Home Physical Sciences The crystal structure of 1,4-diazepane-1,4-diium potassium trinitrate, C5H14KN5O9
Article Open Access

The crystal structure of 1,4-diazepane-1,4-diium potassium trinitrate, C5H14KN5O9

  • Jun-Ying Wu ORCID logo EMAIL logo , Yi-Ping Shang , Jun-Jian Li , Dan-Yang Liu and Lang Chen
Published/Copyright: February 21, 2025

Abstract

C5H14KN5O9, monoclinic, P21/c, a = 9.3820(3) Å, b = 9.3372(3) Å, c = 14.1593(5) Å, β = 98.916°, V = 1225.39 Å3, Z = 4, Rgt(F) = 0.0249, wRref(F2) = 0.0640, T = 100 K.

CCDC no.: 2405709

The figure shows the thermal ellipsoid plot of asymmetric unit of a crystal structure with an ellipsoid ratio of 50 %.

1 Source of materials

1.002 g Homopiperazine (10 mmol), 1.011 g KNO3 (10 mmol), and 1.983 g nitric acid (20 mmol) solids were dissolved into the 40 ml H2O and stirred continuously at 50 °C for 30 min. The above mixture solution was slowly evaporated at room temperature for 2 weeks to get colorless and clear crystals.

2 Experimental details

A summary of the crystal parameters, data acquisition, and refinement procedures can be found in Table 1 and the list of the atoms including atomic coordinates and displacement parameters can be found in Table 2. The multi-scan absorption correction was carried out by the SADABS 1 software. The initial structure determination was conducted via the Intrinsic Phasing technique within the OLEX2 2 interface by ShelXT. 3 Subsequent refinement was performed using the ShelXL. 4 Hydrogen atoms were positioned on the basis of riding model while their equivalent temperature factors (Ueq) set to 1.2 or 1.5 times those of respective parent atoms. These hydrogen atoms were then refined to convergence alongside the isotropic and anisotropic non-hydrogen atoms.

Table 1:

Data collection and handling.

Crystal: Block
Size: 0.20 × 0.17 × 0.15 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.49 mm−1
Diffractometer, scan mode: XtaLAB Synergy R, φ and ω scans
θmax, completeness: 25.0°, 100 %
N(hkl)measured, N(hkl)unique, Rint: 7141, 2152, 0.025
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 1,984
N(param)refined: 181
Programs: Rigaku 1 , SHELX 3
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
K1 0.75066 (3) 0.76843 (3) 0.71592 (2) 0.01114 (11)
O1 1.06577 (11) 0.84480 (11) 0.79407 (7) 0.0137 (2)
O2 0.91516 (11) 1.01687 (11) 0.74704 (7) 0.0145 (2)
O3 1.09278 (11) 1.05463 (11) 0.86241 (7) 0.0149 (2)
O4 0.62558 (12) 0.50245 (12) 0.71879 (8) 0.0182 (3)
O5 0.52965 (11) 0.37818 (12) 0.82235 (7) 0.0161 (2)
O6 0.40946 (11) 0.55150 (12) 0.74667 (8) 0.0178 (3)
O7 0.66752 (12) 0.78384 (12) 0.52272 (7) 0.0182 (3)
O8 0.82679 (11) 0.77248 (12) 0.42626 (8) 0.0197 (3)
O9 0.60395 (11) 0.72022 (12) 0.37493 (8) 0.0180 (3)
N1 1.02530 (13) 0.97248 (13) 0.80123 (9) 0.0103 (3)
N2 0.52172 (13) 0.47851 (13) 0.76220 (9) 0.0110 (3)
N3 0.70080 (13) 0.75982 (13) 0.44227 (9) 0.0111 (3)
N4 0.20570 (13) 0.72462 (13) 0.62830 (9) 0.0101 (3)
H4A 0.298045 0.747168 0.653762 0.012*
H4B 0.160077 0.695140 0.677098 0.012*
N5 0.32914 (13) 0.71445 (13) 0.43029 (9) 0.0108 (3)
H5A 0.254849 0.688982 0.384147 0.013*
H5B 0.411584 0.710281 0.403971 0.013*
C1 0.33965 (15) 0.60694 (16) 0.50904 (10) 0.0119 (3)
H1A 0.426192 0.628677 0.556321 0.014*
H1B 0.353545 0.510945 0.482206 0.014*
C2 0.20934 (16) 0.60190 (15) 0.56038 (10) 0.0111 (3)
H2A 0.120475 0.603556 0.512483 0.013*
H2B 0.210519 0.510804 0.596269 0.013*
C3 0.13251 (16) 0.85772 (15) 0.58571 (10) 0.0122 (3)
H3A 0.167891 0.940234 0.626641 0.015*
H3B 0.027611 0.848746 0.586690 0.015*
C4 0.15577 (15) 0.88981 (16) 0.48338 (10) 0.0114 (3)
H4C 0.088019 0.829531 0.439799 0.014*
H4D 0.128505 0.990888 0.469315 0.014*
C5 0.30638 (16) 0.86704 (15) 0.45881 (11) 0.0117 (3)
H5C 0.320836 0.931585 0.405640 0.014*
H5D 0.378858 0.892078 0.514890 0.014*

