; η 2 η 1 ) , η 3 + ζ 2 ( β 1 ; β 2 ; β 3 ; η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 ,

where Ω 1 ( ζ 1 , q ˇ 1 ) and Ω 2 ( ζ 1 , q ˇ 1 ) are given in (3.2) and (3.3), respectively.

Theorem 5.2

Suppose that Assumptions ( H 1 ) , ( H 2 ) and ( H 3 ) are satisfied. Also, if q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( ζ 1 , ζ 2 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 is a co-ordinated generalized higher-order strongly Ψ -convex function, then

Θ ˜ G ( η 1 , η 2 , η 3 , η 4 ; q ˇ 1 , q ˇ 2 ) ( β 1 ; β 2 ; β 3 ; η 2 η 1 ) ( β 1 ; β 2 ; β 3 ; η 4 η 3 ) × ( Φ 1 q ˇ 1 + Φ 4 q ˇ 1 ) ( Φ 1 q ˇ 2 + Φ 4 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + ( Φ 1 q ˇ 1 + Φ 4 q ˇ 1 ) ( Φ 2 q ˇ 2 + Φ 5 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + ( Φ 2 q ˇ 1 + Φ 5 q ˇ 1 ) ( Φ 1 q ˇ 2 + Φ 4 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + ( Φ 2 q ˇ 1 + Φ 5 q ˇ 1 ) ( Φ 2 q ˇ 2 + Φ 5 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + δ 1 ( Φ 3 q ˇ 1 + Φ 6 q ˇ 1 ) δ 2 ( Φ 3 q ˇ 2 + Φ 6 q ˇ 2 ) ( ( β 1 ; β 2 ; β 3 ; η 2 η 1 ) ) τ ( ( β 1 ; β 2 ; β 3 ; η 4 η 3 ) ) τ ,

where Φ l q ˇ i , ( l = 1 , , 6 ) are given in Theorem 4.1.

Theorem 5.3

Suppose that Assumptions ( H 1 ) , ( H 2 ) and ( H 3 ) are satisfied. Also, if q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( ζ 1 , ζ 2 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α is a co-ordinated generalized higher-order strongly Ψ -convex function for α , β > 1 with α 1 + β 1 = 1 , then

Θ ˜ G ( η 1 , η 2 , η 3 , η 4 ; q ˇ 1 , q ˇ 2 ) ( β 1 ; β 2 ; β 3 ; η 2 η 1 ) ( β 1 ; β 2 ; β 3 ; η 4 η 3 ) [ ( Φ 7 q ˇ 1 + Φ 8 q ˇ 1 ) ( Φ 7 q ˇ 2 + Φ 8 q ˇ 2 ) ] 1 1 α × ( Φ 1 q ˇ 1 + Φ 4 q ˇ 1 ) ( Φ 1 q ˇ 2 + Φ 4 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α + ( Φ 1 q ˇ 1 + Φ 4 q ˇ 1 ) ( Φ 2 q ˇ 2 + Φ 5 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α + ( Φ 2 q ˇ 1 + Φ 5 q ˇ 1 ) ( Φ 1 q ˇ 2 + Φ 4 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α + ( Φ 2 q ˇ 1 + Φ 5 q ˇ 1 ) ( Φ 2 q ˇ 2 + Φ 5 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α + δ 1 ( Φ 3 q ˇ 1 + Φ 6 q ˇ 1 ) δ 2 ( Φ 3 q ˇ 2 + Φ 6 q ˇ 2 ) ( ( β 1 ; β 2 ; β 3 ; ( η 2 , η 1 ) ) ) τ ( ( β 1 ; β 2 ; β 3 ; η 4 , η 3 ) ) τ 1 α ,

where Φ l q ˇ i , ( l = 1 , , 8 ) are given in Theorems 4.1 and 4.2, respectively.

