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Abstract: A comprehensive study of the multiscale homo-
genized thermal conductivities and thermomechanical
properties is conducted towards the filament groups of
European Advanced Superconductors (EAS) strand via
the recently proposed Multiphysics Locally Exact Homo-
genization Theory (LEHT). The filament groups have a
distinctive two-level hierarchical microstructure with a
repeating pattern perpendicular to the axial direction of
NbsSn filament. The NbsSn filaments are processed in a
very high temperature between 600 and 700°C, while
its operation temperature is extremely low, —269°C.
Meanwhile, Nb3Sn may experience high heat flux due
to low resistivity of NbsSn in the normal state. The
intrinsic hierarchical microstructure of NbsSn filament
groups and Multiphysics loading conditions make LEHT
an ideal candidate to conduct the homogenized thermal
conductivities and thermomechanical analysis. First, a
comparison with a finite element analysis is conducted
to validate effectiveness of Multiphysics LEHT and good
agreement is obtained for the homogenized thermal
conductivities and mechanical and thermal expansion
properties. Then, the Multiphysics LEHT is applied to
systematically investigate the effects of volume fraction
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and temperature on homogenized thermal conductivities
and thermomechanical properties of NbsSn filaments at
the microscale and mesoscale. Those homogenized pro-
perties provide a full picture for researchers or engineers
to understand the NbsSn homogenized properties and will
further facilitate the material design and application.

Keywords: Nb;Sn filaments, thermal conductivity, thermo-
mechanical analysis, hierarchical microstructures, multi-
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1 Introduction

A variety of high-performance superconducting wires [1-4]
has been actively pursued and developed to meet the
requirements of different engineering applications. Nb;Sn
superconducting wire strand has superior critical tempera-
ture and field, which has been widely used for next-
generation magnets for high-energy physics and fusion,
including the KSTAR tokamak in South Korea [5], ITER CS
model in Japan [6], a high-field Very Large Hadron Col-
lider (VLHC) [7], ITER [1,2,8,9], as well as many other
applications above 13T [10-12]. NbsSn is brittle and
strain-sensitive and is not suitable for extrusion [2,13,14].
The material is manufactured by first inserting uncom-
pounded precursors of NbsSn into an ingot of bronze,
then the ingot is drawn into a wire and finally the heat
treatment is conducted to form NbsSn filaments. The
typical heat treatment requires hundreds of hours between
600 and 700°C in a vacuum or inert gas to prevent bronze
from oxidation [13]. The superconductor strand serves as
the basic building block for the superconducting cables,
such as cable-in-conduit conductors (CICC), Rutherford
cables [7], which are designed and manufactured based
on the specific commercial or scientific applications. For
instance, CICC is utilized for ITER and over thousand
strands are twisted together following a multistage packa-
ging process and then inserted into a metal jacket which
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sustains the magnetic load and contains the liquid helium
(4.2K) during the operation stage [15].

NbsSn strand contains many NbsSn filaments, which
possess complicated hierarchical microstructures [15-18].
NbsSn filaments are processed in a high temperature
(600-700°C) and operate under an extremely low tem-
perature (-269°C). An effective Multiphysics micromecha-
nics model to predict the thermal conductivities and
thermomechanical properties of the NbsSn strands would
accelerate the material development, reduce the cost of
material characterization, and further facilitate the cable
analysis and design [19-22]. In general, the micromecha-
nics methods can be categorized into two categories [19]
(Pindera et al. 2009). One is the microstructural detail-free
estimates which do not consider the actual geometry of
the material microstructures. In contrast, another one con-
siders the real microstructures of the materials. The classic
approaches fall into microstructural detail-free category,
such as Reuss and Voigt estimates, self-consistent scheme,
general self-consistent scheme, Mori-Tanaka scheme,
Composite Spherical/Cylinder model (CCA and CSA),
and Halpin-Tsai theory [19,23-25]. For instance, general
self-consistent scheme [15] and Mori-Tanaka scheme [26]
are utilized to estimate the effective mechanical and thermal
expansion properties for the Furukawa strand. In the cate-
gory of considering material’s real microstructures, Finite
Element Approach (FEA) has become the main approach
to calculate the homogenized properties of NbsSn filament
groups via a 3D Representative Volume Element (RVE)
[13,17,27-30] due to its ability to consider complex micro-
structures in great detail and the popularity of general com-
mercial FEA software represented by ABAQUS and ANSYS.

