Abstract
In this study, we propose a simple direct meshless scheme based on the Gaussian radial basis function for the one-dimensional linear and nonlinear convection–diffusion problems, which frequently occur in physical phenomena. This is fulfilled by constructing a simple ‘anisotropic’ space–time Gaussian radial basis function. According to the proposed scheme, there is no need to remove time-dependent variables during the whole solution process, which leads it to a really meshless method. The suggested meshless method is implemented to the challenging convection–diffusion problems in a direct way with ease. Numerical results show that the proposed meshless method is simple, accurate, stable, easy-to-program and efficient for both linear and nonlinear convection–diffusion equation with different values of Péclet number. To assess the accuracy absolute error, average absolute error and root-mean-square error are used.
1 Introduction
The convection–diffusion, advection–diffusion, or drift-diffusion equations have been playing a significant role in many engineering applications. The energy can be transformed inside a physical system due to the convection and diffusion processes to describe physical phenomena.
For a large variety of problems in every subjects, it is almost impossible to get the analytical solutions for changing in time and transport processes [23,24]. Numerical approximations are alternative to the analytical solutions for convection–diffusion equations. In literatures, there are several numerical techniques for solving the convection–diffusion equations [33,41]. These numerical techniques are based on the finite-difference approximations [25,32], integral transform methods [28,29], Monte Carlo simulation [4,5], variational iteration methods [6,7, 8,9,10], and meshless method using radial basis functions [11, 12,13,14, 15,16,17, 18,19,20].
The behavior of high-order time-stepping methods combined with mesh-free methods is studied for the transient convection–diffusion equation [31]. A Petrov–Galerkin method and Green’s functions are used to solve convection–diffusion problems [21]. A new approach to construct a stable RKPM method for convection-dominated problems is presented in ref. [30]. The space–time least-squares finite element methods are constructed for the advection–diffusion equation by using both linear shape functions and quadratic B-spline shape functions [22]. The particle transport method is developed for solving linear convection problems [44]. Several literatures focus on the investigation of different splines as interpolating function for solving one-dimensional advection–diffusion equations [34,37]. These literatures focus on the one-dimensional convection–diffusion–reaction equations with constant diffusion coefficient. Recently, a high-accuracy adaptive difference strategy is investigated by Zhu and Rui [47] on 1D convection–diffusion–reaction equation with convection item. It can explain the quenching phenomena of nonlinear singular degenerate problems. Pourgholi et al. [43] proposed a meshless method using radial basis functions method based on the finite-difference method to solve a nonlinear inverse convection–reaction–diffusion problem with an unknown source function. These numerical techniques are based on two-level finite difference approximations.
It is well-known that the radial basis function methods are attractive in numerical simulation due to their simple, flexible, and truly meshfree features. In this study, we propose a direct meshless method with one-level approximation, based on the radial basis functions, for the one-dimensional linear and nonlinear convection–diffusion problems. This is fulfilled by considering the time variable as a normal space variable. There is no need to remove the time-dependent variable during the whole solution process. Under this scheme, we can solve the convection–diffusion problems in a direct way.
The structure of this paper is organized as follows. Followed by Section 2, we introduce the formulation of the direct radial basis function (DMM) with space–time distance. Section 3 presents the methodology for convection–diffusion problems under initial conditions and boundary conditions. Section 4 examines several linear with different Péclet numbers and nonlinear problems. Several numerical examples are presented to validate the accuracy and stability of the proposed algorithm for one-dimensional linear and nonlinear convection–diffusion problems. Some conclusions are given in Section 5 with some additional remarks.
2 Formulation of the direct radial basis function
To describe the interaction between convection effects and diffusion transports, we can get the general mathematical formulation of convection–diffusion–reaction problem
where
and boundary conditions
For traditional numerical techniques, equation (1) should be discretized using the finite difference method or integral transform method, which leads to a steady-state equation. Then, the other numerical techniques can be used to get the numerical solutions. This provides a two-level procedure. To obtain a one-level procedure, we propose a direct collocation scheme by using the Gaussian radial basis function (GRBF).
For direct RBF-based collocation methods, the approximate solution can be written as a linear combination of RBFs for the approximation space under consideration for 2D or more higher-dimensional problems. We take the following GRBF for 2D problems as an example ref. [27]
where
However, there is only one space variable
This can be easily extended to two-dimensional or high-dimensional cases.

Configuration of the space–time coordinate.
In the literature, there is a product model of a space–time radial basis function [42], which was introduced by Myers et al. [39,40],
The other types of definitions of radial or non radial space–time radial basis functions can be found in ref. [35,36].
