Abstract
A comprehensive study of the multiscale homogenized thermal conductivities and thermomechanical properties is conducted towards the filament groups of European Advanced Superconductors (EAS) strand via the recently proposed Multiphysics Locally Exact Homogenization Theory (LEHT). The filament groups have a distinctive two-level hierarchical microstructure with a repeating pattern perpendicular to the axial direction of Nb3Sn filament. The Nb3Sn filaments are processed in a very high temperature between 600 and 700°C, while its operation temperature is extremely low, −269°C. Meanwhile, Nb3Sn may experience high heat flux due to low resistivity of Nb3Sn in the normal state. The intrinsic hierarchical microstructure of Nb3Sn filament groups and Multiphysics loading conditions make LEHT an ideal candidate to conduct the homogenized thermal conductivities and thermomechanical analysis. First, a comparison with a finite element analysis is conducted to validate effectiveness of Multiphysics LEHT and good agreement is obtained for the homogenized thermal conductivities and mechanical and thermal expansion properties. Then, the Multiphysics LEHT is applied to systematically investigate the effects of volume fraction and temperature on homogenized thermal conductivities and thermomechanical properties of Nb3Sn filaments at the microscale and mesoscale. Those homogenized properties provide a full picture for researchers or engineers to understand the Nb3Sn homogenized properties and will further facilitate the material design and application.
1 Introduction
A variety of high-performance superconducting wires [1,2,3,4] has been actively pursued and developed to meet the requirements of different engineering applications. Nb3Sn superconducting wire strand has superior critical temperature and field, which has been widely used for next-generation magnets for high-energy physics and fusion, including the KSTAR tokamak in South Korea [5], ITER CS model in Japan [6], a high-field Very Large Hadron Collider (VLHC) [7], ITER [1,2,8,9], as well as many other applications above 13 T [10,11,12]. Nb3Sn is brittle and strain-sensitive and is not suitable for extrusion [2,13,14]. The material is manufactured by first inserting uncompounded precursors of Nb3Sn into an ingot of bronze, then the ingot is drawn into a wire and finally the heat treatment is conducted to form Nb3Sn filaments. The typical heat treatment requires hundreds of hours between 600 and 700°C in a vacuum or inert gas to prevent bronze from oxidation [13]. The superconductor strand serves as the basic building block for the superconducting cables, such as cable-in-conduit conductors (CICC), Rutherford cables [7], which are designed and manufactured based on the specific commercial or scientific applications. For instance, CICC is utilized for ITER and over thousand strands are twisted together following a multistage packaging process and then inserted into a metal jacket which sustains the magnetic load and contains the liquid helium (4.2 K) during the operation stage [15].
Nb3Sn strand contains many Nb3Sn filaments, which possess complicated hierarchical microstructures [15,16,17,18]. Nb3Sn filaments are processed in a high temperature (600–700°C) and operate under an extremely low temperature (−269°C). An effective Multiphysics micromechanics model to predict the thermal conductivities and thermomechanical properties of the Nb3Sn strands would accelerate the material development, reduce the cost of material characterization, and further facilitate the cable analysis and design [19,20,21,22]. In general, the micromechanics methods can be categorized into two categories [19] (Pindera et al. 2009). One is the microstructural detail-free estimates which do not consider the actual geometry of the material microstructures. In contrast, another one considers the real microstructures of the materials. The classic approaches fall into microstructural detail-free category, such as Reuss and Voigt estimates, self-consistent scheme, general self-consistent scheme, Mori-Tanaka scheme, Composite Spherical/Cylinder model (CCA and CSA), and Halpin-Tsai theory [19,23,24,25]. For instance, general self-consistent scheme [15] and Mori-Tanaka scheme [26] are utilized to estimate the effective mechanical and thermal expansion properties for the Furukawa strand. In the category of considering material’s real microstructures, Finite Element Approach (FEA) has become the main approach to calculate the homogenized properties of Nb3Sn filament groups via a 3D Representative Volume Element (RVE) [13,17,27,28,29,30] due to its ability to consider complex microstructures in great detail and the popularity of general commercial FEA software represented by ABAQUS and ANSYS.
In finite element framework, the geometric microstructures are divided into subregions in which the local displacement fields are approximated by shape functions. A large system of algebraic equations for the unknown coefficients in the local approximations is constructed by satisfying the governing field equations using variational approach. In the field of multiscale homogenization analysis, the computational cost could increase dramatically because each material point at the upper scale is represented by a microstructure in the lower scale. The Multiphysics Locally Exact Homogenization Theory (MLEHT), an analytical approach, possesses great potential to determine the homogenized thermal conductivities and thermomechanical properties and recover the local fields in an efficient and accurate way. LEHT is initially developed by Pindera and coworkers for the hygro-thermomechanical responses of unidirectional composites [16,31,32] and has been extensively validated against FEA [31,32] and Finite Volume approach [16,32]. LEHT is a natural fit for the homogenization of Nb3Sn filament groups. First, LEHT is a Multiphysics homogenization approach which can cope with the Multiphysics phenomenon for Nb3Sn filaments, including Heat transfer and thermomechanical loading. Secondly, the Nb3Sn filaments usually possess a distinctive hierarchical microstructure and multiscale homogenization is required to predict the effective properties and LEHT has been proven itself as an idea candidate for the multiscale applications due to its distinctive features of user-friendliness, accuracy, and efficiency [32]. First, LEHT is an analytical approach without the need of time-consuming preprocessing and post-processing of widely utilized commercial software. The method utilizes Fourier series expansions to represent the displacement fields. Secondly, the equilibrium equations and continuity conditions are satisfied in an exact way based on the method’s analytical nature, so the method’s accuracy is guaranteed from the fundamental level without the worry of mesh convergence. Thirdly, a balanced variational principle is applied for the periodic boundary condition of repeating unit cells to ensure rapid convergence of the Fourier series coefficients with a relatively small number of harmonic terms [31]. A full set of homogenized thermal conductivities and thermomechanical properties can be generated in less than 10 s on a personal computer.
The rest of the manuscript is organized as follows: Section 2 establishes a hierarchical model for the European Advanced Superconductors (EAS) Nb3Sn filament groups utilized for the ITER D-shaped magnet. Section 3 summarizes the key steps of Multiphysics LEHT, including Distinguishment of the Homogenized and Localized Responses, Derivation of Internal Expressions, Imposition of Continuity Conditions, Implementation of Periodic Boundary Conditions, Establishment of Homogenizations, and Encapsulation of Multiphysics LEHT. Section 4 validates the LEHT’s effectiveness in predicating the homogenized thermal conductivities and thermomechanical properties against FEA prediction. Following the method validation, section 5 conducts a systematic investigation towards the effects of volume fraction and temperature on the two-scale homogenized thermal conductivities and thermomechanical properties. Section 5 concludes this presentation.