In finite element framework, the geometric micro-
structures are divided into subregions in which the local
displacement fields are approximated by shape functions.
A large system of algebraic equations for the unknown
coefficients in the local approximations is constructed by
satisfying the governing field equations using variational
approach. In the field of multiscale homogenization ana-
lysis, the computational cost could increase dramatically
because each material point at the upper scale is repre-
sented by a microstructure in the lower scale. The Multi-
physics Locally Exact Homogenization Theory (MLEHT),
an analytical approach, possesses great potential to deter-
mine the homogenized thermal conductivities and thermo-
mechanical properties and recover the local fields in an
efficient and accurate way. LEHT is initially developed by
Pindera and coworkers for the hygro-thermomechanical
responses of unidirectional composites [16,31,32] and has
been extensively validated against FEA [31,32] and Finite
Volume approach [16,32]. LEHT is a natural fit for the
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homogenization of Nb;Sn filament groups. First, LEHT is
a Multiphysics homogenization approach which can cope
with the Multiphysics phenomenon for NbsSn filaments,
including Heat transfer and thermomechanical loading.
Secondly, the NbsSn filaments usually possess a distinctive
hierarchical microstructure and multiscale homogeniza-
tion is required to predict the effective properties and
LEHT has been proven itself as an idea candidate for the
multiscale applications due to its distinctive features of
user-friendliness, accuracy, and efficiency [32]. First, LEHT
is an analytical approach without the need of time-
consuming preprocessing and post-processing of widely
utilized commercial software. The method utilizes Fourier
series expansions to represent the displacement fields.
Secondly, the equilibrium equations and continuity condi-
tions are satisfied in an exact way based on the method’s
analytical nature, so the method’s accuracy is guaranteed
from the fundamental level without the worry of mesh
convergence. Thirdly, a balanced variational principle is
applied for the periodic boundary condition of repeating
unit cells to ensure rapid convergence of the Fourier series
coefficients with a relatively small number of harmonic
terms [31]. A full set of homogenized thermal conduc-
tivities and thermomechanical properties can be generated
in less than 10 s on a personal computer.

The rest of the manuscript is organized as follows:
Section 2 establishes a hierarchical model for the European
Advanced Superconductors (EAS) NbsSn filament groups
utilized for the ITER D-shaped magnet. Section 3 sum-
marizes the key steps of Multiphysics LEHT, including
Distinguishment of the Homogenized and Localized
Responses, Derivation of Internal Expressions, Imposition
of Continuity Conditions, Implementation of Periodic
Boundary Conditions, Establishment of Homogenizations,
and Encapsulation of Multiphysics LEHT. Section 4 vali-
dates the LEHT’s effectiveness in predicating the homo-
genized thermal conductivities and thermomechanical
properties against FEA prediction. Following the method
validation, section 5 conducts a systematic investigation
towards the effects of volume fraction and temperature on
the two-scale homogenized thermal conductivities and
thermomechanical properties. Section 5 concludes this
presentation.

2 Model establishment

The hierarchical structure of an EAS strand, illustrated in
Figure 1, can be analyzed from a multiscale perspective.
First of all, a global cross section of an EAS strand is
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Figure 1: The hierarchical structure of an EAS strand: the macroscale
structure of the global strand (Left), the mesoscale structure of
the filament groups (Center), and the microscale structure of the
filament (Right). (Reprinted from ref. [13], with copyright permission
from Elsevier).

illustrated in Figure 1 (left) at the macroscale, containing
the outer copper matrix, tantalum thick barrier, and
around 55 groups of filaments, which are periodically
arrayed in a bronze matrix. To facilitate the macroscale
analysis, the thermal conductivities and thermoelastic
properties of those mesoscale groups of filaments (Figure 1
center) can be further characterized through the microscale
unit cells that contain about 85 polygonal NbsSn filaments
embedded in the bronze matrix, see Figure 1 (right). The
single filament diameter is 2-5 pm, the diameter of a group
of filaments is about 55-60 um [13], and tantalum barrier
diameter is 0.507 mm [15]. It is seen that the NbsSn
filaments or filament groups are all periodically laid out
in a hexagonal fashion, producing the isotropic in-plane
properties, just shown as Figures 2 and 3 magnify the
mesoscale structure of filament groups (Figure 1 center)
and microscale structure of a group of filaments (Figure 1