3 Methodology for DMM
Based on the definition of space–time radial basis functions, the above-mentioned equations (1)–(3) can be solved directly in a one-level approximation. Thus, the approximate solution of the function
To seek for the unknown coefficients
with
where
is
is
4 Numerical experiments
To compare with the previous literatures, we consider using the absolute error, root-mean-square error (RMSE) [45,46], and average absolute error (AAE) defined as follows:
where
In the first two examples, we consider two linear cases with governing equation
4.1 Linear example 1
This example considers the following initial condition
and boundary conditions
The corresponding analytical solution is given by
and
For fair comparison, the dimensionless Péclet number is defined as
Numerical results with
t |
|
|
|
|
|
AAE | |
---|---|---|---|---|---|---|---|
0.1 | TPS | 0.0834 | 0.0451 | 0.0244 | 0.0132 | 0.0069 | 0.0000 |
FD | 0.0836 | 0.0454 | 0.0244 | 0.0133 | 0.0073 | 0.0001 | |
CS | 0.0848 | 0.0452 | 0.0244 | 0.0132 | 0.0077 | 0.0003 | |
DMM | 0.0833 | 0.0451 | 0.0244 | 0.0132 | 0.0072 |
|
|
0.5 | TPS | 0.1376 | 0.0744 | 0.0402 | 0.0216 | 0.0113 | 0.0001 |
FD | 0.1384 | 0.0757 | 0.0413 | 0.0225 | 0.0123 | 0.0008 | |
CS | 0.1407 | 0.0757 | 0.0407 | 0.0223 | 0.0131 | 0.0010 | |
DMM | 0.1374 | 0.0744 | 0.0402 | 0.0218 | 0.0118 |
|
|
1 | TPS | 0.2570 | 0.1390 | 0.0751 | 0.0404 | 0.0211 | 0.0002 |
FD | 0.2587 | 0.1420 | 0.0778 | 0.0425 | 0.0232 | 0.0018 | |
CS | 0.2631 | 0.1420 | 0.0768 | 0.0421 | 0.0246 | 0.0023 | |
DMM | 0.2568 | 0.1389 | 0.0752 | 0.0407 | 0.0220 |
|
Numerical results with
t |
|
|
|
|
|
AAE | |
---|---|---|---|---|---|---|---|
0.1 | TPS | 0.1001 | 0.0782 | 0.0611 | 0.0478 | 0.0373 | 0.0000 |
FD | 0.1006 | 0.0788 | 0.0616 | 0.0481 | 0.0469 | 0.0013 | |
CS | 0.1005 | 0.0782 | 0.0611 | 0.0477 | 0.0372 | 0.0001 | |
DMM | 0.1000 | 0.0779 | 0.0607 | 0.0473 | 0.0368 |
|
|
0.5 | TPS | 0.1650 | 0.1289 | 0.1007 | 0.0787 | 0.0615 | 0.0001 |
FD | 0.1663 | 0.1316 | 0.1038 | 0.0817 | 0.0858 | 0.0042 | |
CS | 0.1661 | 0.1297 | 0.1011 | 0.0787 | 0.0613 | 0.0004 | |
DMM | 0.1649 | 0.1285 | 0.1001 | 0.0780 | 0.0607 |
|
|
1 | TPS | 0.3083 | 0.2409 | 0.1882 | 0.1470 | 0.1149 | 0.0001 |
FD | 0.3106 | 0.2460 | 0.1948 | 0.1545 | 0.1626 | 0.0087 | |
CS | 0.3102 | 0.2424 | 0.1893 | 0.1478 | 0.1152 | 0.0009 | |
DMM | 0.3081 | 0.2100 | 0.1870 | 0.1457 | 0.1135 |
|
As is known to all, when the Péclet number is low, the diffusion term dominates. In order to compare the DMM with the cubic
Average errors for DMM with different Péclet numbers
Pe |
|
|
|
|
|
---|---|---|---|---|---|
FD | 1/16 |
|
|
|
|
1/32 |
|
|
|
|
|
1/64 |
|
|
|
|
|
1/128 |
|
|
|
|
|
DMM | 1/16 |
|
|
|
|
4.2 Linear example 2
Once the Péclet number increases, i.e., the convection term completely dominates over the diffusion term. In order to investigate problems with the far higher Péclet numbers, we compare the DMM results with the compact finite-difference approximation of fourth-order and the cubic
We consider the convection–diffusion equation (1) with the following initial condition:
and boundary conditions
The analytical solution is given by
For a fair comparison, we use the definition of dimensionless Péclet number
Numerical results with different Péclet numbers
Pe | DMM | FD | DMM | FD | DMM | FD |
---|---|---|---|---|---|---|
x | 1,000 | 1,000 | 10,000 | 10,000 | 20,000 | 20,000 |
0.25 |
|
|
|
|
|
|
0.50 |
|
|
|
|
|
|
0.75 |
|
|
|
|
|
|
1.00 |
|
|
0 |
|
|
|
1.25 |
|
|
|
|
|
|
1.50 |
|
|
|
|
|
|
1.75 |
|
|
|
|
|
|
4.3 Nonlinear example 3
In this example, we consider a typical nonlinear convection–diffusion equation
with the exact solution
to measure the performance of the DMM by comparing with the method in ref. [47]. The source term
We note that for smaller values of
Numerical results for
|
DMM | Uniform | Non-uniform |
---|---|---|---|
8 |
|
— | — |
16 |
|
— | — |
32 |
|
— | — |
64 |
|
|
|
128 | — |
|
|
256 | — |
|
|
For
5 Conclusions
In this study, a new direct meshless scheme is proposed for the one-dimensional linear and nonlinear convection–diffusion problems. The present numerical procedure, in which the time variable is considered as normal space variable, is based on the Gaussian radial basis function. There is no need to remove time-dependent variable during the whole solution process. Numerical results for several typical examples show that the proposed method is better than some other numerical methods given in the recent literature in terms of solution accuracy, stability and efficiency for the linear convection–diffusion equation with different values of Péclet number. These results lead us that the proposed method can successfully be used to nonlinear problems with accurate numerical results.