2 Model establishment
The hierarchical structure of an EAS strand, illustrated in Figure 1, can be analyzed from a multiscale perspective. First of all, a global cross section of an EAS strand is illustrated in Figure 1 (left) at the macroscale, containing the outer copper matrix, tantalum thick barrier, and around 55 groups of filaments, which are periodically arrayed in a bronze matrix. To facilitate the macroscale analysis, the thermal conductivities and thermoelastic properties of those mesoscale groups of filaments (Figure 1 center) can be further characterized through the microscale unit cells that contain about 85 polygonal Nb3Sn filaments embedded in the bronze matrix, see Figure 1 (right). The single filament diameter is 2–5 μm, the diameter of a group of filaments is about 55–60 μm [13], and tantalum barrier diameter is 0.507 mm [15]. It is seen that the Nb3Sn filaments or filament groups are all periodically laid out in a hexagonal fashion, producing the isotropic in-plane properties, just shown as Figures 2 and 3 magnify the mesoscale structure of filament groups (Figure 1 center) and microscale structure of a group of filaments (Figure 1 right) that are mapped in periodically hexagonal fashion (that are characterized by the yellow highlight). A multiscale LEHT framework is employed to generate the homogenized thermal conductivities and thermomechanical properties of unit cells of different scales.
![Figure 1
The hierarchical structure of an EAS strand: the macroscale structure of the global strand (Left), the mesoscale structure of the filament groups (Center), and the microscale structure of the filament (Right). (Reprinted from ref. [13], with copyright permission from Elsevier).](/document/doi/10.1515/ntrev-2021-0015/asset/graphic/j_ntrev-2021-0015_fig_001.jpg)
The hierarchical structure of an EAS strand: the macroscale structure of the global strand (Left), the mesoscale structure of the filament groups (Center), and the microscale structure of the filament (Right). (Reprinted from ref. [13], with copyright permission from Elsevier).
![Figure 2
Mesoscale structure of multiple filament groups and corresponding hexagonal unit cell representation. (Reprinted from ref. [13], with copyright permission from Elsevier).](/document/doi/10.1515/ntrev-2021-0015/asset/graphic/j_ntrev-2021-0015_fig_002.jpg)
Mesoscale structure of multiple filament groups and corresponding hexagonal unit cell representation. (Reprinted from ref. [13], with copyright permission from Elsevier).
![Figure 3
Microscale structure of a filament group and corresponding hexagonal unit cell representation. (Reprinted from ref. [13] with copyright permission from Elsevier).](/document/doi/10.1515/ntrev-2021-0015/asset/graphic/j_ntrev-2021-0015_fig_003.jpg)
Microscale structure of a filament group and corresponding hexagonal unit cell representation. (Reprinted from ref. [13] with copyright permission from Elsevier).
3 Overview of multiscale LEHT
Relative to other micromechanics models, the theoretical development of the LEHT is mainly based on the Trefftz concept, where the internal expressions of thermal conductivities or mechanical fields of the composites’ constituents are first obtained through solving the partial differential equations, whose solutions are represented through series expansions. The internal expressions with unknown coefficients are solved through imposing the continuity conditions at the fiber–matrix interface, as well as the weak-form periodic boundary conditions. The effective coefficients of a composite are finally derived through the homogenization theory. The macroscale properties of an EAS strand with two-level hierarchical microstructures can be obtained through a two-level multiscale homogenization process. First, the effective properties of a group of Nb3Sn filaments can be obtained through a homogenization process at microscale. Then the calculated homogenized properties are fed into the analysis of mesoscale unit cell, from which the effective properties of the EAS strand at macroscale are predicted. In contrast, the localization process passes down loads from macroscale to microscale. The local stress and strain fields of a mesoscale unit cell are predicted once the macroscale strain/stress is specified. Then the local stress/strain fields of a microscale unit cell are determined by applying the corresponding mesoscale stress/strain. The date flow of multiscale homogenization and location of hierarchical microstructures of Nb3Sn strand are shown in Figure 4.

Date flow of multiscale homogenization and location of hierarchical microstructures of Nb3Sn strand.
The general steps of LEHT are overviewed in this section for the readers’ interests:
3.1 Step 1: Distinguishment of the homogenized and localized responses
In this presentation, we establish a two-scale homogenization framework with microstructures. Thus, herein we define each upper scale as the homogenized scale, while its lower scale as the localized microstructure. The homogenized properties of the upper scale are obtained through homogenization of the lower-scale microstructure, while the homogenized response of upper scale is transmitted to stimulate the lower-scale reaction. For instance, the governing equations (1) and (2) for temperature
Thermal conductivities [33]:
Thermomechanical behavior [16,32]:
where
3.2 Step 2: Derivation of internal expressions
To recover the localized response within lower-scale microstructure, the solutions of the governing partial differential equations for fluctuating fields presented in the Appendix are obtained by adopting the series functions [16,32,33]:
Thermal conductivities:
Thermomechanical behavior:
where the superscript “i” can be the “f” (fiber phase) or “m” (matrix phase).
3.3 Step 3: Imposition of continuity conditions
The aforementioned solutions are explicitly expressed in the cylindrical coordinates for the easiness of imposing continuities. For a perfectly bonded interface, the continuities are established at the fiber–matrix interface:
Thermal conductivities:
Thermomechanical behavior:
from which the unknown fiber coefficients are expressed in terms of matrix coefficients, where a denotes the radius of inhomogeneity.
3.4 Step 4: Implementation of periodic boundary conditions
For unit cells that are periodically arranged within the lower levels, the periodic boundary conditions need to be imposed. In this work, weak-form boundary conditions are employed to guarantee the numerical stability:
Thermal conductivities [33]:
where
Thermomechanical behavior [34]:
where
From which all the remaining unknowns can be obtained. Then the internal thermal and mechanical distributions can be fully recovered.
3.5 Step 5: Establishment of homogenizations
The effective thermal and elastic coefficients at higher levels can be generated through generalized homogenized equations:
Fourier’s law of heat conduction:
Homogenized constitutive relation:
where,
3.6 Step 6: Encapsulation of Multiphysics LEHT
The advantage of adopting the Trefftz concept in the LEHT is that the mesh discretization and pre- and post-processing are avoided in the in-house MATLAB programs. Based on this point, we encapsulated the program into “black-boxes” with only input/output (I/O) connections [32]. Users only need to input the geometric and material properties of the composite materials and the programs will automatically generate the effective coefficients and localized responses within a few seconds. Based on the theoretical derivations, we developed our own in-house programs to conduct numerical validations and parametric investigations.
4 Validation
To validate Multiphysics LEHT’s effectiveness to predict the homogenized thermal conductivities, mechanical and thermal expansion coefficient generated via Multiphysics LEHT has been compared against the results generated by ABAQUS-based FEA [13] and an in-house FEA calculation [35,36,37]. Figure 5 shows the mesh utilized in our in-house FEA analysis. A fully anisotropic two-dimensional Q8-type Multiphysics quadratic element has been constructed under the generalized plane strain constraint and the element number is 1152.