Figure 2: Mesoscale structure of multiple filament groups and
corresponding hexagonal unit cell representation. (Reprinted from
ref. [13], with copyright permission from Elsevier).
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Figure 3: Microscale structure of a filament group and corre-
sponding hexagonal unit cell representation. (Reprinted from
ref. [13] with copyright permission from Elsevier).

right) that are mapped in periodically hexagonal fashion
(that are characterized by the yellow highlight). A multi-
scale LEHT framework is employed to generate the homo-
genized thermal conductivities and thermomechanical
properties of unit cells of different scales.

3 Overview of multiscale LEHT

Relative to other micromechanics models, the theoretical
development of the LEHT is mainly based on the Trefftz
concept, where the internal expressions of thermal con-
ductivities or mechanical fields of the composites’ consti-
tuents are first obtained through solving the partial
differential equations, whose solutions are represented
through series expansions. The internal expressions
with unknown coefficients are solved through imposing
the continuity conditions at the fiber—-matrix interface,
as well as the weak-form periodic boundary conditions.
The effective coefficients of a composite are finally derived
through the homogenization theory. The macroscale pro-
perties of an EAS strand with two-level hierarchical micro-
structures can be obtained through a two-level multiscale
homogenization process. First, the effective properties of a
group of Nb;Sn filaments can be obtained through a homo-
genization process at microscale. Then the calculated
homogenized properties are fed into the analysis of
mesoscale unit cell, from which the effective properties
of the EAS strand at macroscale are predicted. In contrast,
the localization process passes down loads from macroscale
to microscale. The local stress and strain fields of a
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mesoscale unit cell are predicted once the macroscale
strain/stress is specified. Then the local stress/strain
fields of a microscale unit cell are determined by apply-
ing the corresponding mesoscale stress/strain. The date
flow of multiscale homogenization and location of hier-
archical microstructures of Nb;Sn strand are shown in
Figure 4.

The general steps of LEHT are overviewed in this
section for the readers’ interests:

3.1 Step 1: Distinguishment of the
homogenized and localized responses

In this presentation, we establish a two-scale homo-
genization framework with microstructures. Thus, herein
we define each upper scale as the homogenized scale,
while its lower scale as the localized microstructure. The
homogenized properties of the upper scale are obtained
through homogenization of the lower-scale microstruc-
ture, while the homogenized response of upper scale
is transmitted to stimulate the lower-scale reaction.
For instance, the governing equations (1) and (2) for
temperature T(x, y) and the displacement fields u;(x, y)
can be decomposed into the homogenized and fluctu-
ating parts:
Thermal conductivities [33]:

T(x,y) =Tx) + T'(y) 0
Thermomechanical behavior [16,32]:
u(x, y) = i(x) + u'i(y), ((=1,2,3) %)

where x = (q, %, x3) and y = (y,, ,, ;) are the upper-scale
homogenized and lower-scale localized coordinates, respec-
tively. i = 1is longitudinal direction, while i = 2,3 is transverse
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cross section. The average and fluctuating parts denote the
homogenized and localized responses, respectively.

3.2 Step 2: Derivation of internal
expressions

To recover the localized response within lower-scale
microstructure, the solutions of the governing partial
differential equations for fluctuating fields presented in
the Appendix are obtained by adopting the series func-
tions [16,32,33]:

Thermal conductivities:

'O = Y ("I, + r"I3) cos nf
o 3)

+ ("L, + r"IL,) sin né]

Thermomechanical behavior:

w'® = Y [(""HY, + r"HL3) cos nf
n=1 (43)

+(r"Hi, + r"H!,) sin né)

u'V = Fir + Flyr!
co 4
. ; 4b
+ )Y rPu [Fyj cos nf + Gy; sin nf)] (“4b)

n=2 j=1

where the superscript “i” can be the “f’ (fiber phase) or
“m” (matrix phase). r is the parameter of fiber radius and
can be utilized as a dimensional parameter, ﬁnj and py;
are the eigenvalues and eigenvectors that are obtained in
solving the differential governing equations listed in the

