Home Crystal structure of 2-hydroxyethyl-triphenylphosphonium tetracyanidoborate, C24H20BN4OP
Article Open Access

Crystal structure of 2-hydroxyethyl-triphenylphosphonium tetracyanidoborate, C24H20BN4OP

  • Anke Topp , Lukas Konstantin and Martin Köckerling ORCID logo EMAIL logo
Published/Copyright: April 15, 2025

Abstract

C24H20BN4OP, monoclinic, P21/n (no. 14), a = 14.1418(2) Å, b = 10.5821(1) Å, c = 15.4684(2) Å, β = 94.622(1)°, V = 2307.32(5) Å3, Z = 4, R gt (F) = 0.0203, wRref = 0.0408, T = 293(2) K.

CCDC no.: 2439249

The molecular structure is shown in the figure 12 . Table 1 contains the crystallographic data. The list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Colourless irregular block
Size: 0.42 × 0.37 × 0.31 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.14 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω scans
θmax, completeness: 27.0°, 99 %
N(hkl)measured, N(hkl)unique, Rint: 33743, 4994, 0.024
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 4,120
N(param)refined: 460
Programs: Bruker, 1 SHELX, 2 Olex2 5

1 Source of materials

Equivalent amounts of K[B(CN)4] (250 mg, 1.624 mmol) and commercial [nPrPh3P]Br (626 mg), which was shown after the X-ray structure determination to contain a larger amount of 2-hydroxyethyl-triphenyl-phosphonium bromide as “impurity”, have been separately dissolved in acetonitrile (15 ml). Both colourless solutions were combined and stirred for approximately 5 min. The precipitated KBr was removed by centrifugation. The solvent of the decanted liquid was evaporated under reduced pressure by using a rotary evaporator. A colourless solid remained, which has been washed with diethylether (20 ml) and dried under reduced pressure. The recrystallization from CH3CN resulted in the growth of single crystals.

2 Experimental details

X-ray diffraction data were collected on a Bruker–Nonius Apex-II diffractometer. The Multi-scan method (SADABS) was used for absorption correction. 1 The structure solution and first structure refinements were carried out using the SHELX suite of programs (version 2014-2). 2 The final refinement of the structure were done applying the Hirshfeld atom refinement (HAR) method 3 via the NoSpherA2 procedure 4 within Olex2 (vers. 1.5). 5 The full asymmetric unit as obtained from the Shelx refinements was used as the initial fragment for HAR refinements. The ORCA quantum chemistry program package (vers. 6.0.1) 6 was used for wave function calculations. According to this procedure the hydrogen atoms were refined anisotropically.

3 Comment

Salts with the tetracyanidoborate anion, [B(CN)4], have attracted significant scientific and commercial interest due to their extraordinary properties. 7 , 8 These include high thermal and electrochemical stability as well as weak coordination abilities, making them useful e.g. in supercapacitors or dye-sensitive solar cells. 9 , 10 High temperature stability has been reported especially for tetracyanidoborates with phosphonium-based cations. 11

This contribution reports about the so far not published room-temperature structure of 2-hydroxyethyl-triphenyl-phosphonium tetracyanidoborate. The asymmetric unit of the title structure contains one 2-hydroxyethyl-triphenyl-phosphonium cation and one tetracyanidoborate anion, i.e. one molecular formula. The bond lengths and angles within the two ions are within the expected ranges. The arrangement of the C atoms around B1 deviates from ideal Td with C–B1–C angles ranging from 108.33(7)° to 111.20(7)°. The H atom attached to O1 is involved in a hydrogen bond to one of the N atoms of the anion shown as red dashed line in the figure. The O1⋯N1 distance is 2.9147(9) Å. The ions are arranged within the unit cell, such that chains of anions and cations exist, which are arranged in rows running along the crystallographic b direction.


Corresponding author: Martin Köckerling, Anorganische Festkörperchemie, Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, D-18059, Rostock, Germany, E-mail:

Acknowledgments

We thank Guido J. Reiss (Heinrich–Heine–Universität Düsseldorf/Germany for helpful information and discussions. We gratefully acknowledge financial support by the German Research Foundation (DFG).