Mesh of a hexagonal unit cell with
4.1 Thermal conductivity analysis
Figure 6 illustrates the comparison of homogenized axial thermal conductivity,
![Figure 6
Comparison of homogenized thermal conductivity generated by LEHT and FEA [13] with
v
f
=
0.24
{v}_{\text{f}}=0.24
for Nb3Sn filaments at microscale.](/document/doi/10.1515/ntrev-2021-0015/asset/graphic/j_ntrev-2021-0015_fig_006.jpg)
Comparison of homogenized thermal conductivity generated by LEHT and FEA [13] with
The volume fraction of Nb3Sn for unit cell at microscale is 0.24. It should be noticed that Boso et al. [13] utilized two different volume fractions at microscale for the calculation of axial thermal conductivity,
After obtaining the homogenized thermal conductivities for the RUC representing a filament group at microscale, the homogenization of all filament groups at mesoscale could be conducted for a hexagonal unit cell in which a homogenized filament group is embedded in the bronze matrix, as illustrated in Figure 2. Figure 7 illustrates the comparison of transverse thermal conductivities,
![Figure 7
Comparison of homogenized thermal conductivity generated by LEHT and Boso et al. [13] with
v
f
=
0.72
{v}_{\text{f}}=0.72
for multiple filament groups at mesoscale.](/document/doi/10.1515/ntrev-2021-0015/asset/graphic/j_ntrev-2021-0015_fig_007.jpg)
Comparison of homogenized thermal conductivity generated by LEHT and Boso et al. [13] with
4.2 Thermomechanical analysis
Figure 8 illustrates the comparison of homogenized mechanical properties and thermal expansion coefficients between LEHT’s and Boso et al. FEA predictions for unit cell with volume fraction of 0.42 for Nb3Sn filament at microscale. Nb3Sn’s main diagonal elasticity term is not sensitive to temperature change, but the elasticity term of matrix material, Bronze, decreases significantly as the increase of temperate till 500 K and then maintain a constant value of 80 GPa. Regarding the thermal expansion coefficients, both Nb3Sn and filament phases increase linearly as the temperature increases. Figure 8 (Left) shows good agreement between LETH’s and Boso et al. [13] prediction for the homogenized diagonal elasticity terms,
![Figure 8
Comparison of homogenized main diagonal elasticity terms (Left) and thermal expansion coefficients (Right) generated by LEHT and Boso et al. [13] with
v
f
=
0.42
{v}_{\text{f}}=0.42
for Nb3Sn filaments at microscale.](/document/doi/10.1515/ntrev-2021-0015/asset/graphic/j_ntrev-2021-0015_fig_008.jpg)
Comparison of homogenized main diagonal elasticity terms (Left) and thermal expansion coefficients (Right) generated by LEHT and Boso et al. [13] with
After obtaining the Nb3Sn homogenized mechanical properties and thermal expansion coefficients for the RUC representing a filament group at microscale, the homogenization of multiple filament groups at mesoscale could be conducted for the hexagonal RUC in which a homogenized filament group is embedded in the bronze matrix. It should be noticed that in Boso’s FEA estimation, volume fraction 0.72 is utilized to generate all homogenized mechanical properties, but volume fraction 0.90 is utilized to generate all the homogenized thermal expansion,
![Figure 9
Comparison of homogenized main diagonal elasticity terms (Left) and thermal expansion coefficients (Right) generated by LEHT and Boso et al. [13] with
v
f
=
0.72
{v}_{\text{f}}=0.72
at mesoscale.](/document/doi/10.1515/ntrev-2021-0015/asset/graphic/j_ntrev-2021-0015_fig_009.jpg)
Comparison of homogenized main diagonal elasticity terms (Left) and thermal expansion coefficients (Right) generated by LEHT and Boso et al. [13] with

Comparison of homogenized main diagonal elasticity terms (Left) and thermal expansion coefficients (Right) generated by LEHT and in-house FEA with
5 Results
5.1 Effects of volume fraction and temperature on homogenized thermal conductivities
Figure 11 illustrates the effect of volume fraction of a Nb3Sn filament at microscale on the homogenized axial thermal conductivity

Effects of volume fraction of Nb3Sn filament at microscale and temperature on homogenized thermal conductivity, (Left)
After generating homogenized thermal conductivities of a filament group at microscale, the homogenized thermal conductivities of multiple filament groups can be obtained by analyzing a hexagonal RUC with a circular homogenized filament group embedded in the bronze matrix. Figure 12 shows the effects of mesoscale volume fraction of the homogenized Nb3Sn filament group on the global homogenized thermal conductivities between 5 and 800 K. The mesoscale homogenized thermal conductivity coefficients are first calculated with a given volume fraction of 0.72 between 5 and 800 K. Both the global homogenized axial and transverse thermal conductivities decrease as volume fraction of a homogenized filament group increases. The upper bound of thermal conductivity converges to the thermal conductivity of bronze and the lower bound of thermal conductivity converges to the thermal conductivity of mesoscale homogenized filament group at volume fraction 1. In contrast with the linear relation with the volume fraction for the axial thermal conductivity at a prescribed temperature, the homogenized transverse thermal conductivity varies nonlinearly with the volume fraction at a prescribed temperature.

Effects of volume fraction of mesoscale homogenized Nb3Sn filament group and temperature on the global homogenized thermal conductivity, (Left)
5.2 Effects of volume fraction and temperature on homogenized mechanical properties and thermal expansion coefficients
Figures 13 and 14 illustrate the effect of volume fraction of a Nb3Sn filament and temperature variation on the mesoscale homogenized mechanical properties,

Effects of volume fraction of Nb3Sn filament at microscale and temperature on mesoscale homogenized elasticity terms, (Left)

Effects of volume fraction of Nb3Sn filament at microscale and temperature on mesoscale homogenized thermal expansion coefficients, (Left)
Once the homogenized mechanical properties and thermal expansion coefficients of a filament group on the microscale are available, the global homogenized mechanical properties and thermal expansion coefficients of all the filament groups can be obtained by conducting thermomechanical homogenization towards the hexagonal RUC with a circular homogenized filament group embedded in the bronze matrix. Figures 15 and 16 illustrate the effect of mesoscale volume fraction and temperature variation on the global homogenized mechanical properties,

Effects of volume fraction of mesoscale homogenized Nb3Sn filament group and temperature on the global homogenized elasticity terms, (Left)

Effects of volume fraction of mesoscale homogenized Nb3Sn filament group and temperature on the global homogenized thermal expansion coefficients, (Left)
6 Conclusion
A comprehensive investigation of the homogenized thermal conductivity, mechanical properties, and thermal expansion coefficients has been conducted for the multiscale Nb3Sn filament groups centered in an EAS strand utilized in ITER D-Shape magnet. The filament groups are modelled by two-scale repeating hexagonal unit cells via the Multiphysics LEHT, including thermal conductivity analysis and thermomechanical analysis. First, LEHT’s results are validated against the Finite Element Analysis at both microscale and mesoscale homogenization. Then, a comprehensive parametric study is conducted for Nb3Sn filament groups with the consideration of various volume fractions and temperature on both microscale and mesoscale thermal conductivities, mechanical properties, and thermal expansion coefficients. The principle conclusions of this investigation are as follows:
A comprehensive parametric study is conducted for the first time towards the effects of volume fraction and temperature variation on both mesoscale (a filament group) and global scale (multiple filament group) homogenized thermal conductivities, mechanical properties, and thermal expansion coefficients.
For the micro- and mesoscale thermal conductivity homogenization, the axial thermal conductivity decreases linearly as the increase of volume fraction of Nb3Sn filament or its group, while the transverse thermal conductivity decreases nonlinearly.