Theorem 5.4

Suppose that Assumptions ( H 1 ) , ( H 2 ) and ( H 3 ) are satisfied. Also, if q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( ζ 1 , ζ 2 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α is a co-ordinated generalized higher-order strongly Ψ -quasi-convex function for α , β > 1 with α 1 + β 1 = 1 , then

Θ ˜ G ( η 1 , η 2 , η 3 , η 4 ; q ˇ 1 , q ˇ 2 ) ( β 1 ; β 2 ; β 3 ; η 2 η 1 ) ( β 1 ; β 2 ; β 3 ; η 4 η 3 ) ( ( Φ 7 q ˇ 1 + Φ 8 q ˇ 1 ) ( Φ 7 q ˇ 2 + Φ 8 q ˇ 2 ) ) 1 1 α × max q ˇ 1 , q ˇ 2 2 η 1 , η 3 h ( η 1 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α , q ˇ 1 , q ˇ 2 2 η 1 , η 3 h ( η 1 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α , q ˇ 1 , q ˇ 2 2 η 1 , η 3 h ( η 2 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α , q ˇ 1 , q ˇ 2 2 η 1 , η 3 h ( η 2 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α × ( Φ 7 q ˇ 1 + Φ 8 q ˇ 1 ) ( Φ 7 q ˇ 2 + Φ 8 q ˇ 2 ) + δ 1 ( Φ 3 q ˇ 1 + Φ 6 q ˇ 1 ) δ 2 ( Φ 3 q ˇ 2 + ϕ 6 q ˇ 2 ) ( ( β 1 ; β 2 ; β 3 ; η 2 η 1 ) ) τ ( ( β 1 ; β 2 ; β 3 ; η 4 η 3 ) ) τ 1 α × d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 ,

where Φ 3 q ˇ i , Φ 6 q ˇ i and Φ 7 q ˇ i , Φ 8 q ˇ i are given by the same expressions as described in Theorems 4.1 and 4.2.

5.2 Mittag–Leffler function

In this section, we assumed the following to be satisfied:

  1. Setting ϑ = ( 1 , 1 , ) having σ = β 1 , ( β 1 ) > 0 and λ = 1 .

  2. Suppose that a twice partial q ˇ 1 q ˇ 2 -differentiable mapping G : S ˜ R 2 R defined on S ˜ (the interior of S ˜ ) having q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( ζ 1 , ζ 2 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 to be continuous and integrable on [ η 1 , η 1 + E ¯ β 1 ( η 2 η 1 ) ] × [ η 3 , η 3 + E ¯ β 1 ( η 4 η 3 ) ] S ˜ such that E ¯ β 1 ( η 2 η 1 ) , E ¯ β 3 ( η 4 η 3 ) > 0 for 0 < q ˇ 1 , q ˇ 2 < 1 , then from Lemma 5.1, Theorems 4.1, 4.2 and 4.3, the following results hold.

Lemma 5.5

Suppose that Assumptions ( R 1 ) and ( R 2 ) are satisfied, then the following equality holds:

Θ ˜ G ( η 1 , η 2 , η 3 , η 4 ; q ˇ 1 , q ˇ 2 ) = 1 9 G η 1 , 2 η 3 + E ¯ β 1 ( η 4 η 3 ) 2 + G η 1 + E ¯ β 1 ( η 2 η 1 ) , 2 η 3 + E ¯ β 1 ( η 4 η 3 ) 2 + 4 G 2 η 1 + E ¯ β 1 ( η 2 η 1 ) 2 , 2 η 3 + E ¯ β 1 ( η 4 , η 3 ) 2 + G 2 η 1 + E ¯ β 1 ( η 2 η 1 ) 2 , η 3 + G 2 η 1 + E ¯ β 1 ( η 2 η 1 ) 2 , η 3 + E ¯ β 1 ( η 4 η 3 ) + 1 36 G ( η 1 , η 3 ) + G ( η 1 + E ¯ β 3 ( η 2 η 1 ) , η 3 ) + G ( η 1 , η 3 + E ¯ β 1 ( η 4 η 3 ) ) + G ( η 1 + E ¯ β 1 ( η 2 η 1 ) , η 3 + E ¯ β 1 ( η 4 η 3 ) ) 1 6 E ¯ β 1 ( η 2 η 1 ) η 1 η 1 + E ¯ β 1 ( η 2 η 1 ) G ( x , η 3 ) + 4 G x , 2 η 3 + E ¯ β 1 ( η 4 η 3 ) 2 + G ( x , η 3 + E ¯ β 1 ( η 4 η 3 ) ) d q ˇ 1 0 x