Acknowledgments
This work was supported by the Natural Science Foundation of Anhui Province (Project No. 1908085QA09) and the University Natural Science Research Project of Anhui Province (Project No. KJ2019A0591 & KJ2020B06).
-
Conflict of interest: The authors declare that there is no conflict of interests regarding the publication of this paper.
-
Data availability statement: The data used to support the findings of this study are available from the corresponding author upon request.
References
[1] Boztosun I , Charafi A , Boztosun D . On the numerical solution of linear advection–diffusion equation using compactly supported radial basis functions. In: Griebel M , Schweitzer MA (eds) Meshfree methods for partial differential equations. Lecture notesin computational science and engineering, vol 26. Berlin, Heidelberg: Springer; 2003. 10.1007/978-3-642-56103-0_5Search in Google Scholar
[2] Boztosun I , Charafi A , Zerroukat M , Djidjeli K . Thin-plate spline radial basis function scheme for advection–diffusion problems. Electron J Bound Elements. 2002;BETEQ 2001:267–82. Search in Google Scholar
[3] Chen W , Hong YX , Lin J . The sample solution approach for determination of the optimal shape parameter in the Multiquadric function of the Kansa method. Comput Math Appl. 2018;75:2942–54. 10.1016/j.camwa.2018.01.023Search in Google Scholar
[4] Fulger D , Scalas E , Germano G . Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space–time fractional diffusion equation. Phys Rev E. 2008;77(2):021122. 10.1103/PhysRevE.77.021122Search in Google Scholar PubMed
[5] Koley U , Risebro NH , Schwab C , Weber F . A multilevel Monte Carlo finite difference method for random scalar degenerate convection–diffusion equations. J Hyperbolic Differ Equ. 2017;14(3):415–54. 10.1142/S021989161750014XSearch in Google Scholar
[6] Ahmad H , Khan TA , Ahmad I , Stanimirović PS , Chu Y-M . A new analyzing technique for nonlinear time fractional Cauchy reaction-diffusion model equations. Results Phys. 2020;103462. 10.1016/j.rinp.2020.103462. Search in Google Scholar
[7] Ahmad H , Akgül A , Khan TA , Stanimirović PS , Chu Y-M . New perspective on the conventional solutions of the nonlinear time-fractional partial differential equations. Complexity. 2020;2020:8829017. 10.1155/2020/8829017. Search in Google Scholar
[8] Ahmad H , Khan TA , Stanimirović PS , Chu Y-M , Ahmad I . Modified variational iteration algorithm-II: convergence and applications to diffusion models. Complexity. 2020;2020:8841718. 10.1155/2020/8841718. Search in Google Scholar
[9] Ahmad H , Khan TA , Stanimirovic PS , Ahmad I Modified variational iteration technique for the numerical solution of fifth order KdV type equations. J Appl Comput Mech. 2020;6(SI):1220–7. Search in Google Scholar
[10] Ahmad H , Seadawy AR , Khan TA , Thounthong P . Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations. J Taibah Univ Sci. 2020;14(1):346–58. 10.1080/16583655.2020.1741943Search in Google Scholar
[11] Ahmad I , Ahmad H , Inc M , Yao S-W , Almohsen B . Application of local meshless method for the solution of two term time fractional-order multi-dimensional PDE arising in heat and mass transfer. Thermal Sci. 2020;24:95–105. 10.2298/TSCI20S1095A. Search in Google Scholar
[12] Shakeel M , Hussain I , Ahmad H , Ahmad I , Thounthong P , Zhang Y-F . Meshless technique for the solution of time-fractional partial differential equations having real-world applications. J Funct Spaces. 2020;8898309. 10.1155/2020/8898309. Search in Google Scholar
[13] Li JF , Ahmad I , Ahmad H , Shah D , Chu YM , Thounthong P , Ayaz M . Numerical solution of two-term time-fractional PDE models arising in mathematical physics using local meshless method. Open Phys. 2020;18(1):1063–72. 10.1515/phys-2020-0222Search in Google Scholar
[14] Khan MN , Ahmad I , Akgül A , Ahmad H , Thounthong P . Numerical solution of time-fractional coupled Korteweg-de Vries and Klein-Gordon equations by local meshless method. Pramana-J Phys. 2021;95(1):1–13. 10.1007/s12043-020-02025-5Search in Google Scholar
[15] Ahmad I , Siraj-ul-Islam M , Zaman S . Local meshless differential quadrature collocation method for time-fractional PDEs. Discrete & Continuous Dynamical Systems-S. 2020;13(10):2641. 10.3934/dcdss.2020223Search in Google Scholar
[16] Inc M , Khan MN , Ahmad I , Yao SW , Ahmad H , Thounthong P . Analysing time-fractional exotic options via efficient local meshless method. Results Phys. 2020;19:103385. 10.1016/j.rinp.2020.103385. Search in Google Scholar
[17] Ahmad I , Ahmad H , Thounthong P , Chu YM , Cesarano C . Solution of multi-term time-fractional PDE models arising in mathematical biology and physics by local meshless method. Symmetry. 2020;12(7):1195. 10.3390/sym12071195Search in Google Scholar
[18] Ahmad I , Khan MN , Inc M , Ahmad H , Nisar KS . Numerical simulation of simulate an anomalous solute transport model via local meshless method. Alex Eng J. 2020;59(4):2827–38 10.1016/j.aej.2020.06.029Search in Google Scholar
[19] Khan MN , Ahmad I , Ahmad H . A radial basis function collocation method for space-dependent inverse heat problems. J Appl Comput Mech. 2020;6 (SI):1187–99. Search in Google Scholar
[20] Srivastava MH , Ahmad H , Ahmad I , Thounthong P , Khan NM . Numerical simulation of three-dimensional fractional-order convection–diffusion PDEs by a local meshless method. Therm Sci. 2020;210. 10.2298/TSCI200225210S Search in Google Scholar