For microscale homogenization of a group of Nb3Sn filament, all elasticity terms increase, and all thermal expansion coefficients decrease as the increase of volume fraction, and both variations are much more sensitive to high temperature. For mesoscale homogenization of Nb3Sn filament groups, all elasticity terms increase, and all thermal expansion coefficients decrease as the increase of volume fraction, but the variation is not sensitive to temperature change.
The power of the LEHT technique is not only proved by its accuracy in the multiscale analysis of Nb3Sn filaments through a bottom-up procedure. As is also indicated in the text, the LEHT is also advantageous in its efficiency, which can be utilized and combined with reliable optimization techniques for the materials’ design through a “top-down” procedure. Aiming at certain effective engineering requirements, the micromechanics-oriented optimization would provide a robust tool in varying the microstructural details, such as candidate materials and volume fractions. Most of those analytical scenarios can be even achieved through a PC instead of large-scale workstations.
Acknowledgment
Figures 1–3 in this paper are reprinted from: Boso DP et al. A multilevel homogenized model for superconducting strand thermomechanics. Cryogenics, 2005;45:257–271, [13], with permission from Elsevier.
Appendix
Herein, we list the governing/control equations that are solved through the present technique. The equilibrium equations in the cylindrical coordinate are expressed as [16,32,33]:
where
where the prime superscript stands for the fluctuating components of equations (4a–4c).
where
-
Funding information: G. Wang acknowledges the support of National Natural Science Foundation of China (No. 12002303), the National Key Research and Development Program of China (No. 2020YFA0711701), and Fundamental Research Funds for the Central Universities (2020QNA4016). The corresponding author, W. Tu, acknowledges the support of Jiangsu University Research Initiation Fund for Senior Talents.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Conflict of interest: The authors state no conflict of interest.
References
[1] Sanabria C , Lee PJ , Starch W , Blum T , Devred A , Jewell MC , et al. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full testing in SULTAN: 1. The mechanical role of copper strands in a CICC. Supercond Sci Technol. 2015;28(8):085005.10.1088/0953-2048/28/8/085005Suche in Google Scholar
[2] Sanabria C , Lee PJ , Starch W , Devred A , Larbalestier DC . Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full cyclic testing in SULTAN: III. The importance of strand surface roughness in long twist pitch conductors. Supercond Sci Technol. 2016;29(7):074002.10.1088/0953-2048/29/7/074002Suche in Google Scholar
[3] Gou X-F , Zhuo P-J , Zhou X-X , Schwartz J . Fractal-based analysis of the void microstructure of Bi2Sr2CaCu2Ox superconducting filaments and the caused anomalous thermal diffusion. Comput Mater Sci. 2019;158:219–27.10.1016/j.commatsci.2018.11.009Suche in Google Scholar
[4] Zhou X-X , Xue F , Gou X , Shen T-M . Statistical study of the void structure of Bi− multifilamentary superconducting wires and its effect on the critical current density. Eng Comput. 2019;36(8):2714–25.10.1108/EC-10-2018-0476Suche in Google Scholar
[5] Lee GS , Kim J , Hwang SM , Chang CS , Chang HY , Cho MH , et al. The design of the KSTAR tokamak. Fusion Eng Des. 1999;46(2):405–11.10.1016/S0920-3796(99)00032-0Suche in Google Scholar
[6] Martovetsky N , Manahan R , Lieuke AF . Development of superconducting focusing quadrupoles for heavy ion drivers. IEEE Trans Appl Supercond. 2002;12(1):157–60.10.1109/TASC.2002.1018373Suche in Google Scholar
[7] Schultz JH , Sujan GK . Superconducting wires and cables: high-field applications. Mater Sci Mater Eng. 2016.10.1016/B978-0-12-803581-8.01916-0Suche in Google Scholar
[8] Sanabria C , Lee PJ , Starch W , Devred A , Larbalestier DC . Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full cyclic testing in SULTAN: II. Significant reduction of strand movement and strand damage in short twist pitch CICCs. Supercond Sci Technol. 2015;28(12):125003.10.1088/0953-2048/28/12/125003Suche in Google Scholar
[9] ITER NEWSLINE. Europe completes D-shaped magnet; 2020 March 9. https://www.iter.org/newsline/-/3410 Suche in Google Scholar
[10] Tsuji H , Okuno K , Thome R , Salpietro E , Egorov S , Martovetsky N , et al. Progress of the ITER central solenoid model coil programme. Nucl Fusion. 2001;41(5):645–51.10.1088/0029-5515/41/5/319Suche in Google Scholar
[11] Benjegerdes B , Bish P , Byford D , Caspi S , Chow K , Dietderich D , et al. Fabrication and test of Nb3Sn racetrack coils at high field. IEEE Trans Appl Super. 2001;11(1):2164–7.10.1109/77.920286Suche in Google Scholar
[12] Takeo M , Funaki K , Sato S , Yamafuji K , Iwakuma M , Hiramatsu M , et al. A 17 tesla superconducting magnet with multifilamentary superconductors. IEEE Trans Magn. 1987;23(2):565–78.10.1109/TMAG.1987.1065132Suche in Google Scholar
[13] Boso DP , Lefik M , Schrefler BA . A multilevel homogenised model for superconducting strand thermomechanics. Cryogenics. 2005;45(4):259–71.10.1016/j.cryogenics.2004.09.005Suche in Google Scholar
[14] Liu B , Jing Z , Yong H , Zhou Y . Strain distributions in superconducting strands with twisted filaments. Compos Struct. 2017;174:158–65.10.1016/j.compstruct.2017.04.047Suche in Google Scholar
[15] Boso DP , Lefik M , Schrefler BA . Homogenisation methods for the thermo-mechanical analysis of Nb3Sn strand. Cryogenics. 2006;46(7):569–80.10.1016/j.cryogenics.2006.01.005Suche in Google Scholar
[16] Wang G , Pindera M-J . Locally-exact homogenization theory for transversely isotropic unidirectional composites. Mech Res Commun. 2016;78:2–14.10.1016/j.mechrescom.2015.09.011Suche in Google Scholar
[17] Zhao J , Stenvall A , Gao Y , Salmi T . Analytical and numerical methods to estimate the effective mechanical properties of rutherford cables. IEEE Trans Appl Super. 2020;30(5):1–8.10.1109/TASC.2020.2968924Suche in Google Scholar
[18] Mishnaevsky L Jr . Micromechanics of hierarchical materials: a brief overview. Rev Adv Mater Sci. 2012;30:60–72.Suche in Google Scholar
[19] Pindera M-J , Khatam H , Drago AS , Bansal Y . Micromechanics of spatially uniform heterogeneous media: a critical review and emerging approaches. Compos Part B Eng. 2009;40(5):349–78.10.1016/j.compositesb.2009.03.007Suche in Google Scholar
[20] Chen Q , Wang G , Pindera M-J . Homogenization and localization of nanoporous composites – a critical review and new developments. Compos Part B Eng. 2018;155:329–68.10.1016/j.compositesb.2018.08.116Suche in Google Scholar
[21] Charalambakis N . Homogenization techniques and micromechanics. a survey and perspectives. Appl Mech Rev. 2010;63(3):1–10.10.1115/1.4001911Suche in Google Scholar
[22] Wang G , Chen Q , Gao M , Yang B , Hui D . Generalized locally-exact homogenization theory for evaluation of electric conductivity and resistance of multiphase materials. Nanotechnol Rev. 2020;9(1):1–16.10.1515/ntrev-2020-0001Suche in Google Scholar
[23] Weng GJ . A homogenization scheme for the plastic properties of nanocrystalline materials. Rev Adv Mater Sci. 2009;19(1–2):41–62.Suche in Google Scholar
[24] Feng J , Liang S , Guo X , Zhang Y , Song K . Electrical conductivity anisotropy of copper matrix composites reinforced with SiC whiskers. Nanotechnol Rev. 2019;8(1):285–92.10.1515/ntrev-2019-0027Suche in Google Scholar