1 6 E ¯ β 1 ( η 4 η 3 ) η 3 η 3 + E ¯ β 1 ( η 4 η 3 ) G ( η 1 , y ) + 4 G 2 η 1 + E ¯ β 1 ( η 2 η 1 ) 2 , y + G ( η 1 + E ¯ β 1 ( η 2 η 1 ) , y ) d q ˇ 2 0 y + 1 E ¯ β 1 ( η 2 η 1 ) E ¯ β 1 ( η 4 η 3 ) η 1 η 1 + E ¯ β 1 ( η 2 η 1 ) η 3 η 3 + E ¯ β 1 ( η 4 η 3 ) G ( x , y ) d q ˇ 2 0 y d q ˇ 1 0 x = E ¯ β 1 ( η 2 η 1 ) E ¯ β 1 ( η 4 η 3 ) 0 1 0 1 Ω 1 ( ζ 1 , q ˇ 1 ) Ω 2 ( ζ 2 , q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 + ζ 1 E ¯ β 1 ( η 2 η 1 ) , η 3 + ζ 2 E ¯ β 1 ( η 4 η 3 ) ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 ,

where Ω 1 ( ζ 1 , q ˇ 1 ) and Ω 2 ( ζ 1 , q ˇ 1 ) are given in (3.2) and (3.3), respectively.

Theorem 5.1

Suppose that Assumptions ( R 1 ) and ( R 2 ) are satisfied. Also, if q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( ζ 1 , ζ 2 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 is a co-ordinated generalized higher-order strongly Ψ -convex function, then

Θ ˜ G ( η 1 , η 2 , η 3 , η 4 ; q ˇ 1 , q ˇ 2 ) E ¯ β 1 ( η 2 η 1 ) E ¯ β 1 ( η 4 η 3 ) ( Φ 1 q ˇ 1 + Φ 4 q ˇ 1 ) ( Φ 1 q ˇ 2 + Φ 4 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + ( Φ 1 q ˇ 1 + Φ 4 q ˇ 1 ) ( Φ 2 q ˇ 2 + Φ 5 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + ( Φ 2 q ˇ 1 + Φ 5 q ˇ 1 ) ( Φ 1 q ˇ 2 + Φ 4 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + ( Φ 2 q ˇ 1 + Φ 5 q ˇ 1 ) ( Φ 2 q ˇ 2 + Φ 5 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 + δ 1 ( Φ 3 q ˇ 1 + Φ 6 q ˇ 1 ) δ 2 ( Φ 3 q ˇ 2 + Φ 6 q ˇ 2 ) ( E ¯ β 1 ( η 2 η 1 ) ) τ ( E ¯ β 1 ( η 4 η 3 ) ) τ ,

where Φ l q ˇ i , ( l = 1 , , 6 ) are given in Theorem 4.1.

Theorem 5.6

Suppose that Assumptions ( R 1 ) and ( R 2 ) are satisfied. Also, if q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( ζ 1 , ζ 2 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α is a co-ordinated generalized higher-order strongly Ψ -convex function for α , β > 1 with α 1 + β 1 = 1 , then

Θ ˜ G ( η 1 , η 2 , η 3 , η 4 ; q ˇ 1 , q ˇ 2 ) E ¯ β 1 ( η 2 η 1 ) E ¯ β 1 ( η 4 η 3 ) [ ( Φ 7 q ˇ 1 + Φ 8 q ˇ 1 ) ( Φ 7 q ˇ 2 + Φ 8 q ˇ 2 ) ] 1 1 α × ( Φ 1 q ˇ 1 + Φ 4 q ˇ 1 ) ( Φ 1 q ˇ 2 + Φ 4 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α + ( Φ 1 q ˇ 1 + Φ 4 q ˇ 1 ) ( Φ 2 q ˇ 2 + Φ 5 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 1 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α + ( Φ 2 q ˇ 1 + Φ 5 q ˇ 1 ) ( Φ 1 q ˇ 2 + Φ 4 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α + ( Φ 2 q ˇ 1 + Φ 5 q ˇ 1 ) ( Φ 2 q ˇ 2 + Φ 5 q ˇ 2 ) q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( η 2 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α + δ 1 ( Φ 3 q ˇ 1 + Φ 6 q ˇ 1 ) δ 2 ( Φ 3 q ˇ 2 + Φ 6 q ˇ 2 ) ( E ¯ β 1 ( η 2 η 1 ) ) τ ( E ¯ β 1 ( η 4 η 3 ) ) τ 1 α ,

where Φ l q ˇ i , ( l = 1 , , 8 ) are given in Theorems 4.1 and 4.2, respectively.