< Homogenization: Compute Effective Response |
Macroscale: Mesoscale Microscale

Effective properties of homogenization: homogenization:

an EAS strand with ) Multiple Filament ~| a group of Nb;Sn
hierarchical Groups filaments

Localization: Pass Down Thermal/Mechanical Loads >

Figure 4: Date flow of multiscale homogenization and location of hierarchical microstructures of Nb3Sn strand.
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Appendix. Note that several unknown coefficients, I,
Hy, Ej, Gy in the equations (3) and (4) are introduced
and need to be obtained through the continuity and
boundary conditions in the following steps. What’s more,
the expressions of heat fluxes (e.g., g, gs) and stress—strain
(e.g., Oy, Oy, Oyg) fields are also readily derived.

3.3 Step 3: Imposition of continuity
conditions

The aforementioned solutions are explicitly expressed in

the cylindrical coordinates for the easiness of imposing

continuities. For a perfectly bonded interface, the conti-

nuities are established at the fiber-matrix interface:
Thermal conductivities:

T/ = T, _ (5a)

g = g™, (5b)
Thermomechanical behavior:

wP =uMha, of) =0 (62)

W =y oD =gy (6b)

I N

from which the unknown fiber coefficients are expressed
in terms of matrix coefficients, where a denotes the radius
of inhomogeneity.

3.4 Step 4: Implementation of periodic
boundary conditions

For unit cells that are periodically arranged within the

lower levels, the periodic boundary conditions need to

be imposed. In this work, weak-form boundary condi-

tions are employed to guarantee the numerical stability:
Thermal conductivities [33]:

I S5T(Q - QV)dS + I 5Q(T — TS = 0

S S

(@)

where Q(S)) j ¢inidS.Q = Q° and T = T° are the periodi-

cities of heat ﬂux and temperature components. n; is the unit

normal of surface S;(j = 1, 2,..., 6) of hexagonal unit cells.
Thermomechanical behavior [34]:

J 6ui (ti - tio)dS + I 6[’1‘ (ui - uio)dS =0 (8)

St su

where (5;) = I OpcidS. u; = u; Oandt = t are the perio-

dicities of dlsplacement and stress components.
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From which all the remaining unknowns can be
obtained. Then the internal thermal and mechanical dis-
tributions can be fully recovered.

3.5 Step 5: Establishment of
homogenizations

The effective thermal and elastic coefficients at higher
levels can be generated through generalized homoge-
nized equations:

Fourier’s law of heat conduction:

g = -K;H; )
Homogenized constitutive relation:

G = Cijq 1 — aj AT} (10)

where, g; and H; are the effective heat flux component and
temperature gradient, respectively, while ; and &, are
the stress and strain components, respectively. AT is
the change of temperature, the K, Cjy, and a; are the
effective thermal conductivities, elastic, and thermal
expansion matrices, respectively, from which the thermal
conductive and thermoelastic coefficients in all directions

can be readily obtained.

3.6 Step 6: Encapsulation of
Multiphysics LEHT

The advantage of adopting the Trefftz concept in the
LEHT is that the mesh discretization and pre- and post-
processing are avoided in the in-house MATLAB pro-
grams. Based on this point, we encapsulated the program
into “black-boxes” with only input/output (I/O) connec-
tions [32]. Users only need to input the geometric and
material properties of the composite materials and the
programs will automatically generate the effective coeffi-
cients and localized responses within a few seconds.
Based on the theoretical derivations, we developed our
own in-house programs to conduct numerical validations
and parametric investigations.

4 Validation

To validate Multiphysics LEHT’s effectiveness to predict
the homogenized thermal conductivities, mechanical and
thermal expansion coefficient generated via Multiphysics
LEHT has been compared against the results generated
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A\

Figure 5: Mesh of a hexagonal unit cell with v = 0.72.

by ABAQUS-based FEA [13] and an in-house FEA calcula-
tion [35-37]. Figure 5 shows the mesh utilized in our in-
house FEA analysis. A fully anisotropic two-dimensional
Q8-type Multiphysics quadratic element has been con-
structed under the generalized plane strain constraint
and the element number is 1152.