References

1. Bruker AXS Inc. Apex-II; SMART, SAINT, SADABS and SHELXTL; Madison, Wisconsin, USA, 2012.Search in Google Scholar

2. Sheldrick, G. M. SHELXS/L (release 2014-2), Programs for Crystal Structure Determination; University of Göttingen: Göttingen, 2014.Search in Google Scholar

3. Capelli, S. C.; Bürgi, H.-B.; Dittrich, B.; Grabowsky, S.; Jayatilaka, D. Hirshfeld Atom Refinement. IUCrJ 2014, 1, 361–379; https://doi.org/10.1107/s2052252514014845.Search in Google Scholar

4. Kleemiss, F.; Dolomanov, O. V.; Bodensteiner, M.; Peyerimhoff, N.; Midgley, L.; Bourhis, L. J.; Genoni, A.; Malaspina, L. A.; Jayatilaka, D.; Spencer, J. L.; White, F.; Grundkoetter-Stock, B.; Steinhauer, S.; Lentz, D.; Puschmann, H.; Grabowsky, S. Accurate Crystal Structures and Chemical Properties from NoSpherA2. Chem. Sci. 2021, 12, 1675–1692; https://doi.org/10.1039/d0sc05526c.Search in Google Scholar

5. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

6. Neese, F. Software Update: The ORCA Program System, Version 5.0. WIREs Comput. Molec. Sci. 2022, 12, e1606; https://doi.org/10.1002/wcms.1606.Search in Google Scholar

7. Bernhardt, E.; Henkel, G.; Willner, H. Die Tetracyanoborate M[B(CN)4], M = [Bu4N]+, Ag+, K+. Z. Anorg. Allg. Chem. 2000, 626, 560–568; https://doi.org/10.1002/(sici)1521-3749(200002)626:2<560::aid-zaac560>3.0.co;2-e.10.1002/(SICI)1521-3749(200002)626:2<560::AID-ZAAC560>3.0.CO;2-ESearch in Google Scholar

8. Ignatév, N. V.; Finze, M. Cyanoborates. Eur. J. Inorg. Chem. 2019, 31, 3539–3560; https://doi.org/10.1002/ejic.201900403.Search in Google Scholar

9. Marszalek, M.; Fei, Z.; Zhu, D.-R.; Scopelliti, R.; Dyson, P. J.; Zakeeruddin, S. M.; Grätzel, M. Die Tetracyanoborate M[B(CN)4], M = [Bu4N]+, Ag+, K+. Inorg. Chem. 2011, 50, 11561–11567; https://doi.org/10.1021/ic201513m.Search in Google Scholar

10. Martins, V. L.; Rennie, A. J. R.; Sanchez–Ramirez, N.; Torresi, R. M.; Hall, P. J. Improved Performance of Ionic Liquid Supercapacitors by Using Tetracyanoborate Anions. ChemElectroChem 2018, 5, 598–604; https://doi.org/10.1002/celc.201701164.Search in Google Scholar

11. Flemming, A.; Hoffmann, M.; Köckerling, M. Tetracyanidoborates with Sterically Demanding Phosphonium Cations – Thermally Resistant Lonic Liquids. Z. Anorg. Allg. Chem. 2010, 636, 562–568; https://doi.org/10.1002/zaac.200900469.Search in Google Scholar

12. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System. Ver. 4.6.8 Crystal Impact; Bonn, Germany, 2015.Search in Google Scholar

Received: 2025-01-06
Accepted: 2025-03-31
Published Online: 2025-04-15
Published in Print: 2025-06-26