Theorem 5.7

Suppose that Assumptions ( R 1 ) and ( R 2 ) are satisfied. Also, if q ˇ 1 , q ˇ 2 2 η 1 , η 3 G ( ζ 1 , ζ 2 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α is a co-ordinated generalized higher-order strongly Ψ -quasi-convex function for α , β > 1 with α 1 + β 1 = 1 , then

Θ ˜ G ( η 1 , η 2 , η 3 , η 4 ; q ˇ 1 , q ˇ 2 ) E ¯ β 1 ( η 2 η 1 ) E ¯ β 1 ( η 4 η 3 ) ( ( Φ 7 q ˇ 1 + Φ 8 q ˇ 1 ) ( Φ 7 q ˇ 2 + Φ 8 q ˇ 2 ) ) 1 1 α × max q ˇ 1 , q ˇ 2 2 η 1 , η 3 h ( η 1 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α , q ˇ 1 , q ˇ 2 2 η 1 , η 3 h ( η 1 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α , q ˇ 1 , q ˇ 2 2 η 1 , η 3 h ( η 2 , η 3 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α , q ˇ 1 , q ˇ 2 2 η 1 , η 3 h ( η 2 , η 4 ) q ˇ 1 η 1 ζ 1 q ˇ 2 η 3 ζ 2 α × ( Φ 7 q ˇ 1 + Φ 8 q ˇ 1 ) ( Φ 7 q ˇ 2 + Φ 8 q ˇ 2 ) + δ 1 ( Φ 3 q ˇ 1 + Φ 6 q ˇ 1 ) δ 2 ( Φ 3 q ˇ 2 + ϕ 6 q ˇ 2 ) ( E ¯ β 1 ( η 2 η 1 ) ) τ ( E ¯ β 1 ( η 4 η 3 ) ) τ 1 α d q ˇ 1 0 ζ 1 d q ˇ 2 0 ζ 2 ,

where Φ 3 q ˇ i , Φ 6 q ˇ i and Φ 7 q ˇ i , Φ 8 q ˇ i are given by the same expressions as described in Theorems 4.1 and 4.2.

5.3 Conclusion

The aim of this research is to contribute as a source of inspiration for ongoing studies. Taking into consideration q ˇ 1 q ˇ 2 -integrals, an auxiliary result has been obtained. In the special Raina’s function perspective that contributes to the q ˇ 1 q ˇ 2 -identity, we constructed some new generalizations for Simpson-type inequality concerning q ˇ 1 q ˇ 2 -differentiable mappings for higher-order strongly generalized Ψ -convex functions. The connection of well-known special functions (hypergeometric and Mittag–Leffler function) is being used to demonstrate some potential applications of our results. Furthermore, our results are extremely applicable to the solution of integral equations involving interacting n bodies with mixed boundary conditions [13,14].

Acknowledgments

The authors would like to express their sincere thanks to the support from the National Natural Science Foundation of China and Taif University researchers (supporting project number: TURSP-2020/155, Taif, KSA).

  1. Funding information: This work was supported by the National Natural Science Foundation of China (Grant No. 61673169).

  2. Author contribution: All authors contributed equally to the writing of this manuscript. All authors read and approved the final manuscript.

  3. Conflict of interest: The authors states no conflict of interest.

References

[1] Jackson FH . On a q -definite integrals. Q J Pure Appl Math. 1910;41:193–203. Search in Google Scholar

[2] Andrews GW . q-Series: Their development and applications in analysis: Number theory, combinatorics, physics and computer algebra. CBMS Regional Conference Series in Mathematics. Providence, RI: American Mathematical Society; 1986, p. 66. 10.1090/cbms/066Search in Google Scholar

[3] Ernst T. The history of q-calculus and a new method (Licentiate thesis). U. U. D. M; 2000. Search in Google Scholar