4.1 Thermal conductivity analysis

Figure 6 illustrates the comparison of homogenized axial
thermal conductivity, Kj;, and transverse thermal con-
ductivities, K5, K33, between LEHT and Boso’s FEA pre-
dictions [13] for the hexagonal unit cell at microscale,
in which NbsSn is surrounded by the bronze matrix,
as shown in Figure 3. NbsSn’s thermal conductivity is
insensitive to the temperature variation and its value is
exceedingly small. The Poisson’s ration of NbsSn is 0.3 [27].
In contrast, bronze possesses an interesting characteristic
regarding its thermal conductivity towards the temperature

X 2500 e Bronze
--6--Nb3Sn
2000 —— K\ miere — Present
- - —K;2<33)7mim'0 — Present
fl—micro — RoM
o K3y niero — Boso
* K§3—micro — Boso

Thermal Conductivity(W/(mK))

200 400 600
Temperature(K)

Figure 6: Comparison of homogenized thermal conductivity generated
by LEHT and FEA [13] with v; = 0.24 for Nb;Sn filaments at microscale.
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variation. In general, the thermal conductivity’s variation
caused by the temperature change could be divided into
three stages. Initially, the thermal conductivity increases
dramatically from 0K and reaches a peak value, 2,400
W/(mK) at 33.3K, and then decreases sharply to 1,000
W/(mK) at 55K. In the second stage between 55 and
200 K, bronze’s thermal conductivity decreases gradually
and reach a stable value of 386 W/(m K) at 200 K. During
the rest of temperature variation, the thermal conduc-
tivity almost maintains a constant value, 386 W/(m K).
And the Poisson’s ratio of Bronze is 0.34 [27].

The volume fraction of Nb3Sn for unit cell at microscale
is 0.24. It should be noticed that Boso et al. [13] utilized two
different volume fractions at microscale for the calculation
of axial thermal conductivity, Kj;, and the transverse
thermal conductivities, K3, K3;: volume fraction 0.7
is utilized for Kj;’s calculation and 0.24 is utilized for
K3’s and K35's estimation. To maintain consistency,
the volume fraction 0.24 is utilized to calculate both
axial and transverse thermal conductivity calculations.
The homogenized axial thermal conductivity, Kjj, is
compared with Rule of Mixture’s (RoM) estimation and
the homogenized transverse thermal conductivities, K3,
and Kj; are compared with Boso et al. prediction [13].
Meanwhile, in Boso’s estimation [13], a quasi-hexagonal
unit cell is utilized for the analysis, but K3,’s and K35’s
predictions are almost identical. Out of simplicity, a hexa-
gonal unit cell is utilized in our analysis and the homo-
genized transverse thermal conductivity K3, is equal to K3;.
Figure 6 shows excellent agreement between LEHT’s
prediction and Boso et al. FEA [13] estimation for the
transverse thermal conductivities, K3, and K33, and between
LEHT’s prediction and Rule of Mixture’s (RoM) estimation
for the axial thermal conductivity, K;.

After obtaining the homogenized thermal conduc-
tivities for the RUC representing a filament group at

2500
—— K1 peso — Present
- 'K;z(gg),mua — Present
2000 Ki — RoM

11-meso
-
0 K3y peso — Boso

<
£
=
2
= 1500 * Ky ess = Boso
[&]
3
€ 1000
o]
o H
® 500
SR . N
g
0 200 400 600 800
Temperature(K)

Figure 7: Comparison of homogenized thermal conductivity gene-
rated by LEHT and Boso et al. [13] with vf = 0.72 for multiple filament
groups at mesoscale.
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microscale, the homogenization of all filament groups at
mesoscale could be conducted for a hexagonal unit cell in
which a homogenized filament group is embedded in the
bronze matrix, as illustrated in Figure 2. Figure 7 illus-
trates the comparison of transverse thermal conductiv-
ities, K5, and K3;, generated LEHT and Boso et al. FEA
predictions [13] and the comparison of homogenized
axial thermal conductivity, Kj;, calculated by LEHT and
the Rule of Mixture (RoM) with volume fraction of 0.72 at
mesoscale. Good agreement for both axial and transverse
conductivity coefficients is obtained. Therefore, the accu-
racy of the LEHT in predicting the homogenized thermal
conductivity is validated for both a filament group at
microscale and multiple filament groups at mesoscale.
Also, its worth to mention there is no laborious work
involved in LEHT’s prediction, such as mesh discretization,
periodic boundary imposition, and post-processing for
homogenization properties as in Boso’s calculation in
ABAQUS with 3D FEA model and only unit cell geometric
information and constituents’ properties are required.
Meanwhile, LEHT’s calculation is highly efficient due to
its trait of an analytical solution and only 0.7 s is required
to generate a full set of homogenized thermal conductivi-
ties on a PC with Windows 10 64-bit operation system,
Intel 2.9 GHz i7-10700 CPU, and 16 GB RAM.