[21] Cyron CJ , Nissen K , Gravemeier V , Wolfgang AW . Stable meshfree methods in fluid mechanics based on Greenas functions. Comput Mech. 2010;46:287–300. 10.1007/s00466-009-0405-4Search in Google Scholar
[22] Dag I , Irk D , Tombul M . Least-squares finite element method for the advection–diffusion equation. Appl Math Comput. 2006;173:554–65. 10.1016/j.amc.2005.04.054Search in Google Scholar
[23] Wang FZ , Hou ER . A direct meshless method for solving two-dimensional second-order hyperbolic telegraph equations. J Math. 2020;2020:8832197. 10.1155/2020/8832197Search in Google Scholar
[24] Dehghan M . Numerical solution of the three-dimensional advection–diffusion equation. Appl Math Comput. 2004;150:5–19. 10.1016/S0096-3003(03)00193-0Search in Google Scholar
[25] Ding HF , Zhang YX . A new difference scheme with high accuracy and absolute stability for solving convection–diffusion equations. J Comput Appl Math. 2009;230:600–6. 10.1016/j.cam.2008.12.015Search in Google Scholar
[26] Fasshauer GE , Zhang JG . On choosing optimal shape parameters for RBF approximation. Numer Algorithms. 2007;45:345–68. 10.1007/s11075-007-9072-8Search in Google Scholar
[27] Fornberg B , Larsson E , Flyer N . Stable computations with Gaussian radial basis functions. SIAM J Sci Comput. 2011;33:869–92. 10.1137/09076756XSearch in Google Scholar
[28] Glushkov EV , Glushkova NV , Chen CS . Semi-analytical solution to heat transfer problems using fourier transform technique, radial basis functions, and the method of fundamental solutions. Numer Heat Tr B. 2007;52:409–27. 10.1080/10407790701443859Search in Google Scholar
[29] Gu Y , He X , Chen W , Zhang C . Analysis of three-dimensional anisotropic heat conduction problems on thin domains using an advanced boundary element method. Comput Math Appl 2018;75:33–44. 10.1016/j.camwa.2017.08.030Search in Google Scholar
[30] Hillman M , Chen JS . An implicit gradient meshfree formulation for convection-dominated problems. In: Bazilevs Y , Takizawa K (eds), Advances in computational fluid-structure interaction and flow simulation. Birkhäuser, Cham: Modeling and Simulation in Science, Engineering and Technology; 2016. 10.1007/978-3-319-40827-9_3Search in Google Scholar
[31] Huerta A , Fernandez-Mendez S . Time accurate consistently stabilized mesh-free methods for convection dominated problems. Int J Numer Methods Eng. 2001;50:1–18. 10.1002/nme.602Search in Google Scholar
[32] Karahan H . A third-order upwind scheme for the advection diffusion equation using spreadsheets. Adv Eng Softw. 2007;38:688–97. 10.1016/j.advengsoft.2006.10.006Search in Google Scholar
[33] Karahan H . Unconditional stable explicit finite difference technique for the advection–diffusion equation using spreadsheets. Adv Eng Softw. 2007;8:80–6. 10.1016/j.advengsoft.2006.08.001Search in Google Scholar
[34] Korkmaz A , Dag I . Cubic B-spline differential quadrature methods for the advection–diffusion equation. Int J Numer Methods H. 2012;22:1021–36. 10.1108/09615531211271844Search in Google Scholar
[35] Ku CY , Liu CY , Xiao JE , Chen MR . Solving backward heat conduction problems using a novel space–time radial polynomial basis function collocation method. Appl Sci. 2020;10:3215. 10.3390/app10093215Search in Google Scholar
[36] Liu CY , Ku CT , Xiao JE , Yeih WC . A novel spacetime collocation meshless method for solving two-dimensional backward heat conduction problems. CMES-Comp Model Eng. 2019;118:229–52. 10.31614/cmes.2019.04376Search in Google Scholar
[37] Mohammadi R . Exponential B-spline solution of convection–diffusion equations. Appl Math. 2013;4:933–44. 10.4236/am.2013.46129Search in Google Scholar
[38] Mohebbi A , Dehghan M . High-order compact solution of the one-dimensional heat and advection–diffusion equations. Appl Math Model. 2010;34:3071–84. 10.1016/j.apm.2010.01.013Search in Google Scholar
[39] Myers DE . Anisotropic radial basis functions. Int J Pure Appl Math. 2008;42:197–203. Search in Google Scholar
[40] Myers DE , Iaco SD , Posa D , Cesare LD . Space-time radial basis functions. Comput Math Appl. 2002;43:539–49. 10.1016/S0898-1221(01)00304-2Search in Google Scholar
[41] Nazir T , Abbas M , Ismail AIM , Majid AA , Rashid A . The numerical solution of advection–diffusion problems using new cubic trigonometric B-splines approach. Appl Math Model. 2016;40:4586–611. 10.1016/j.apm.2015.11.041Search in Google Scholar
[42] Parand K , Rad JA . Kansa method for the solution of a parabolic equation with an unknown space wise-dependent coefficient subject to an extra measurement. Comput Phys Commun. 2013;184:582–95. 10.1016/j.cpc.2012.10.012Search in Google Scholar
[43] Pourgholi R , Saeedi A , Hosseini A . Determination of nonlinear source term in an inverse convection–reaction–diffusion problem using radial basis functions method. Iran J Sci Technol A. 2019;43:2239–52. 10.1007/s40995-017-0379-6Search in Google Scholar
[44] Smolianski A , Shipilova O and Haario H . A fast high-resolution algorithm for linear convection problems: particle transport method. Int J Numer Methods Eng. 2007;70:655–84. 10.1002/nme.1899Search in Google Scholar
[45] Wang FZ , Chen W , Jiang XR . Investigation of regularization techniques for boundary knot method. Commun Numer Meth En. 2010;26:1868–77. 10.1002/cnm.1275Search in Google Scholar