[25] Lee S-Y , Hwang J-G . Finite element nonlinear transient modelling of carbon nanotubes reinforced fiber/polymer composite spherical shells with a cutout. Nanotechnol Rev. 2019;8(1):444–51.10.1515/ntrev-2019-0039Suche in Google Scholar
[26] Gao Z , Ren X , Zhang X . Prediction of effective properties for composite superconducting strand and multi-stage cables. Mater Today Commun. 2020;25:101674.10.1016/j.mtcomm.2020.101674Suche in Google Scholar
[27] Boso DP . A simple and effective approach for thermo-mechanical modelling of composite superconducting wires. Supercond Sci Technol. 2013;26(4):045006.10.1088/0953-2048/26/4/045006Suche in Google Scholar
[28] Wang X , Gao Y . Tensile behavior analysis of the Nb3Sn superconducting strand with damage of the filaments. IEEE Trans Appl Super. 2016;26(4):1–4.10.1109/TASC.2015.2509601Suche in Google Scholar
[29] Lenoir G , Manil P , Nunio F , Aubin V . Mechanical behavior laws for multiscale numerical model of Nb3Sn conductors. IEEE Trans Appl Super. 2019;29(5):1–6.10.1109/TASC.2019.2905901Suche in Google Scholar
[30] Hu Q , Wang X , Guan M , Zhou Y . Magneto-mechanical coupling analysis of a superconducting solenoid using FEM with different approaches. IEEE Trans Appl Super. 2020;30(4):1–5.10.1109/TASC.2020.2969402Suche in Google Scholar
[31] Drago AS , Pindera M-J . A locally exact homogenization theory for periodic microstructures with isotropic phases. J Appl Mech. 2008;75(5):0510101–4.10.1115/1.2913043Suche in Google Scholar
[32] Wang G . An efficient analytical homogenization technique for mechanical-hygrothermal responses of unidirectional composites with applications to optimization and multiscale analyses. Chin J Aeronaut. 2019;32(2):382–95.10.1016/j.cja.2018.03.025Suche in Google Scholar
[33] Wang G , Gao M , Yang B , Chen Q . The morphological effect of carbon fibers on the thermal conductive composites. Int J Heat Mass Transf. 2020;152:119477.10.1016/j.ijheatmasstransfer.2020.119477Suche in Google Scholar
[34] Wang G , Pindera M-J . On Boundary condition implementation via variational principles in elasticity-based homogenization. J Appl Mech. 2016;83(10):101008.10.1115/1.4034227Suche in Google Scholar
[35] Chen Q , Pindera M-J . Homogenization and localization of elastic-plastic nanoporous materials with gurtin-murdoch interfaces: an assessment of computational approaches. Int J Plast. 2020;124:42–70.10.1016/j.ijplas.2019.08.004Suche in Google Scholar
[36] Chen Q , Wang G . Computationally-efficient homogenization and localization of unidirectional piezoelectric composites with partially cracked interface. Compos Struct. 2020;232:111452.10.1016/j.compstruct.2019.111452Suche in Google Scholar
[37] Wang G , Chen Q , He Z , Pindera M-J . Homogenized moduli and local stress fields of unidirectional nano-composites. Compos Part B Eng. 2018;138:265–77.10.1016/j.compositesb.2017.11.029Suche in Google Scholar
© 2021 Xiaoyu Zhao et al., published by De Gruyter
This work is licensed under the Creative Commons Attribution 4.0 International License.
Artikel in diesem Heft
- Research Articles
- Improved impedance matching by multi-componential metal-hybridized rGO toward high performance of microwave absorption
- Pure-silk fibroin hydrogel with stable aligned micropattern toward peripheral nerve regeneration
- Effective ion pathways and 3D conductive carbon networks in bentonite host enable stable and high-rate lithium–sulfur batteries
- Fabrication and characterization of 3D-printed gellan gum/starch composite scaffold for Schwann cells growth
- Synergistic strengthening mechanism of copper matrix composite reinforced with nano-Al2O3 particles and micro-SiC whiskers
- Deformation mechanisms and plasticity of ultrafine-grained Al under complex stress state revealed by digital image correlation technique
- On the deformation-induced grain rotations in gradient nano-grained copper based on molecular dynamics simulations
- Removal of sulfate from aqueous solution using Mg–Al nano-layered double hydroxides synthesized under different dual solvent systems
- Microwave-assisted sol–gel synthesis of TiO2-mixed metal oxide nanocatalyst for degradation of organic pollutant
- Electrophoretic deposition of graphene on basalt fiber for composite applications
- Polyphenylene sulfide-coated wrench composites by nanopinning effect
- Thermal conductivity and thermoelectric properties in 3D macroscopic pure carbon nanotube materials
- An effective thermal conductivity and thermomechanical homogenization scheme for a multiscale Nb3Sn filaments
- Friction stir spot welding of AA5052 with additional carbon fiber-reinforced polymer composite interlayer
- Improvement of long-term cycling performance of high-nickel cathode materials by ZnO coating
- Quantum effects of gas flow in nanochannels
- An approach to effectively improve the interfacial bonding of nano-perfused composites by in situ growth of CNTs
- Effects of nano-modified polymer cement-based materials on the bending behavior of repaired concrete beams
- Effects of the combined usage of nanomaterials and steel fibres on the workability, compressive strength, and microstructure of ultra-high performance concrete
- One-pot solvothermal synthesis and characterization of highly stable nickel nanoparticles
- Comparative study on mechanisms for improving mechanical properties and microstructure of cement paste modified by different types of nanomaterials
- Effect of in situ graphene-doped nano-CeO2 on microstructure and electrical contact properties of Cu30Cr10W contacts
- The experimental study of CFRP interlayer of dissimilar joint AA7075-T651/Ti-6Al-4V alloys by friction stir spot welding on mechanical and microstructural properties
- Vibration analysis of a sandwich cylindrical shell in hygrothermal environment
- Water barrier and mechanical properties of sugar palm crystalline nanocellulose reinforced thermoplastic sugar palm starch (TPS)/poly(lactic acid) (PLA) blend bionanocomposites
- Strong quadratic acousto-optic coupling in 1D multilayer phoxonic crystal cavity
- Three-dimensional shape analysis of peripapillary retinal pigment epithelium-basement membrane layer based on OCT radial images
- Solvent regulation synthesis of single-component white emission carbon quantum dots for white light-emitting diodes
- Xanthate-modified nanoTiO2 as a novel vulcanization accelerator enhancing mechanical and antibacterial properties of natural rubber
- Effect of steel fiber on impact resistance and durability of concrete containing nano-SiO2
- Ultrasound-enhanced biosynthesis of uniform ZnO nanorice using Swietenia macrophylla seed extract and its in vitro anticancer activity
- Temperature dependence of hardness prediction for high-temperature structural ceramics and their composites
- Study on the frequency of acoustic emission signal during crystal growth of salicylic acid
- Controllable modification of helical carbon nanotubes for high-performance microwave absorption
- Role of dry ozonization of basalt fibers on interfacial properties and fracture toughness of epoxy matrix composites
- Nanosystem’s density functional theory study of the chlorine adsorption on the Fe(100) surface
- A rapid nanobiosensing platform based on herceptin-conjugated graphene for ultrasensitive detection of circulating tumor cells in early breast cancer
- Improving flexural strength of UHPC with sustainably synthesized graphene oxide
- The role of graphene/graphene oxide in cement hydration
- Structural characterization of microcrystalline and nanocrystalline cellulose from Ananas comosus L. leaves: Cytocompatibility and molecular docking studies