[4] Ernst T. A method for q-calculus. J Nonlin Math Phys A Method. 2003;10:487–525. 10.2991/jnmp.2003.10.4.5Search in Google Scholar

[5] Baxter R. Exact solved models in statistical mechanics. New York, NY: Academic Press. 1982. Search in Google Scholar

[6] Bettaibi N , Mezlini K. On the use Of the q-Mellin transform to solve some q-heat and q-wave equations. Int J Math Arch. 2012;3:446–55. Search in Google Scholar

[7] Gauchman H. Integral inequalities in q-calculus. Comp Math Appl. 2004;47:281–300. 10.1016/S0898-1221(04)90025-9Search in Google Scholar

[8] Kac V , Cheung P. Quantum calculus, New York, NY, USA: Springer; 2002. 10.1007/978-1-4613-0071-7Search in Google Scholar

[9] Alp N , Sarikaya MZ , Kunt M , İşcan İ . q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J King Saud Univ Sci. 2018;30:193–203. 10.1016/j.jksus.2016.09.007Search in Google Scholar

[10] Liu WJ , Zhuang HF . Some quantum estimates of Hermite–Hadamard inequalities for convex functions. J Appl Anal Comput. 2017;7:501–22. 10.20944/preprints201612.0102.v1Search in Google Scholar

[11] Garg M , Chanchlani L. Kober fractional q-derivative operators. Le Matematiche. 2011;66:13–26. Search in Google Scholar

[12] Purohit SD , Yadav RK . On generalized fractional q-integral operators involving the q-gauss hypergeometric function. Bull Math Anal Appl. 2010;24:35–44. Search in Google Scholar

[13] Sosnovskiy LA , Sherbakov SS . A model of mechanothermodynamic entropy in tribology. Entropy. 2017;19. 10.3390/e19030115Search in Google Scholar

[14] Shcherbakov SS . Spatial stress-strain state of tribofatigue system in roll-shaft contact zone. Strength Mater. 2013;45:35–43. 10.1007/s11223-013-9430-9Search in Google Scholar

[15] Kirmaci US . Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula. Appl Math Comput. 2004;147:137–46. 10.1016/S0096-3003(02)00657-4Search in Google Scholar

[16] Dragomir SS , Agarwal RP . Two inequalities for differentiable mappings and applications to special means of real numbers and to Trapezoidal formula. Appl Math Lett. 1998;11:91–5. 10.1016/S0893-9659(98)00086-XSearch in Google Scholar

[17] Kirmaci US , Özdemir ME . On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl Math Comput. 2004;153:361–8. 10.1016/S0096-3003(03)00637-4Search in Google Scholar

[18] Jensen JLWV. Omkonvexe Funktioner og Ulighedermellen Middelvaerdier. Nyt Tidsskr Math. 1905;16B:49–69. Search in Google Scholar

[19] Jensen JLWV. Sur les fonctions convexes et les inegalités entre les valeurs moyennes. Acta Math. 1906;30:175–93. 10.1007/BF02418571Search in Google Scholar

[20] Rashid S , Noor MA , Noor KI , Safdar F , Chu YM . Hermite–Hadamard-type inequalities for the class of convex functions on time scale. Mathematics. 2019;7. 10.3390/math7100956Search in Google Scholar

[21] Nie D , Rashid S , Akdemir AO , Baleanu D , Liu JB . On some new weighted inequalities for differentiable exponentially convex and exponentially quasi-convex functions with applications. Mathematics. 2019:7. 10.3390/math7080727Search in Google Scholar

[22] Rashid S , Noor MA , Noor KI . Inequalities pertaining fractional approach through exponentially convex functions. Fractal Fract. 2019:3. 10.3390/fractalfract3030037Search in Google Scholar

[23] Alomari M , Darus M , Dragomir SS . New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res Rep Coll. 2009;12:1–18. Search in Google Scholar

[24] Dragomir DD , Agarwal RP , Cerone P. On Simpson’s inequality and applications. J Ineq Appl. 2000;5:533–79. 10.1155/S102558340000031XSearch in Google Scholar

[25] Sarikaya MZ , Set E , Özdemir ME . On new inequalities of Simpson-type for convex functions. Comput Math Appl. 2016;60:2191–9. 10.1016/j.camwa.2010.07.033Search in Google Scholar