[46] Wang FZ , Chen W , Ling L . Combinations of the method of fundamental solutions for general inverse source identification problems. Appl Math Comput. 2012;219:1173–82. 10.1016/j.amc.2012.07.027Search in Google Scholar
[47] Zhu XL , Rui HX . High-order compact difference scheme of 1D nonlinear degenerate convection–reaction–diffusion equation with adaptive algorithm. Numer Heat Tr B-Fund. 2019;75:43–66.10.1080/10407790.2019.1591858Search in Google Scholar
© 2021 Fuzhang Wang et al., published by De Gruyter
This work is licensed under the Creative Commons Attribution 4.0 International License.
Articles in the same Issue
- Regular Articles
- Circular Rydberg states of helium atoms or helium-like ions in a high-frequency laser field
- Closed-form solutions and conservation laws of a generalized Hirota–Satsuma coupled KdV system of fluid mechanics
- W-Chirped optical solitons and modulation instability analysis of Chen–Lee–Liu equation in optical monomode fibres
- The problem of a hydrogen atom in a cavity: Oscillator representation solution versus analytic solution
- An analytical model for the Maxwell radiation field in an axially symmetric galaxy
- Utilization of updated version of heat flux model for the radiative flow of a non-Newtonian material under Joule heating: OHAM application
- Verification of the accommodative responses in viewing an on-axis analog reflection hologram
- Irreversibility as thermodynamic time
- A self-adaptive prescription dose optimization algorithm for radiotherapy
- Algebraic computational methods for solving three nonlinear vital models fractional in mathematical physics
- The diffusion mechanism of the application of intelligent manufacturing in SMEs model based on cellular automata
- Numerical analysis of free convection from a spinning cone with variable wall temperature and pressure work effect using MD-BSQLM
- Numerical simulation of hydrodynamic oscillation of side-by-side double-floating-system with a narrow gap in waves
- Closed-form solutions for the Schrödinger wave equation with non-solvable potentials: A perturbation approach
- Study of dynamic pressure on the packer for deep-water perforation
- Ultrafast dephasing in hydrogen-bonded pyridine–water mixtures
- Crystallization law of karst water in tunnel drainage system based on DBL theory
- Position-dependent finite symmetric mass harmonic like oscillator: Classical and quantum mechanical study
- Application of Fibonacci heap to fast marching method
- An analytical investigation of the mixed convective Casson fluid flow past a yawed cylinder with heat transfer analysis
- Considering the effect of optical attenuation on photon-enhanced thermionic emission converter of the practical structure
- Fractal calculation method of friction parameters: Surface morphology and load of galvanized sheet
- Charge identification of fragments with the emulsion spectrometer of the FOOT experiment
- Quantization of fractional harmonic oscillator using creation and annihilation operators
- Scaling law for velocity of domino toppling motion in curved paths
- Frequency synchronization detection method based on adaptive frequency standard tracking
- Application of common reflection surface (CRS) to velocity variation with azimuth (VVAz) inversion of the relatively narrow azimuth 3D seismic land data
- Study on the adaptability of binary flooding in a certain oil field
- CompVision: An open-source five-compartmental software for biokinetic simulations
- An electrically switchable wideband metamaterial absorber based on graphene at P band
- Effect of annealing temperature on the interface state density of n-ZnO nanorod/p-Si heterojunction diodes
- A facile fabrication of superhydrophobic and superoleophilic adsorption material 5A zeolite for oil–water separation with potential use in floating oil
- Shannon entropy for Feinberg–Horodecki equation and thermal properties of improved Wei potential model
- Hopf bifurcation analysis for liquid-filled Gyrostat chaotic system and design of a novel technique to control slosh in spacecrafts
- Optical properties of two-dimensional two-electron quantum dot in parabolic confinement
- Optical solitons via the collective variable method for the classical and perturbed Chen–Lee–Liu equations
- Stratified heat transfer of magneto-tangent hyperbolic bio-nanofluid flow with gyrotactic microorganisms: Keller-Box solution technique
- Analysis of the structure and properties of triangular composite light-screen targets
- Magnetic charged particles of optical spherical antiferromagnetic model with fractional system
- Study on acoustic radiation response characteristics of sound barriers
- The tribological properties of single-layer hybrid PTFE/Nomex fabric/phenolic resin composites underwater
- Research on maintenance spare parts requirement prediction based on LSTM recurrent neural network
- Quantum computing simulation of the hydrogen molecular ground-state energies with limited resources
- A DFT study on the molecular properties of synthetic ester under the electric field
- Construction of abundant novel analytical solutions of the space–time fractional nonlinear generalized equal width model via Riemann–Liouville derivative with application of mathematical methods
- Some common and dynamic properties of logarithmic Pareto distribution with applications