- Evaluation of the nanostructure of calcium silicate hydrate based on atomic force microscopy-infrared spectroscopy experiments
- Combined effects of nano-silica and silica fume on the mechanical behavior of recycled aggregate concrete
- Safety study of malapposition of the bio-corrodible nitrided iron stent in vivo
- Triethanolamine interface modification of crystallized ZnO nanospheres enabling fast photocatalytic hazard-free treatment of Cr(vi) ions
- Novel electrodes for precise and accurate droplet dispensing and splitting in digital microfluidics
- Construction of Chi(Zn/BMP2)/HA composite coating on AZ31B magnesium alloy surface to improve the corrosion resistance and biocompatibility
- Experimental and multiscale numerical investigations on low-velocity impact responses of syntactic foam composites reinforced with modified MWCNTs
- Comprehensive performance analysis and optimal design of smart light pole for cooperative vehicle infrastructure system
- Room temperature growth of ZnO with highly active exposed facets for photocatalytic application
- Influences of poling temperature and elongation ratio on PVDF-HFP piezoelectric films
- Large strain hardening of magnesium containing in situ nanoparticles
- Super stable water-based magnetic fluid as a dual-mode contrast agent
- Photocatalytic activity of biogenic zinc oxide nanoparticles: In vitro antimicrobial, biocompatibility, and molecular docking studies
- Hygrothermal environment effect on the critical buckling load of FGP microbeams with initial curvature integrated by CNT-reinforced skins considering the influence of thickness stretching
- Thermal aging behavior characteristics of asphalt binder modified by nano-stabilizer based on DSR and AFM
- Building effective core/shell polymer nanoparticles for epoxy composite toughening based on Hansen solubility parameters
- Structural characterization and nanoscale strain field analysis of α/β interface layer of a near α titanium alloy
- Optimization of thermal and hydrophobic properties of GO-doped epoxy nanocomposite coatings
- The properties of nano-CaCO3/nano-ZnO/SBR composite-modified asphalt
- Three-dimensional metallic carbon allotropes with superhardness
- Physical stability and rheological behavior of Pickering emulsions stabilized by protein–polysaccharide hybrid nanoconjugates
- Optimization of volume fraction and microstructure evolution during thermal deformation of nano-SiCp/Al–7Si composites
- Phase analysis and corrosion behavior of brazing Cu/Al dissimilar metal joint with BAl88Si filler metal
- High-efficiency nano polishing of steel materials
- On the rheological properties of multi-walled carbon nano-polyvinylpyrrolidone/silicon-based shear thickening fluid
- Fabrication of Ag/ZnO hollow nanospheres and cubic TiO2/ZnO heterojunction photocatalysts for RhB degradation
- Fabrication and properties of PLA/nano-HA composite scaffolds with balanced mechanical properties and biological functions for bone tissue engineering application
- Investigation of the early-age performance and microstructure of nano-C–S–H blended cement-based materials
- Reduced graphene oxide coating on basalt fabric using electrophoretic deposition and its role in the mechanical and tribological performance of epoxy/basalt fiber composites
- Effect of nano-silica as cementitious materials-reducing admixtures on the workability, mechanical properties and durability of concrete
- Machine-learning-assisted microstructure–property linkages of carbon nanotube-reinforced aluminum matrix nanocomposites produced by laser powder bed fusion
- Physical, thermal, and mechanical properties of highly porous polylactic acid/cellulose nanofibre scaffolds prepared by salt leaching technique
- A comparative study on characterizations and synthesis of pure lead sulfide (PbS) and Ag-doped PbS for photovoltaic applications
- Clean preparation of washable antibacterial polyester fibers by high temperature and high pressure hydrothermal self-assembly
- Al 5251-based hybrid nanocomposite by FSP reinforced with graphene nanoplates and boron nitride nanoparticles: Microstructure, wear, and mechanical characterization
- Interlaminar fracture toughness properties of hybrid glass fiber-reinforced composite interlayered with carbon nanotube using electrospray deposition
- Microstructure and life prediction model of steel slag concrete under freezing-thawing environment
- Synthesis of biogenic silver nanoparticles from the seed coat waste of pistachio (Pistacia vera) and their effect on the growth of eggplant
- Study on adaptability of rheological index of nano-PUA-modified asphalt based on geometric parameters of parallel plate
- Preparation and adsorption properties of nano-graphene oxide/tourmaline composites
- A study on interfacial behaviors of epoxy/graphene oxide derived from pitch-based graphite fibers
- Multiresponsive carboxylated graphene oxide-grafted aptamer as a multifunctional nanocarrier for targeted delivery of chemotherapeutics and bioactive compounds in cancer therapy
- Piezoresistive/piezoelectric intrinsic sensing properties of carbon nanotube cement-based smart composite and its electromechanical sensing mechanisms: A review
- Smart stimuli-responsive biofunctionalized niosomal nanocarriers for programmed release of bioactive compounds into cancer cells in vitro and in vivo
- Photoremediation of methylene blue by biosynthesized ZnO/Fe3O4 nanocomposites using Callistemon viminalis leaves aqueous extract: A comparative study
- Study of gold nanoparticles’ preparation through ultrasonic spray pyrolysis and lyophilisation for possible use as markers in LFIA tests
- Review Articles
- Advance on the dispersion treatment of graphene oxide and the graphene oxide modified cement-based materials
- Development of ionic liquid-based electroactive polymer composites using nanotechnology
- Nanostructured multifunctional electrocatalysts for efficient energy conversion systems: Recent perspectives
- Recent advances on the fabrication methods of nanocomposite yarn-based strain sensor
- Review on nanocomposites based on aerospace applications
- Overview of nanocellulose as additives in paper processing and paper products
- The frontiers of functionalized graphene-based nanocomposites as chemical sensors
- Material advancement in tissue-engineered nerve conduit
- Carbon nanostructure-based superhydrophobic surfaces and coatings
- Functionalized graphene-based nanocomposites for smart optoelectronic applications
- Interfacial technology for enhancement in steel fiber reinforced cementitious composite from nano to macroscale
- Metal nanoparticles and biomaterials: The multipronged approach for potential diabetic wound therapy
- Review on resistive switching mechanisms of bio-organic thin film for non-volatile memory application
- Nanotechnology-enabled biomedical engineering: Current trends, future scopes, and perspectives
- Research progress on key problems of nanomaterials-modified geopolymer concrete
- Smart stimuli-responsive nanocarriers for the cancer therapy – nanomedicine
- An overview of methods for production and detection of silver nanoparticles, with emphasis on their fate and toxicological effects on human, soil, and aquatic environment
- Effects of chemical modification and nanotechnology on wood properties
- Mechanisms, influencing factors, and applications of electrohydrodynamic jet printing
- Application of antiviral materials in textiles: A review
- Phase transformation and strengthening mechanisms of nanostructured high-entropy alloys