4.2 Thermomechanical analysis

Figure 8 illustrates the comparison of homogenized
mechanical properties and thermal expansion coefficients
between LEHT’s and Boso et al. FEA predictions for unit cell
with volume fraction of 0.42 for NbsSn filament at micro-
scale. Nb3;Sn’s main diagonal elasticity term is not sensitive
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to temperature change, but the elasticity term of matrix
material, Bronze, decreases significantly as the increase
of temperate till 500 K and then maintain a constant
value of 80 GPa. Regarding the thermal expansion coeffi-
cients, both NbsSn and filament phases increase linearly
as the temperature increases. Figure 8 (Left) shows
good agreement between LETH’s and Boso et al. [13] pre-
diction for the homogenized diagonal elasticity terms,
D{;, Dj,, D;. Figure 8 (Right) shows good agreement
for the homogenized axial thermal expansion coeffi-
cient, a;;, and the transverse homogenized thermal
expansion coefficients, a3,, a3;, generated by LEHT and
Boso et al. [13].

After obtaining the Nb3;Sn homogenized mechanical
properties and thermal expansion coefficients for the RUC
representing a filament group at microscale, the homo-
genization of multiple filament groups at mesoscale could
be conducted for the hexagonal RUC in which a homoge-
nized filament group is embedded in the bronze matrix.
It should be noticed that in Boso’s FEA estimation, volume
fraction 0.72 is utilized to generate all homogenized
mechanical properties, but volume fraction 0.90 is uti-
lized to generate all the homogenized thermal expan-
sion, a,, aj;, except aj;, Figure 9 (Right). To maintain
consistency, volume fraction 0.72 is utilized to calculate
all homogenized thermomechanical properties in LEHT.
As shown in Figure 9 (Left), good agreement is obtained
for the homogenized mechanical properties at mesoscale.
To further validate LEHT’s thermomechanical homogeni-
zation capability, an in-house FEA program [35-37] is
utilized to calculate the homogenized main diagonal elas-
ticity terms and the thermal expansion coefficients, as
shown in Figure 10, and excellent agreement is achieved.
Therefore, the effectiveness of the LEHT in predicting the
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L * D;’ micro Boso \C/ * “'.'1‘2 micro Boso
g 250 ¢ A Dz .. — Boso Q A on o — Boso | e
o) 33—micro %) 20 33—micro 0 |
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>200} 8
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Figure 8: Comparison of homogenized main diagonal elasticity terms (Left) and thermal expansion coefficients (Right) generated by LEHT

and Boso et al. [13] with vf = 0.42 for NbsSn filaments at microscale.
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Figure 9: Comparison of homogenized main diagonal elasticity terms (Left) and thermal expansion coefficients (Right) generated by LEHT

and Boso et al. [13] with vf = 0.72 at mesoscale.
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Figure 10: Comparison of homogenized main diagonal elasticity terms (Left) and thermal expansion coefficients (Right) generated by LEHT

and in-house FEA with vf = 0.72 at mesoscale.

homogenized mechanical properties and thermal expan-
sion coefficients at both microscale and mesoscale levels is
validated. Meanwhile, as the homogenization of thermal
conductivity, the thermomechanical homogenization is
very efficient and only 17s is utilized to calculate the
homogenized thermomechanical properties on a PC with
Windows 10 64-bit operation system, Intel 2.9 GHz i7-
10700 CPU, and 16 GB RAM. The efficiency facilitates the
proposed technique in the material’s design and practice,
especially when combined with the optimization tech-
nique. It should also be pointed out that when validating
against the FE-based ABAQUS simulations, we employ
a different strategy. For instance, here we didn’t employ
the mesh discretization, but directly obtain the analytical
internal solutions. We also utilize the weak-form variational

principle to enforce the boundary periodicities, while ABAQUS
directly impose periodic boundary conditions in a node-to-
node fashion.