3 Comment

Molecular perovskite high-energetic materials are synthesized by simple and green methods without organic solvents, heavy metals, toxic organic components, or any explosive precursors. 5 , 6 , 7 They have a good oxygen balance, high crystal density, good stability, high packing coefficient, excellent environmental tolerance and low mechanical sensitivity, which shows great potential in the field of energetic materials. 8 , 9 , 10 , 11 Perovskite materials have excellent structural tunability. By regulating the A, B, and X sites of their structure, the photoelectric, catalytic, energy, and electromagnetic properties of the material can be controlled. 11 In this work, we regulated the A-site of perovskite structure to obtain better oxygen balance characteristics of high-energetic materials. The structure of the synthesized sample has a different A-site compared to the literature, while the B and X sites are the same. 12

The molecular perovskite energetic materials take 1,4-diazepane-1,4-diium as the A-site, potassium ions as the B-site, and nitrate as the X-site, respectively. The 1,4-diazepane-1,4-diium consists of a seven-membered ring with five carbon atoms and two nitrogen atoms. In the 1,4-diazepane-1,4-diium cation, the bond lengths of C1–C2, C4–C5 and C4–C3 are 1.517, 1.522 and 1.528 Å, respectively. Meanwhile, the three nitrate groups serve as the bridges, forming a framework of perovskite with K ions.


Corresponding authors: Jun-Ying Wu, State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing, China, E-mail: (J.-Y. Wu)

References

1. Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. Comparison of Silver and Molybdenum Microfocus X-Ray Sources for Single-Crystal Structure Determination. J. Appl. Crystallogr. 2015, 48 (1), 3–10. https://doi.org/10.1107/s1600576714022985.Search in Google Scholar

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42 (2), 339–341. https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. SHELXT Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found. Adv. 2015, 71 (Pt 1), 3–8. https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

4. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71 (1), 3–8. https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Feng, Y.; Zhang, J.; Cao, W.; Zhang, J.; Shreeve, J. M. A Promising Perovskite Primary Explosive. Nat. Commun. 2023, 14 (1), 7765. https://doi.org/10.1038/s41467-023-43320-0.Search in Google Scholar PubMed PubMed Central

6. Chen, S. L.; Yang, Z. R.; Wang, B. J.; Shang, Y.; Sun, L. Y.; Zhou, H. L.; Zhang, W. X.; Chen, X. M. Molecular Perovskite High-Energetic Materials. Sci. China Mater. 2018, 1123–1128. https://doi.org/10.1007/s40843-017-9219-9.Search in Google Scholar