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of 5,5′-bis(2,4,6-trinitrophenyl)-2,2′-bi(1,3,4-oxadiazole), C16H4N10O14
  4. Crystal structure of catena-poly[(μ3-4,4′-oxydibenzoato- κ5 O,O: O,O:O)-bis(2,4,6-tri(3-pyridine)-1,3,5-triazine-κ1 N)cadmium(II)], C50H32CdN12O5
  5. The crystal structure of 1,4-diazepane-1,4-diium potassium trinitrate, C5H14KN5O9
  6. The crystal structure of benzyl 2,2,5,5-tetramethylthiazolidine-4-carboxylate, C15H21NO2S
  7. Crystal structure of 2-hydroxyethyl-triphenylphosphonium tetracyanidoborate, C24H20BN4OP
  8. The crystal structure of 1-methyl-3-(N-methylnitrous amide–N-methylene) imidazolidine-2,4,5-trione
  9. Crystal structure of N-((3-cyano-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-(2,2,2-trifluoroacetyl)-1H-pyrazol-5-yl)carbamoyl)-2,6-difluorobenzamide, C20H7Cl2F8N5O3S
  10. Crystal structure of 5-(2,2-difluoropropyl)-5-methylbenzo[4,5]imidazo[2,1-a] isoquinolin-6(5H)-one, C20H18F2N2O
  11. The crystal structure of N′,N″-[1,2-bis(4-chlorophenyl)ethane-1,2-diylidene]bis(furan-2- carbohydrazide), C24H16Cl2N4O4
  12. Crystal structure of [(4-bromobenzyl)triphenylphosphonium] tetrabromoantimony(III), [C25H21BrP]+[SbBr4]
  13. Crystal structure of [(4-bromobenzyl)triphenylphosphonium] tetrabromidoindium(III), [C25H21BrP]+[InBr4]
  14. The crystal structure of 4-carboxy-2-oxobutan-1-aminium chloride, C5H10ClNO3
  15. Crystal structure of (4-(4-chlorophenyl)-1H-pyrrole-3-carbonyl)ferrocene, C21H16ClFeNO
  16. The crystal structure of dichlorido(η6-p-cymene)(triphenylarsine)ruthenium(II), C28H29AsCl2Ru
  17. Crystal structure of (Z)-2-hydroxy-N′-(1-(o-tolyl)ethylidene)benzohydrazide, C16H16N2O2
  18. The crystal structure of 10-(1-bromoethyl)-14-(bromomethyl)dibenzo[a, c]acridine, C24H17NBr2
  19. Synthesis and crystal structure of 6-methoxy-7-[(4-methoxyphenyl)methoxy]-2H-1-benzopyran-2-one, C18H16O5
  20. Synthesis and crystal structure of ethyl 4-((4-trifluoromethylbenzyl)amino)benzo, C17H16F3NO2
  21. The crystal structure of (Z)-2-(tert-butyl)-6-(7-(tert-butyl)-5-methylbenzo[d][1,3]oxathiol-2-ylidene)-4-methylcyclohexa-2,4-dien-1-one, C23H28O2S
  22. The crystal structure of (R)-2-aminobutanamide hydrochloride, C4H11ClN2O
  23. Crystal structure of bromido[hydridotris(3-tert-butyl-5-isopropylpyrazolyl)borato-κ3 N,N′,N″]copper(II), C30H52BBrCuN6
  24. Crystal structure of chlorido{hydridotris[3-mesityl-5-methyl-1H-pyrazol-1-yl-κN3]borato}-copper(II) dichloromethane monosolvate
  25. Crystal structure of 4-[3,5-bis(propan-2-yl)-1H-pyrazol-4-yl]pyridine, C14H19N3
  26. Crystal structure of ((4-(4-bromophenyl)-1H-pyrrol-3-yl)methyl)ferrocene, C21H16BrFeNO
  27. Crystal structure of [(4-chlorobenzyl)triphenylphosphonium] dichloridocopper(I), {[C25H21ClP]+[CuCl2]}n
  28. The crystal structure of {Cu(2,9-diisopropyl-4,7-diphenyl-1,10-phenanthroline)[4,5-bis(diphenylphosphino)-9,9-dimethylxanthene]}+ PF6·1.5(EtOAC)
  29. Crystal structure of 3,5-bis(t-butyl)-1H-pyrazol-4-amine, C11H21N3
  30. Crystal structure of [(2,4-dichlorobenzyl)triphenylphosphonium] trichloridocopper(II), [C25H20Cl2P]+[CuCl3]
  31. The crystal structure of dipotassium sulfide, K2S
  32. Crystal structure of (4-(4-methoxyphenyl)-1H-pyrrole-3-carbonyl)ferrocene, C22H19FeNO2