- Soliton structures in optical fiber communications with Kundu–Mukherjee–Naskar model
- Fractional modeling of COVID-19 epidemic model with harmonic mean type incidence rate
- Liquid metal-based metamaterial with high-temperature sensitivity: Design and computational study
- Biosynthesis and characterization of Saudi propolis-mediated silver nanoparticles and their biological properties
- New trigonometric B-spline approximation for numerical investigation of the regularized long-wave equation
- Modal characteristics of harmonic gear transmission flexspline based on orthogonal design method
- Revisiting the Reynolds-averaged Navier–Stokes equations
- Time-periodic pulse electroosmotic flow of Jeffreys fluids through a microannulus
- Exact wave solutions of the nonlinear Rosenau equation using an analytical method
- Computational examination of Jeffrey nanofluid through a stretchable surface employing Tiwari and Das model
- Numerical analysis of a single-mode microring resonator on a YAG-on-insulator
- Review Articles
- Double-layer coating using MHD flow of third-grade fluid with Hall current and heat source/sink
- Analysis of aeromagnetic filtering techniques in locating the primary target in sedimentary terrain: A review
- Rapid Communications
- Nonlinear fitting of multi-compartmental data using Hooke and Jeeves direct search method
- Effect of buried depth on thermal performance of a vertical U-tube underground heat exchanger
- Knocking characteristics of a high pressure direct injection natural gas engine operating in stratified combustion mode
- What dominates heat transfer performance of a double-pipe heat exchanger
- Special Issue on Future challenges of advanced computational modeling on nonlinear physical phenomena - Part II
- Lump, lump-one stripe, multiwave and breather solutions for the Hunter–Saxton equation
- New quantum integral inequalities for some new classes of generalized ψ-convex functions and their scope in physical systems
- Computational fluid dynamic simulations and heat transfer characteristic comparisons of various arc-baffled channels
- Gaussian radial basis functions method for linear and nonlinear convection–diffusion models in physical phenomena
- Investigation of interactional phenomena and multi wave solutions of the quantum hydrodynamic Zakharov–Kuznetsov model
- On the optical solutions to nonlinear Schrödinger equation with second-order spatiotemporal dispersion
- Analysis of couple stress fluid flow with variable viscosity using two homotopy-based methods
- Quantum estimates in two variable forms for Simpson-type inequalities considering generalized Ψ-convex functions with applications
- Series solution to fractional contact problem using Caputo’s derivative
- Solitary wave solutions of the ionic currents along microtubule dynamical equations via analytical mathematical method
- Thermo-viscoelastic orthotropic constraint cylindrical cavity with variable thermal properties heated by laser pulse via the MGT thermoelasticity model
- Theoretical and experimental clues to a flux of Doppler transformation energies during processes with energy conservation
- On solitons: Propagation of shallow water waves for the fifth-order KdV hierarchy integrable equation
- Special Issue on Transport phenomena and thermal analysis in micro/nano-scale structure surfaces - Part II
- Numerical study on heat transfer and flow characteristics of nanofluids in a circular tube with trapezoid ribs
- Experimental and numerical study of heat transfer and flow characteristics with different placement of the multi-deck display cabinet in supermarket
- Thermal-hydraulic performance prediction of two new heat exchangers using RBF based on different DOE
- Diesel engine waste heat recovery system comprehensive optimization based on system and heat exchanger simulation
- Load forecasting of refrigerated display cabinet based on CEEMD–IPSO–LSTM combined model
- Investigation on subcooled flow boiling heat transfer characteristics in ICE-like conditions
- Research on materials of solar selective absorption coating based on the first principle
- Experimental study on enhancement characteristics of steam/nitrogen condensation inside horizontal multi-start helical channels
- Special Issue on Novel Numerical and Analytical Techniques for Fractional Nonlinear Schrodinger Type - Part I
- Numerical exploration of thin film flow of MHD pseudo-plastic fluid in fractional space: Utilization of fractional calculus approach
- A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation
- Stable novel and accurate solitary wave solutions of an integrable equation: Qiao model
- Novel soliton solutions to the Atangana–Baleanu fractional system of equations for the ISALWs
- On the oscillation of nonlinear delay differential equations and their applications
- Abundant stable novel solutions of fractional-order epidemic model along with saturated treatment and disease transmission
- Fully Legendre spectral collocation technique for stochastic heat equations
- Special Issue on 5th International Conference on Mechanics, Mathematics and Applied Physics (2021)
- Residual service life of erbium-modified AM50 magnesium alloy under corrosion and stress environment
- Special Issue on Advanced Topics on the Modelling and Assessment of Complicated Physical Phenomena - Part I