7. Xu, J.; Zheng, S.; Huang, S.; Tian, Y.; Liu, Y.; Zhang, H.; Sun, J. Host-Guest Energetic Materials Constructed by Incorporating Oxidizing Gas Molecules into an Organic Lattice Cavity Toward Achieving Highly-Energetic and Low-Sensitivity Performance. Chem. Commun. 2019, 55 (7), 909–9012. https://doi.org/10.1039/c8cc07347c.Search in Google Scholar PubMed

8. Shang, Y.; Huang, R. K.; Chen, S. L.; He, C. T.; Yu, Z. H.; Ye, Z. M.; Zhang, W. X.; Chen, X. M. Metal-Free Molecular Perovskite High-Energetic Materials. Cryst. Growth Des. 2020, 20 (3), 1013–1018. https://doi.org/10.1021/acs.cgd.9b01592.Search in Google Scholar

9. Zhou, J.; Ding, L.; Zhao, F.; Wang, B.; Zhang, J. Thermal Studies of Novel Molecular Perovskite Energetic Material (C6H14N2)NH4(ClO4)3. Chin. Chem. Lett. 2019, 31 (2), 554–558. https://doi.org/10.1016/j.cclet.2019.05.008.Search in Google Scholar

10. Shang, Y.; Chen, S. L.; Yu, Z. H.; Huang, R. K.; Ye, Z. M.; Zhang, W. X.; Chen, X. M. Silver(I)-Based Molecular Perovskite Energetic Compounds with Exceptional Thermal Stability and Energetic Performance. Inorg. Chem. 2022, 61, 4143–4149. https://doi.org/10.1021/acs.inorgchem.1c03958.Search in Google Scholar PubMed

11. Chen, S. L.; Shang, Y.; He, C. T.; Sun, L. Y.; Ye, Z. M.; Zhang, W. X.; Chen, X. M. Optimizing the Oxygen Balance by Changing the A-Site Cations in Molecular Perovskite High Energetic Materials. CrystEngComm 2018, 20 (46), 7458–7463. https://doi.org/10.1039/c8ce01350k.Search in Google Scholar

12. Chen, S.; Shang, Y.; Jiang, J.; Huang, M.; Ren, J. T.; Guo, T.; Yu, C. X.; Zhang, W. X.; Chen, X. M. A New Nitrate-Based Energetic Molecular Perovskite as a Modern Edition of Black Powder. Energ. Mater. Front. 2022, 3 (3), 122–127. https://doi.org/10.1016/j.enmf.2022.07.003.Search in Google Scholar

Received: 2024-12-09
Accepted: 2025-01-27
Published Online: 2025-02-21
Published in Print: 2025-06-26