- Research progress on individual effect of graphene oxide in cement-based materials and its synergistic effect with other nanomaterials
- Catalytic defense against fungal pathogens using nanozymes
- A mini-review of three-dimensional network topological structure nanocomposites: Preparation and mechanical properties
- Mechanical properties and structural health monitoring performance of carbon nanotube-modified FRP composites: A review
- Nano-scale delivery: A comprehensive review of nano-structured devices, preparative techniques, site-specificity designs, biomedical applications, commercial products, and references to safety, cellular uptake, and organ toxicity
- Effects of alloying, heat treatment and nanoreinforcement on mechanical properties and damping performances of Cu–Al-based alloys: A review
- Recent progress in the synthesis and applications of vertically aligned carbon nanotube materials
- Thermal conductivity and dynamic viscosity of mono and hybrid organic- and synthetic-based nanofluids: A critical review
- Recent advances in waste-recycled nanomaterials for biomedical applications: Waste-to-wealth
- Layup sequence and interfacial bonding of additively manufactured polymeric composite: A brief review
- Quantum dots synthetization and future prospect applications
- Approved and marketed nanoparticles for disease targeting and applications in COVID-19
- Strategies for improving rechargeable lithium-ion batteries: From active materials to CO2 emissions
Artikel in diesem Heft
- Research Articles
- Improved impedance matching by multi-componential metal-hybridized rGO toward high performance of microwave absorption
- Pure-silk fibroin hydrogel with stable aligned micropattern toward peripheral nerve regeneration
- Effective ion pathways and 3D conductive carbon networks in bentonite host enable stable and high-rate lithium–sulfur batteries
- Fabrication and characterization of 3D-printed gellan gum/starch composite scaffold for Schwann cells growth
- Synergistic strengthening mechanism of copper matrix composite reinforced with nano-Al2O3 particles and micro-SiC whiskers
- Deformation mechanisms and plasticity of ultrafine-grained Al under complex stress state revealed by digital image correlation technique
- On the deformation-induced grain rotations in gradient nano-grained copper based on molecular dynamics simulations
- Removal of sulfate from aqueous solution using Mg–Al nano-layered double hydroxides synthesized under different dual solvent systems
- Microwave-assisted sol–gel synthesis of TiO2-mixed metal oxide nanocatalyst for degradation of organic pollutant
- Electrophoretic deposition of graphene on basalt fiber for composite applications
- Polyphenylene sulfide-coated wrench composites by nanopinning effect
- Thermal conductivity and thermoelectric properties in 3D macroscopic pure carbon nanotube materials
- An effective thermal conductivity and thermomechanical homogenization scheme for a multiscale Nb3Sn filaments
- Friction stir spot welding of AA5052 with additional carbon fiber-reinforced polymer composite interlayer
- Improvement of long-term cycling performance of high-nickel cathode materials by ZnO coating
- Quantum effects of gas flow in nanochannels
- An approach to effectively improve the interfacial bonding of nano-perfused composites by in situ growth of CNTs
- Effects of nano-modified polymer cement-based materials on the bending behavior of repaired concrete beams
- Effects of the combined usage of nanomaterials and steel fibres on the workability, compressive strength, and microstructure of ultra-high performance concrete
- One-pot solvothermal synthesis and characterization of highly stable nickel nanoparticles
- Comparative study on mechanisms for improving mechanical properties and microstructure of cement paste modified by different types of nanomaterials
- Effect of in situ graphene-doped nano-CeO2 on microstructure and electrical contact properties of Cu30Cr10W contacts
- The experimental study of CFRP interlayer of dissimilar joint AA7075-T651/Ti-6Al-4V alloys by friction stir spot welding on mechanical and microstructural properties
- Vibration analysis of a sandwich cylindrical shell in hygrothermal environment
- Water barrier and mechanical properties of sugar palm crystalline nanocellulose reinforced thermoplastic sugar palm starch (TPS)/poly(lactic acid) (PLA) blend bionanocomposites
- Strong quadratic acousto-optic coupling in 1D multilayer phoxonic crystal cavity
- Three-dimensional shape analysis of peripapillary retinal pigment epithelium-basement membrane layer based on OCT radial images
- Solvent regulation synthesis of single-component white emission carbon quantum dots for white light-emitting diodes
- Xanthate-modified nanoTiO2 as a novel vulcanization accelerator enhancing mechanical and antibacterial properties of natural rubber
- Effect of steel fiber on impact resistance and durability of concrete containing nano-SiO2
- Ultrasound-enhanced biosynthesis of uniform ZnO nanorice using Swietenia macrophylla seed extract and its in vitro anticancer activity
- Temperature dependence of hardness prediction for high-temperature structural ceramics and their composites
- Study on the frequency of acoustic emission signal during crystal growth of salicylic acid
- Controllable modification of helical carbon nanotubes for high-performance microwave absorption
- Role of dry ozonization of basalt fibers on interfacial properties and fracture toughness of epoxy matrix composites
- Nanosystem’s density functional theory study of the chlorine adsorption on the Fe(100) surface
- A rapid nanobiosensing platform based on herceptin-conjugated graphene for ultrasensitive detection of circulating tumor cells in early breast cancer
- Improving flexural strength of UHPC with sustainably synthesized graphene oxide
- The role of graphene/graphene oxide in cement hydration
- Structural characterization of microcrystalline and nanocrystalline cellulose from Ananas comosus L. leaves: Cytocompatibility and molecular docking studies
- Evaluation of the nanostructure of calcium silicate hydrate based on atomic force microscopy-infrared spectroscopy experiments
- Combined effects of nano-silica and silica fume on the mechanical behavior of recycled aggregate concrete
- Safety study of malapposition of the bio-corrodible nitrided iron stent in vivo
- Triethanolamine interface modification of crystallized ZnO nanospheres enabling fast photocatalytic hazard-free treatment of Cr(vi) ions
- Novel electrodes for precise and accurate droplet dispensing and splitting in digital microfluidics
- Construction of Chi(Zn/BMP2)/HA composite coating on AZ31B magnesium alloy surface to improve the corrosion resistance and biocompatibility
- Experimental and multiscale numerical investigations on low-velocity impact responses of syntactic foam composites reinforced with modified MWCNTs
- Comprehensive performance analysis and optimal design of smart light pole for cooperative vehicle infrastructure system
- Room temperature growth of ZnO with highly active exposed facets for photocatalytic application
- Influences of poling temperature and elongation ratio on PVDF-HFP piezoelectric films
- Large strain hardening of magnesium containing in situ nanoparticles
- Super stable water-based magnetic fluid as a dual-mode contrast agent
- Photocatalytic activity of biogenic zinc oxide nanoparticles: In vitro antimicrobial, biocompatibility, and molecular docking studies