  33. Crystal structure of (E)-6-(4-methylpiperazin-1-yl)-2-(4-(trifluoromethyl)benzylidene)-3, 4-dihydronaphthalen-1(2H)-one, C23H23F3N2O
  34. Crystal structure of (E)-6-morpholino-2-(4-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C22H20F3NO2
  35. Crystal structure of Ce9Ir37Ge25
  36. The crystal structure of ethyl 6-(2-nitrophenyl)imidazo[2,1-b]thiazole-3-carboxylate, C14H11N3O4S
  37. Crystal structure of (4-(4-isopropylphenyl)-1H-pyrrol-3-yl)(ferrocenyl)methanone, C24H23FeNO
  38. Crystal structure of bis(methylammonium) tetrathiotungstate(VI), (CH3NH3)2[WS4]
  39. Crystal structure of 6,11-dihydro-12H-benzo[e]indeno[1,2-b]oxepin-12-one, C17H12O2
  40. Crystal structure of 3-[(4-phenylpiperidin-1-yl)methyl]-5-(thiophen-2-yl)-2,3-dihydro-1,3,4- oxadiazole-2-thione, C18H19N3OS2
  41. Crystal structure of N-isopropyl-1,8-naphthalimide C15H13NO2
  42. TiNiSi-type EuPdBi
  43. Crystal structure of 1-(p-tolylphenyl)-4-(2-thienoyl)-3-methyl-1H-pyrazol-5-ol, C16H14N2O2S
  44. The crystal structure of 3-(3-carboxypropyl)-2-nitro-1H-pyrrole 1-oxide, C7H9N3O5
  45. The crystal structure of tetraaqua-bis(2-(2-methyl-5-nitro-1H-imidazol-1-yl)acetato-k2O:N)-tetrakis(2-(2-methyl-5-nitro-1H-imidazol-1-yl)acetato-k1N)trizinc(II) hexahydrate C36H52N18O32Zn3
  46. The crystal structure of 4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 4-hydroxy-3,5-dimethoxybenzoate monohydrate, C25H30FN3O9
  47. Crystal structure of bis(DL-1-carboxy-2-(1H-indol-3-yl)ethan-1-aminium) oxalate — acetic acid (1/2)
  48. Crystal structure of methyl (E)-4-((4-methylphenyl)sulfonamido)but-2-enoate, C12H15NO4S
  49. The crystal structure of actarit, C10H11NO3
  50. The crystal structure of bicyclol, C19H18O9
  51. The crystal structure of topiroxostat, C13H8N6
  52. Crystal structure of 2,2-dichloro-N-methyl-N-(4-p-tolylthiazol-2-yl)acetamide, C13H12Cl2N2OS
  53. Crystal structure of 4-(trifluoromethyl)-7-coumarinyl trifluoromethanesulfonate C11H4F6O5S
  54. Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O6)-((Z)-N,N′-bis(2-(dimethylamino)phenyl)carbamimidato-κ1N)potassium(I)
  55. Crystal structure of (Z)-2-(5-((4-(dimethylamino)naphthalen-1-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid, C18H16N2O3S2
  56. Crystal structure of (4-fluorobenzyl)triphenylphosphonium bromide, C25H21BrFP
  57. The crystal structure of dichlorido-[6-(pyridin-2-yl)phenanthridine-κ2N, N′]zinc(II)-chloroform (1/1), C19H13N2ZnCl5
  58. Crystal structure of (E)-(3-(2,4-dichlorophenyl)acryloyl)ferrocene, C19H14Cl2FeO
  59. The crystal structure of (E)-7-chloro-1-cyclopropyl-6-fluoro-3-((2-hydroxybenzylidene)amino)quinolin-4(1H)-one, C19H14ClFN2O2
  60. Crystal structure of 2-bromo-11-(((fluoromethyl)sulfonyl)methyl)-6-methyl-6,11-dihydrodibenzo[c,f][1,2]thiazepine 5,5-dioxide, C16H13BrFNO4S2
  61. Crystal structure of 2-chloro-11-(((fluoromethyl)sulfonyl)methyl)-6-methyl-6,11-dihydrodibenzo[c,f][1,2]thiazepine 5,5-dioxide, C16H13ClFNO4S2
  62. Crystal structure of 5-(2,2-difluoropropyl)-5-methyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline-3-carbonitrile, C20H15F2N3O
Downloaded on 16.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0009/html?srsltid=AfmBOorzlK45URNvgBXpV1_YUIITAHx27bPt0x2NpacFxHDFXI-wB_sY
Scroll to top button