[26] Polyak BT . Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Soviet Math Dokl. 1966;7:72–5. Search in Google Scholar

[27] Karamardian S . The nonlinear complementarity problems with applications. J Optim Theory Appl. 1969;4:167–81. 10.1007/BF00930577Search in Google Scholar

[28] Zu DL , Marcotte P . Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities. SIAM J Optim. 1996;6:714–26. 10.1137/S1052623494250415Search in Google Scholar

[29] Nikodem K , Pales ZS . Characterizations of inner product spaces by strongly convex functions. Banach 2011;1:83–7. 10.15352/bjma/1313362982Search in Google Scholar

[30] Qu G , Li N . On the exponentially stability of primal-dual gradient dynamics. IEEE Control Syst Lett. 2019;3:43–8. 10.1109/LCSYS.2018.2851375Search in Google Scholar

[31] Rashid S , Latif MA , Hammouch Z , Chu YM . Fractional integral inequalities for strongly h-preinvex functions for a kth order differentiable functions. Symmetry. 2019:11. 10.3390/sym11121448Search in Google Scholar

[32] Adamek M . On a problem connected with strongly convex functions. Math Inequal Appl. 2016;19:1287–93. 10.7153/mia-19-94Search in Google Scholar

[33] Angulo H , Gimenez J , Moeos AM , Nikodem K . On strongly h-convex functions. Ann Funct Anal. 2011;2:85–91. 10.15352/afa/1399900197Search in Google Scholar

[34] Azcar A , Gimnez J , Nikodem K , Snchez JL . On strongly midconvex functions. Opuscula Math. 2011;31:15–26. 10.7494/OpMath.2011.31.1.15Search in Google Scholar

[35] Kalsoom H , Wu J , Hussain S , Latif MA . Simpson’s type inequalities for co-ordinated convex functions on quantum calculus. Symmetry. 2019;11. 10.3390/sym11060768Search in Google Scholar

[36] Noor MA . Some new classes of non-convex function. Nonlinear Funct. Anal Appl. 2006;11:165–71. Search in Google Scholar

[37] Raina RK . On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math J. 2005;21:191–203. Search in Google Scholar

[38] Vivas-Cortez MJ , Kashuri A , Liko R , Hernández JE . Quantum estimates of Ostrowski inequalities for generalized phi-convex Functions. Symmetry. 2019;12. 10.3390/sym11121513Search in Google Scholar

[39] Tariboon J , Ntouyas SK . Quantum integral inequalities on finite intervals. J Inequal Appl. 2014;2014. 10.1186/1029-242X-2014-121Search in Google Scholar

[40] Tariboon J , Ntouyas SK . Quantum calculus on finite intervals and applications to impulsive difference equations. Adv Differ Equ. 2013;2013. 10.1186/1687-1847-2013-282Search in Google Scholar

[41] Özdemir ME , Akdemir AO , Kavurmaci H , Avci M. On the Simpson’s inequality for coordinated convex functions. 2011. arXiv 2010, arXiv:1101.0075. Search in Google Scholar

Received: 2020-11-20
Revised: 2021-04-16
Accepted: 2021-04-24
Published Online: 2021-06-08