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of 5,5′-bis(2,4,6-trinitrophenyl)-2,2′-bi(1,3,4-oxadiazole), C16H4N10O14
  4. Crystal structure of catena-poly[(μ3-4,4′-oxydibenzoato- κ5 O,O: O,O:O)-bis(2,4,6-tri(3-pyridine)-1,3,5-triazine-κ1 N)cadmium(II)], C50H32CdN12O5
  5. The crystal structure of 1,4-diazepane-1,4-diium potassium trinitrate, C5H14KN5O9
  6. The crystal structure of benzyl 2,2,5,5-tetramethylthiazolidine-4-carboxylate, C15H21NO2S
  7. Crystal structure of 2-hydroxyethyl-triphenylphosphonium tetracyanidoborate, C24H20BN4OP
  8. The crystal structure of 1-methyl-3-(N-methylnitrous amide–N-methylene) imidazolidine-2,4,5-trione
  9. Crystal structure of N-((3-cyano-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-(2,2,2-trifluoroacetyl)-1H-pyrazol-5-yl)carbamoyl)-2,6-difluorobenzamide, C20H7Cl2F8N5O3S
  10. Crystal structure of 5-(2,2-difluoropropyl)-5-methylbenzo[4,5]imidazo[2,1-a] isoquinolin-6(5H)-one, C20H18F2N2O
  11. The crystal structure of N′,N″-[1,2-bis(4-chlorophenyl)ethane-1,2-diylidene]bis(furan-2- carbohydrazide), C24H16Cl2N4O4
  12. Crystal structure of [(4-bromobenzyl)triphenylphosphonium] tetrabromoantimony(III), [C25H21BrP]+[SbBr4]
  13. Crystal structure of [(4-bromobenzyl)triphenylphosphonium] tetrabromidoindium(III), [C25H21BrP]+[InBr4]
  14. The crystal structure of 4-carboxy-2-oxobutan-1-aminium chloride, C5H10ClNO3
  15. Crystal structure of (4-(4-chlorophenyl)-1H-pyrrole-3-carbonyl)ferrocene, C21H16ClFeNO
  16. The crystal structure of dichlorido(η6-p-cymene)(triphenylarsine)ruthenium(II), C28H29AsCl2Ru
  17. Crystal structure of (Z)-2-hydroxy-N′-(1-(o-tolyl)ethylidene)benzohydrazide, C16H16N2O2
  18. The crystal structure of 10-(1-bromoethyl)-14-(bromomethyl)dibenzo[a, c]acridine, C24H17NBr2
  19. Synthesis and crystal structure of 6-methoxy-7-[(4-methoxyphenyl)methoxy]-2H-1-benzopyran-2-one, C18H16O5
  20. Synthesis and crystal structure of ethyl 4-((4-trifluoromethylbenzyl)amino)benzo, C17H16F3NO2
  21. The crystal structure of (Z)-2-(tert-butyl)-6-(7-(tert-butyl)-5-methylbenzo[d][1,3]oxathiol-2-ylidene)-4-methylcyclohexa-2,4-dien-1-one, C23H28O2S
  22. The crystal structure of (R)-2-aminobutanamide hydrochloride, C4H11ClN2O
  23. Crystal structure of bromido[hydridotris(3-tert-butyl-5-isopropylpyrazolyl)borato-κ3 N,N′,N″]copper(II), C30H52BBrCuN6
  24. Crystal structure of chlorido{hydridotris[3-mesityl-5-methyl-1H-pyrazol-1-yl-κN3]borato}-copper(II) dichloromethane monosolvate
  25. Crystal structure of 4-[3,5-bis(propan-2-yl)-1H-pyrazol-4-yl]pyridine, C14H19N3
  26. Crystal structure of ((4-(4-bromophenyl)-1H-pyrrol-3-yl)methyl)ferrocene, C21H16BrFeNO
  27. Crystal structure of [(4-chlorobenzyl)triphenylphosphonium] dichloridocopper(I), {[C25H21ClP]+[CuCl2]}n
  28. The crystal structure of {Cu(2,9-diisopropyl-4,7-diphenyl-1,10-phenanthroline)[4,5-bis(diphenylphosphino)-9,9-dimethylxanthene]}+ PF6·1.5(EtOAC)
  29. Crystal structure of 3,5-bis(t-butyl)-1H-pyrazol-4-amine, C11H21N3
  30. Crystal structure of [(2,4-dichlorobenzyl)triphenylphosphonium] trichloridocopper(II), [C25H20Cl2P]+[CuCl3]
  31. The crystal structure of dipotassium sulfide, K2S
  32. Crystal structure of (4-(4-methoxyphenyl)-1H-pyrrole-3-carbonyl)ferrocene, C22H19FeNO2