- Hygrothermal environment effect on the critical buckling load of FGP microbeams with initial curvature integrated by CNT-reinforced skins considering the influence of thickness stretching
- Thermal aging behavior characteristics of asphalt binder modified by nano-stabilizer based on DSR and AFM
- Building effective core/shell polymer nanoparticles for epoxy composite toughening based on Hansen solubility parameters
- Structural characterization and nanoscale strain field analysis of α/β interface layer of a near α titanium alloy
- Optimization of thermal and hydrophobic properties of GO-doped epoxy nanocomposite coatings
- The properties of nano-CaCO3/nano-ZnO/SBR composite-modified asphalt
- Three-dimensional metallic carbon allotropes with superhardness
- Physical stability and rheological behavior of Pickering emulsions stabilized by protein–polysaccharide hybrid nanoconjugates
- Optimization of volume fraction and microstructure evolution during thermal deformation of nano-SiCp/Al–7Si composites
- Phase analysis and corrosion behavior of brazing Cu/Al dissimilar metal joint with BAl88Si filler metal
- High-efficiency nano polishing of steel materials
- On the rheological properties of multi-walled carbon nano-polyvinylpyrrolidone/silicon-based shear thickening fluid
- Fabrication of Ag/ZnO hollow nanospheres and cubic TiO2/ZnO heterojunction photocatalysts for RhB degradation
- Fabrication and properties of PLA/nano-HA composite scaffolds with balanced mechanical properties and biological functions for bone tissue engineering application
- Investigation of the early-age performance and microstructure of nano-C–S–H blended cement-based materials
- Reduced graphene oxide coating on basalt fabric using electrophoretic deposition and its role in the mechanical and tribological performance of epoxy/basalt fiber composites
- Effect of nano-silica as cementitious materials-reducing admixtures on the workability, mechanical properties and durability of concrete
- Machine-learning-assisted microstructure–property linkages of carbon nanotube-reinforced aluminum matrix nanocomposites produced by laser powder bed fusion
- Physical, thermal, and mechanical properties of highly porous polylactic acid/cellulose nanofibre scaffolds prepared by salt leaching technique
- A comparative study on characterizations and synthesis of pure lead sulfide (PbS) and Ag-doped PbS for photovoltaic applications
- Clean preparation of washable antibacterial polyester fibers by high temperature and high pressure hydrothermal self-assembly
- Al 5251-based hybrid nanocomposite by FSP reinforced with graphene nanoplates and boron nitride nanoparticles: Microstructure, wear, and mechanical characterization
- Interlaminar fracture toughness properties of hybrid glass fiber-reinforced composite interlayered with carbon nanotube using electrospray deposition
- Microstructure and life prediction model of steel slag concrete under freezing-thawing environment
- Synthesis of biogenic silver nanoparticles from the seed coat waste of pistachio (Pistacia vera) and their effect on the growth of eggplant
- Study on adaptability of rheological index of nano-PUA-modified asphalt based on geometric parameters of parallel plate
- Preparation and adsorption properties of nano-graphene oxide/tourmaline composites
- A study on interfacial behaviors of epoxy/graphene oxide derived from pitch-based graphite fibers
- Multiresponsive carboxylated graphene oxide-grafted aptamer as a multifunctional nanocarrier for targeted delivery of chemotherapeutics and bioactive compounds in cancer therapy
- Piezoresistive/piezoelectric intrinsic sensing properties of carbon nanotube cement-based smart composite and its electromechanical sensing mechanisms: A review
- Smart stimuli-responsive biofunctionalized niosomal nanocarriers for programmed release of bioactive compounds into cancer cells in vitro and in vivo
- Photoremediation of methylene blue by biosynthesized ZnO/Fe3O4 nanocomposites using Callistemon viminalis leaves aqueous extract: A comparative study
- Study of gold nanoparticles’ preparation through ultrasonic spray pyrolysis and lyophilisation for possible use as markers in LFIA tests
- Review Articles
- Advance on the dispersion treatment of graphene oxide and the graphene oxide modified cement-based materials
- Development of ionic liquid-based electroactive polymer composites using nanotechnology
- Nanostructured multifunctional electrocatalysts for efficient energy conversion systems: Recent perspectives
- Recent advances on the fabrication methods of nanocomposite yarn-based strain sensor
- Review on nanocomposites based on aerospace applications
- Overview of nanocellulose as additives in paper processing and paper products
- The frontiers of functionalized graphene-based nanocomposites as chemical sensors
- Material advancement in tissue-engineered nerve conduit
- Carbon nanostructure-based superhydrophobic surfaces and coatings
- Functionalized graphene-based nanocomposites for smart optoelectronic applications
- Interfacial technology for enhancement in steel fiber reinforced cementitious composite from nano to macroscale
- Metal nanoparticles and biomaterials: The multipronged approach for potential diabetic wound therapy
- Review on resistive switching mechanisms of bio-organic thin film for non-volatile memory application
- Nanotechnology-enabled biomedical engineering: Current trends, future scopes, and perspectives
- Research progress on key problems of nanomaterials-modified geopolymer concrete
- Smart stimuli-responsive nanocarriers for the cancer therapy – nanomedicine
- An overview of methods for production and detection of silver nanoparticles, with emphasis on their fate and toxicological effects on human, soil, and aquatic environment
- Effects of chemical modification and nanotechnology on wood properties
- Mechanisms, influencing factors, and applications of electrohydrodynamic jet printing
- Application of antiviral materials in textiles: A review
- Phase transformation and strengthening mechanisms of nanostructured high-entropy alloys
- Research progress on individual effect of graphene oxide in cement-based materials and its synergistic effect with other nanomaterials
- Catalytic defense against fungal pathogens using nanozymes
- A mini-review of three-dimensional network topological structure nanocomposites: Preparation and mechanical properties
- Mechanical properties and structural health monitoring performance of carbon nanotube-modified FRP composites: A review
- Nano-scale delivery: A comprehensive review of nano-structured devices, preparative techniques, site-specificity designs, biomedical applications, commercial products, and references to safety, cellular uptake, and organ toxicity
- Effects of alloying, heat treatment and nanoreinforcement on mechanical properties and damping performances of Cu–Al-based alloys: A review
- Recent progress in the synthesis and applications of vertically aligned carbon nanotube materials
- Thermal conductivity and dynamic viscosity of mono and hybrid organic- and synthetic-based nanofluids: A critical review
- Recent advances in waste-recycled nanomaterials for biomedical applications: Waste-to-wealth
- Layup sequence and interfacial bonding of additively manufactured polymeric composite: A brief review
- Quantum dots synthetization and future prospect applications
- Approved and marketed nanoparticles for disease targeting and applications in COVID-19
- Strategies for improving rechargeable lithium-ion batteries: From active materials to CO2 emissions