© 2021 Yu-Ming Chu et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Regular Articles
  2. Circular Rydberg states of helium atoms or helium-like ions in a high-frequency laser field
  3. Closed-form solutions and conservation laws of a generalized Hirota–Satsuma coupled KdV system of fluid mechanics
  4. W-Chirped optical solitons and modulation instability analysis of Chen–Lee–Liu equation in optical monomode fibres
  5. The problem of a hydrogen atom in a cavity: Oscillator representation solution versus analytic solution
  6. An analytical model for the Maxwell radiation field in an axially symmetric galaxy
  7. Utilization of updated version of heat flux model for the radiative flow of a non-Newtonian material under Joule heating: OHAM application
  8. Verification of the accommodative responses in viewing an on-axis analog reflection hologram
  9. Irreversibility as thermodynamic time
  10. A self-adaptive prescription dose optimization algorithm for radiotherapy
  11. Algebraic computational methods for solving three nonlinear vital models fractional in mathematical physics
  12. The diffusion mechanism of the application of intelligent manufacturing in SMEs model based on cellular automata
  13. Numerical analysis of free convection from a spinning cone with variable wall temperature and pressure work effect using MD-BSQLM
  14. Numerical simulation of hydrodynamic oscillation of side-by-side double-floating-system with a narrow gap in waves
  15. Closed-form solutions for the Schrödinger wave equation with non-solvable potentials: A perturbation approach
  16. Study of dynamic pressure on the packer for deep-water perforation
  17. Ultrafast dephasing in hydrogen-bonded pyridine–water mixtures
  18. Crystallization law of karst water in tunnel drainage system based on DBL theory
  19. Position-dependent finite symmetric mass harmonic like oscillator: Classical and quantum mechanical study
  20. Application of Fibonacci heap to fast marching method
  21. An analytical investigation of the mixed convective Casson fluid flow past a yawed cylinder with heat transfer analysis
  22. Considering the effect of optical attenuation on photon-enhanced thermionic emission converter of the practical structure
  23. Fractal calculation method of friction parameters: Surface morphology and load of galvanized sheet
  24. Charge identification of fragments with the emulsion spectrometer of the FOOT experiment
  25. Quantization of fractional harmonic oscillator using creation and annihilation operators
  26. Scaling law for velocity of domino toppling motion in curved paths
  27. Frequency synchronization detection method based on adaptive frequency standard tracking
  28. Application of common reflection surface (CRS) to velocity variation with azimuth (VVAz) inversion of the relatively narrow azimuth 3D seismic land data
  29. Study on the adaptability of binary flooding in a certain oil field
  30. CompVision: An open-source five-compartmental software for biokinetic simulations
  31. An electrically switchable wideband metamaterial absorber based on graphene at P band
  32. Effect of annealing temperature on the interface state density of n-ZnO nanorod/p-Si heterojunction diodes
  33. A facile fabrication of superhydrophobic and superoleophilic adsorption material 5A zeolite for oil–water separation with potential use in floating oil
  34. Shannon entropy for Feinberg–Horodecki equation and thermal properties of improved Wei potential model
  35. Hopf bifurcation analysis for liquid-filled Gyrostat chaotic system and design of a novel technique to control slosh in spacecrafts
  36. Optical properties of two-dimensional two-electron quantum dot in parabolic confinement
  37. Optical solitons via the collective variable method for the classical and perturbed Chen–Lee–Liu equations
  38. Stratified heat transfer of magneto-tangent hyperbolic bio-nanofluid flow with gyrotactic microorganisms: Keller-Box solution technique
  39. Analysis of the structure and properties of triangular composite light-screen targets
  40. Magnetic charged particles of optical spherical antiferromagnetic model with fractional system
  41. Study on acoustic radiation response characteristics of sound barriers
  42. The tribological properties of single-layer hybrid PTFE/Nomex fabric/phenolic resin composites underwater
  43. Research on maintenance spare parts requirement prediction based on LSTM recurrent neural network
  44. Quantum computing simulation of the hydrogen molecular ground-state energies with limited resources
  45. A DFT study on the molecular properties of synthetic ester under the electric field
  46. Construction of abundant novel analytical solutions of the space–time fractional nonlinear generalized equal width model via Riemann–Liouville derivative with application of mathematical methods
  47. Some common and dynamic properties of logarithmic Pareto distribution with applications
  48. Soliton structures in optical fiber communications with Kundu–Mukherjee–Naskar model
  49. Fractional modeling of COVID-19 epidemic model with harmonic mean type incidence rate
  50. Liquid metal-based metamaterial with high-temperature sensitivity: Design and computational study
  51. Biosynthesis and characterization of Saudi propolis-mediated silver nanoparticles and their biological properties
  52. New trigonometric B-spline approximation for numerical investigation of the regularized long-wave equation