5 Results

5.1 Effects of volume fraction and
temperature on homogenized thermal
conductivities

Figure 11 illustrates the effect of volume fraction of a
NbsSn filament at microscale on the homogenized axial
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Figure 11: Effects of volume fraction of NbsSn filament at microscale and temperature on homogenized thermal conductivity, (Left) K3,

(Right) K5,(K33).

thermal conductivity K;; and transverse thermal conduc-
tivities K3, and K3; between 5 and 800 K. At a given tem-
perature, the homogenized axial thermal conductivity,
K}, decreases linearly as the increase of volume fraction
since its value follows the rule of mixture. The lower
bound of Kj; converges to the thermal conductivity of
NbsSn at volume fraction 1 and the upper bound con-
verges to the thermal conductivity of bronze at volume
fraction 0. Similar with the axial thermal conductivity, the
transverse thermal conductivities K3,(K33) also decreases as
the increase of volume fraction and the lower bound of K,
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converges to the thermal conductivity of Nbs;Sn at volume
fraction 1 and the upper bound converges to the thermal
conductivity of bronze at volume fraction 0. But trans-
verse thermal conductivity K3, decreases nonlinearly as
the increase of Nb;sSn’s volume fraction due to the in-
plane coupling effects.

After generating homogenized thermal conductivities
of a filament group at microscale, the homogenized
thermal conductivities of multiple filament groups can
be obtained by analyzing a hexagonal RUC with a cir-
cular homogenized filament group embedded in the

800
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Figure 12: Effects of volume fraction of mesoscale homogenized NbsSn filament group and temperature on the global homogenized thermal
conductivity, (Left) K3, (Right) K35(K35). Note: Volume fraction 0.72 is specified for the microscale homogenized NbsSn filament group.
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bronze matrix. Figure 12 shows the effects of mesoscale
volume fraction of the homogenized Nb;Sn filament
group on the global homogenized thermal conductivi-
ties between 5 and 800 K. The mesoscale homogenized
thermal conductivity coefficients are first calculated with a
given volume fraction of 0.72 between 5 and 800 K. Both
the global homogenized axial and transverse thermal con-
ductivities decrease as volume fraction of a homogenized
filament group increases. The upper bound of thermal
conductivity converges to the thermal conductivity of
bronze and the lower bound of thermal conductivity con-
verges to the thermal conductivity of mesoscale homo-
genized filament group at volume fraction 1. In contrast
with the linear relation with the volume fraction for the
axial thermal conductivity at a prescribed temperature,
the homogenized transverse thermal conductivity varies
nonlinearly with the volume fraction at a prescribed
temperature.

5.2 Effects of volume fraction and
temperature on homogenized
mechanical properties and thermal
expansion coefficients

Figures 13 and 14 illustrate the effect of volume fraction
of a NbsSn filament and temperature variation on the
mesoscale homogenized mechanical properties, D;;, D5,
D3;, and thermal expansion coefficients, aj;, a3, @33,
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respectively. The maximum homogenized elasticity terms,
Dj;, D}, D35, occur at the lowest temperature level with
only filament material Nb3Sn and the minimum value
occurs at the highest temperature level with only the
bronze matrix. As filament volume fraction increases,
the temperature influence on the homogenized mechan-
ical properties decreases due to temperature insensi-
tivity of NbsSn. The maximum homogenized thermal
expansion coefficients, a;j, a3, o33, occur at the highest
temperature level with only the bronze matrix and the
minimum value occurs at the lowest temperature with
only filament phase, Nb;Sn. Meanwhile, as the filament
volume fraction increases, the temperature influence on
the homogenized thermal expansion coefficients decreases
because the filament phase NbsSn is less sensitive to the
temperature change.