- Diverse wave propagation in shallow water waves with the Kadomtsev–Petviashvili–Benjamin–Bona–Mahony and Benney–Luke integrable models
- Intensification of thermal stratification on dissipative chemically heating fluid with cross-diffusion and magnetic field over a wedge
Articles in the same Issue
- Regular Articles
- Circular Rydberg states of helium atoms or helium-like ions in a high-frequency laser field
- Closed-form solutions and conservation laws of a generalized Hirota–Satsuma coupled KdV system of fluid mechanics
- W-Chirped optical solitons and modulation instability analysis of Chen–Lee–Liu equation in optical monomode fibres
- The problem of a hydrogen atom in a cavity: Oscillator representation solution versus analytic solution
- An analytical model for the Maxwell radiation field in an axially symmetric galaxy
- Utilization of updated version of heat flux model for the radiative flow of a non-Newtonian material under Joule heating: OHAM application
- Verification of the accommodative responses in viewing an on-axis analog reflection hologram
- Irreversibility as thermodynamic time
- A self-adaptive prescription dose optimization algorithm for radiotherapy
- Algebraic computational methods for solving three nonlinear vital models fractional in mathematical physics
- The diffusion mechanism of the application of intelligent manufacturing in SMEs model based on cellular automata
- Numerical analysis of free convection from a spinning cone with variable wall temperature and pressure work effect using MD-BSQLM
- Numerical simulation of hydrodynamic oscillation of side-by-side double-floating-system with a narrow gap in waves
- Closed-form solutions for the Schrödinger wave equation with non-solvable potentials: A perturbation approach
- Study of dynamic pressure on the packer for deep-water perforation
- Ultrafast dephasing in hydrogen-bonded pyridine–water mixtures
- Crystallization law of karst water in tunnel drainage system based on DBL theory
- Position-dependent finite symmetric mass harmonic like oscillator: Classical and quantum mechanical study
- Application of Fibonacci heap to fast marching method
- An analytical investigation of the mixed convective Casson fluid flow past a yawed cylinder with heat transfer analysis
- Considering the effect of optical attenuation on photon-enhanced thermionic emission converter of the practical structure
- Fractal calculation method of friction parameters: Surface morphology and load of galvanized sheet
- Charge identification of fragments with the emulsion spectrometer of the FOOT experiment
- Quantization of fractional harmonic oscillator using creation and annihilation operators
- Scaling law for velocity of domino toppling motion in curved paths
- Frequency synchronization detection method based on adaptive frequency standard tracking
- Application of common reflection surface (CRS) to velocity variation with azimuth (VVAz) inversion of the relatively narrow azimuth 3D seismic land data
- Study on the adaptability of binary flooding in a certain oil field
- CompVision: An open-source five-compartmental software for biokinetic simulations
- An electrically switchable wideband metamaterial absorber based on graphene at P band
- Effect of annealing temperature on the interface state density of n-ZnO nanorod/p-Si heterojunction diodes
- A facile fabrication of superhydrophobic and superoleophilic adsorption material 5A zeolite for oil–water separation with potential use in floating oil
- Shannon entropy for Feinberg–Horodecki equation and thermal properties of improved Wei potential model
- Hopf bifurcation analysis for liquid-filled Gyrostat chaotic system and design of a novel technique to control slosh in spacecrafts
- Optical properties of two-dimensional two-electron quantum dot in parabolic confinement
- Optical solitons via the collective variable method for the classical and perturbed Chen–Lee–Liu equations
- Stratified heat transfer of magneto-tangent hyperbolic bio-nanofluid flow with gyrotactic microorganisms: Keller-Box solution technique
- Analysis of the structure and properties of triangular composite light-screen targets
- Magnetic charged particles of optical spherical antiferromagnetic model with fractional system
- Study on acoustic radiation response characteristics of sound barriers
- The tribological properties of single-layer hybrid PTFE/Nomex fabric/phenolic resin composites underwater
- Research on maintenance spare parts requirement prediction based on LSTM recurrent neural network
- Quantum computing simulation of the hydrogen molecular ground-state energies with limited resources
- A DFT study on the molecular properties of synthetic ester under the electric field
- Construction of abundant novel analytical solutions of the space–time fractional nonlinear generalized equal width model via Riemann–Liouville derivative with application of mathematical methods
- Some common and dynamic properties of logarithmic Pareto distribution with applications
- Soliton structures in optical fiber communications with Kundu–Mukherjee–Naskar model
- Fractional modeling of COVID-19 epidemic model with harmonic mean type incidence rate
- Liquid metal-based metamaterial with high-temperature sensitivity: Design and computational study