  53. Modal characteristics of harmonic gear transmission flexspline based on orthogonal design method
  54. Revisiting the Reynolds-averaged Navier–Stokes equations
  55. Time-periodic pulse electroosmotic flow of Jeffreys fluids through a microannulus
  56. Exact wave solutions of the nonlinear Rosenau equation using an analytical method
  57. Computational examination of Jeffrey nanofluid through a stretchable surface employing Tiwari and Das model
  58. Numerical analysis of a single-mode microring resonator on a YAG-on-insulator
  59. Review Articles
  60. Double-layer coating using MHD flow of third-grade fluid with Hall current and heat source/sink
  61. Analysis of aeromagnetic filtering techniques in locating the primary target in sedimentary terrain: A review
  62. Rapid Communications
  63. Nonlinear fitting of multi-compartmental data using Hooke and Jeeves direct search method
  64. Effect of buried depth on thermal performance of a vertical U-tube underground heat exchanger
  65. Knocking characteristics of a high pressure direct injection natural gas engine operating in stratified combustion mode
  66. What dominates heat transfer performance of a double-pipe heat exchanger
  67. Special Issue on Future challenges of advanced computational modeling on nonlinear physical phenomena - Part II
  68. Lump, lump-one stripe, multiwave and breather solutions for the Hunter–Saxton equation
  69. New quantum integral inequalities for some new classes of generalized ψ-convex functions and their scope in physical systems
  70. Computational fluid dynamic simulations and heat transfer characteristic comparisons of various arc-baffled channels
  71. Gaussian radial basis functions method for linear and nonlinear convection–diffusion models in physical phenomena
  72. Investigation of interactional phenomena and multi wave solutions of the quantum hydrodynamic Zakharov–Kuznetsov model
  73. On the optical solutions to nonlinear Schrödinger equation with second-order spatiotemporal dispersion
  74. Analysis of couple stress fluid flow with variable viscosity using two homotopy-based methods
  75. Quantum estimates in two variable forms for Simpson-type inequalities considering generalized Ψ-convex functions with applications
  76. Series solution to fractional contact problem using Caputo’s derivative
  77. Solitary wave solutions of the ionic currents along microtubule dynamical equations via analytical mathematical method
  78. Thermo-viscoelastic orthotropic constraint cylindrical cavity with variable thermal properties heated by laser pulse via the MGT thermoelasticity model
  79. Theoretical and experimental clues to a flux of Doppler transformation energies during processes with energy conservation
  80. On solitons: Propagation of shallow water waves for the fifth-order KdV hierarchy integrable equation
  81. Special Issue on Transport phenomena and thermal analysis in micro/nano-scale structure surfaces - Part II
  82. Numerical study on heat transfer and flow characteristics of nanofluids in a circular tube with trapezoid ribs
  83. Experimental and numerical study of heat transfer and flow characteristics with different placement of the multi-deck display cabinet in supermarket
  84. Thermal-hydraulic performance prediction of two new heat exchangers using RBF based on different DOE
  85. Diesel engine waste heat recovery system comprehensive optimization based on system and heat exchanger simulation
  86. Load forecasting of refrigerated display cabinet based on CEEMD–IPSO–LSTM combined model
  87. Investigation on subcooled flow boiling heat transfer characteristics in ICE-like conditions
  88. Research on materials of solar selective absorption coating based on the first principle
  89. Experimental study on enhancement characteristics of steam/nitrogen condensation inside horizontal multi-start helical channels
  90. Special Issue on Novel Numerical and Analytical Techniques for Fractional Nonlinear Schrodinger Type - Part I
  91. Numerical exploration of thin film flow of MHD pseudo-plastic fluid in fractional space: Utilization of fractional calculus approach
  92. A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation
  93. Stable novel and accurate solitary wave solutions of an integrable equation: Qiao model
  94. Novel soliton solutions to the Atangana–Baleanu fractional system of equations for the ISALWs
  95. On the oscillation of nonlinear delay differential equations and their applications
  96. Abundant stable novel solutions of fractional-order epidemic model along with saturated treatment and disease transmission
  97. Fully Legendre spectral collocation technique for stochastic heat equations
  98. Special Issue on 5th International Conference on Mechanics, Mathematics and Applied Physics (2021)
  99. Residual service life of erbium-modified AM50 magnesium alloy under corrosion and stress environment
  100. Special Issue on Advanced Topics on the Modelling and Assessment of Complicated Physical Phenomena - Part I
  101. Diverse wave propagation in shallow water waves with the Kadomtsev–Petviashvili–Benjamin–Bona–Mahony and Benney–Luke integrable models
  102. Intensification of thermal stratification on dissipative chemically heating fluid with cross-diffusion and magnetic field over a wedge
Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/phys-2021-0031/html
Scroll to top button