Once the homogenized mechanical properties and
thermal expansion coefficients of a filament group on
the microscale are available, the global homogenized
mechanical properties and thermal expansion coefficients
of all the filament groups can be obtained by conducting
thermomechanical homogenization towards the hexa-
gonal RUC with a circular homogenized filament group
embedded in the bronze matrix. Figures 15 and 16 illus-
trate the effect of mesoscale volume fraction and tempera-
ture variation on the global homogenized mechanical
properties, Dj;, D, D3;, and thermal expansion coeffi-
cients, a;3, a3, 453, respectively. During above calculation,
the utilized volume fraction of a Nb;Sn filament group at
microscale is 0.42. The homogenized elasticity terms
decrease as temperature increases due to the temperature
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Figure 13: Effects of volume fraction of NbsSn filament at microscale and temperature on mesoscale homogenized elasticity terms, (Left) Dj;,

(Right) D3(D35).
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expansion coefficients, (Left) a3, (Right) ay,(a33). Note: Volume fraction 0.42 is specified for the microscale homogenized NbsSn filament group.
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softening effects on the bronze matrix and increase as the
increase of volume fraction due to the increase of harder
phase of Nb;Sn. The global homogenized thermal expansion
coefficients increase as the temperature increases due to
the temperature effects on the bronze matrix and decrease
as the increase of volume fraction due to the smaller meso-
scale homogenized thermal expansion coefficients.

6 Conclusion

A comprehensive investigation of the homogenized thermal
conductivity, mechanical properties, and thermal expan-
sion coefficients has been conducted for the multiscale
NbsSn filament groups centered in an EAS strand utilized
in ITER D-Shape magnet. The filament groups are modelled
by two-scale repeating hexagonal unit cells via the
Multiphysics LEHT, including thermal conductivity ana-
lysis and thermomechanical analysis. First, LEHT’s results
are validated against the Finite Element Analysis at both
microscale and mesoscale homogenization. Then, a com-
prehensive parametric study is conducted for NbsSn fila-
ment groups with the consideration of various volume
fractions and temperature on both microscale and meso-
scale thermal conductivities, mechanical properties, and
thermal expansion coefficients. The principle conclusions
of this investigation are as follows:

1. A comprehensive parametric study is conducted for
the first time towards the effects of volume fraction
and temperature variation on both mesoscale (a fila-
ment group) and global scale (multiple filament group)
homogenized thermal conductivities, mechanical prop-
erties, and thermal expansion coefficients.

2. For the micro- and mesoscale thermal conductivity homo-
genization, the axial thermal conductivity decreases line-
arly as the increase of volume fraction of Nb;Sn filament
or its group, while the transverse thermal conductivity
decreases nonlinearly.

3. For microscale homogenization of a group of NbsSn
filament, all elasticity terms increase, and all thermal
expansion coefficients decrease as the increase of
volume fraction, and both variations are much more
sensitive to high temperature. For mesoscale homo-
genization of Nb;Sn filament groups, all elasticity terms
increase, and all thermal expansion coefficients decrease
as the increase of volume fraction, but the variation is
not sensitive to temperature change.

4. The power of the LEHT technique is not only proved
by its accuracy in the multiscale analysis of NbsSn
filaments through a bottom-up procedure. As is also
indicated in the text, the LEHT is also advantageous

DE GRUYTER

in its efficiency, which can be utilized and combined
with reliable optimization techniques for the materials’
design through a “top-down” procedure. Aiming at cer-
tain effective engineering requirements, the microme-
chanics-oriented optimization would provide a robust
tool in varying the microstructural details, such as
candidate materials and volume fractions. Most of those
analytical scenarios can be even achieved through a PC
instead of large-scale workstations.
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Appendix

Herein, we list the governing/control equations that are solved through the present technique. The equilibrium
equations in the cylindrical coordinate are expressed as [16,32,33]:

aa"+l.a‘7f9+%+0"_099=0

or r o0 0z r

%+l.@+%+@:0 (Al)
or r o9 oz r

00, 1 0 30z Oz _

or r o0 0z r

where oy (k, I = 1, 6, z) is the stress components. Substitution of stress—strain and strain-displacement relations into
equation (A1) further leads to the Navier’s equations under general plane strain assumption:
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where the prime superscript stands for the fluctuating components of equations (4a-4c). G, and Gy are the stiffness
matrix components. In a similar manner, the control equation for conduction is expressed as [33]

d oT’ 10 oT’ 10 oT’
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where k;(i = r, 0, z) are the conductivity coefficients in the cylindrical coordinate and can be transformed to Cartesian
coordinate through coordinate transformation relations.
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