- Biosynthesis and characterization of Saudi propolis-mediated silver nanoparticles and their biological properties
- New trigonometric B-spline approximation for numerical investigation of the regularized long-wave equation
- Modal characteristics of harmonic gear transmission flexspline based on orthogonal design method
- Revisiting the Reynolds-averaged Navier–Stokes equations
- Time-periodic pulse electroosmotic flow of Jeffreys fluids through a microannulus
- Exact wave solutions of the nonlinear Rosenau equation using an analytical method
- Computational examination of Jeffrey nanofluid through a stretchable surface employing Tiwari and Das model
- Numerical analysis of a single-mode microring resonator on a YAG-on-insulator
- Review Articles
- Double-layer coating using MHD flow of third-grade fluid with Hall current and heat source/sink
- Analysis of aeromagnetic filtering techniques in locating the primary target in sedimentary terrain: A review
- Rapid Communications
- Nonlinear fitting of multi-compartmental data using Hooke and Jeeves direct search method
- Effect of buried depth on thermal performance of a vertical U-tube underground heat exchanger
- Knocking characteristics of a high pressure direct injection natural gas engine operating in stratified combustion mode
- What dominates heat transfer performance of a double-pipe heat exchanger
- Special Issue on Future challenges of advanced computational modeling on nonlinear physical phenomena - Part II
- Lump, lump-one stripe, multiwave and breather solutions for the Hunter–Saxton equation
- New quantum integral inequalities for some new classes of generalized ψ-convex functions and their scope in physical systems
- Computational fluid dynamic simulations and heat transfer characteristic comparisons of various arc-baffled channels
- Gaussian radial basis functions method for linear and nonlinear convection–diffusion models in physical phenomena
- Investigation of interactional phenomena and multi wave solutions of the quantum hydrodynamic Zakharov–Kuznetsov model
- On the optical solutions to nonlinear Schrödinger equation with second-order spatiotemporal dispersion
- Analysis of couple stress fluid flow with variable viscosity using two homotopy-based methods
- Quantum estimates in two variable forms for Simpson-type inequalities considering generalized Ψ-convex functions with applications
- Series solution to fractional contact problem using Caputo’s derivative
- Solitary wave solutions of the ionic currents along microtubule dynamical equations via analytical mathematical method
- Thermo-viscoelastic orthotropic constraint cylindrical cavity with variable thermal properties heated by laser pulse via the MGT thermoelasticity model
- Theoretical and experimental clues to a flux of Doppler transformation energies during processes with energy conservation
- On solitons: Propagation of shallow water waves for the fifth-order KdV hierarchy integrable equation
- Special Issue on Transport phenomena and thermal analysis in micro/nano-scale structure surfaces - Part II
- Numerical study on heat transfer and flow characteristics of nanofluids in a circular tube with trapezoid ribs
- Experimental and numerical study of heat transfer and flow characteristics with different placement of the multi-deck display cabinet in supermarket
- Thermal-hydraulic performance prediction of two new heat exchangers using RBF based on different DOE
- Diesel engine waste heat recovery system comprehensive optimization based on system and heat exchanger simulation
- Load forecasting of refrigerated display cabinet based on CEEMD–IPSO–LSTM combined model
- Investigation on subcooled flow boiling heat transfer characteristics in ICE-like conditions
- Research on materials of solar selective absorption coating based on the first principle
- Experimental study on enhancement characteristics of steam/nitrogen condensation inside horizontal multi-start helical channels
- Special Issue on Novel Numerical and Analytical Techniques for Fractional Nonlinear Schrodinger Type - Part I
- Numerical exploration of thin film flow of MHD pseudo-plastic fluid in fractional space: Utilization of fractional calculus approach
- A Haar wavelet-based scheme for finding the control parameter in nonlinear inverse heat conduction equation
- Stable novel and accurate solitary wave solutions of an integrable equation: Qiao model
- Novel soliton solutions to the Atangana–Baleanu fractional system of equations for the ISALWs
- On the oscillation of nonlinear delay differential equations and their applications
- Abundant stable novel solutions of fractional-order epidemic model along with saturated treatment and disease transmission
- Fully Legendre spectral collocation technique for stochastic heat equations
- Special Issue on 5th International Conference on Mechanics, Mathematics and Applied Physics (2021)
- Residual service life of erbium-modified AM50 magnesium alloy under corrosion and stress environment
- Special Issue on Advanced Topics on the Modelling and Assessment of Complicated Physical Phenomena - Part I
- Diverse wave propagation in shallow water waves with the Kadomtsev–Petviashvili–Benjamin–Bona–Mahony and Benney–Luke integrable models
- Intensification of thermal stratification on dissipative chemically heating fluid with cross-diffusion and magnetic field over a wedge