  33. Crystal structure of (E)-6-(4-methylpiperazin-1-yl)-2-(4-(trifluoromethyl)benzylidene)-3, 4-dihydronaphthalen-1(2H)-one, C23H23F3N2O
  34. Crystal structure of (E)-6-morpholino-2-(4-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C22H20F3NO2
  35. Crystal structure of Ce9Ir37Ge25
  36. The crystal structure of ethyl 6-(2-nitrophenyl)imidazo[2,1-b]thiazole-3-carboxylate, C14H11N3O4S
  37. Crystal structure of (4-(4-isopropylphenyl)-1H-pyrrol-3-yl)(ferrocenyl)methanone, C24H23FeNO
  38. Crystal structure of bis(methylammonium) tetrathiotungstate(VI), (CH3NH3)2[WS4]
  39. Crystal structure of 6,11-dihydro-12H-benzo[e]indeno[1,2-b]oxepin-12-one, C17H12O2
  40. Crystal structure of 3-[(4-phenylpiperidin-1-yl)methyl]-5-(thiophen-2-yl)-2,3-dihydro-1,3,4- oxadiazole-2-thione, C18H19N3OS2
  41. Crystal structure of N-isopropyl-1,8-naphthalimide C15H13NO2
  42. TiNiSi-type EuPdBi
  43. Crystal structure of 1-(p-tolylphenyl)-4-(2-thienoyl)-3-methyl-1H-pyrazol-5-ol, C16H14N2O2S
  44. The crystal structure of 3-(3-carboxypropyl)-2-nitro-1H-pyrrole 1-oxide, C7H9N3O5
  45. The crystal structure of tetraaqua-bis(2-(2-methyl-5-nitro-1H-imidazol-1-yl)acetato-k2O:N)-tetrakis(2-(2-methyl-5-nitro-1H-imidazol-1-yl)acetato-k1N)trizinc(II) hexahydrate C36H52N18O32Zn3
  46. The crystal structure of 4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 4-hydroxy-3,5-dimethoxybenzoate monohydrate, C25H30FN3O9
  47. Crystal structure of bis(DL-1-carboxy-2-(1H-indol-3-yl)ethan-1-aminium) oxalate — acetic acid (1/2)
  48. Crystal structure of methyl (E)-4-((4-methylphenyl)sulfonamido)but-2-enoate, C12H15NO4S
  49. The crystal structure of actarit, C10H11NO3
  50. The crystal structure of bicyclol, C19H18O9
  51. The crystal structure of topiroxostat, C13H8N6
  52. Crystal structure of 2,2-dichloro-N-methyl-N-(4-p-tolylthiazol-2-yl)acetamide, C13H12Cl2N2OS
  53. Crystal structure of 4-(trifluoromethyl)-7-coumarinyl trifluoromethanesulfonate C11H4F6O5S
  54. Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O6)-((Z)-N,N′-bis(2-(dimethylamino)phenyl)carbamimidato-κ1N)potassium(I)
  55. Crystal structure of (Z)-2-(5-((4-(dimethylamino)naphthalen-1-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid, C18H16N2O3S2
  56. Crystal structure of (4-fluorobenzyl)triphenylphosphonium bromide, C25H21BrFP
  57. The crystal structure of dichlorido-[6-(pyridin-2-yl)phenanthridine-κ2N, N′]zinc(II)-chloroform (1/1), C19H13N2ZnCl5
  58. Crystal structure of (E)-(3-(2,4-dichlorophenyl)acryloyl)ferrocene, C19H14Cl2FeO
  59. The crystal structure of (E)-7-chloro-1-cyclopropyl-6-fluoro-3-((2-hydroxybenzylidene)amino)quinolin-4(1H)-one, C19H14ClFN2O2
  60. Crystal structure of 2-bromo-11-(((fluoromethyl)sulfonyl)methyl)-6-methyl-6,11-dihydrodibenzo[c,f][1,2]thiazepine 5,5-dioxide, C16H13BrFNO4S2
  61. Crystal structure of 2-chloro-11-(((fluoromethyl)sulfonyl)methyl)-6-methyl-6,11-dihydrodibenzo[c,f][1,2]thiazepine 5,5-dioxide, C16H13ClFNO4S2
  62. Crystal structure of 5-(2,2-difluoropropyl)-5-methyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline-3-carbonitrile, C20H15F2N3O
Downloaded on 19.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0469/html?srsltid=AfmBOopnslysJx3DEJ_q4SxFxrwT_5JKRxZ3ikc9XuIyyuHRS2RlI_el
Scroll to top button