Home Crystal structure of 5,5′-bis(2,4,6-trinitrophenyl)-2,2′-bi(1,3,4-oxadiazole), C16H4N10O14
Article Open Access

Crystal structure of 5,5′-bis(2,4,6-trinitrophenyl)-2,2′-bi(1,3,4-oxadiazole), C16H4N10O14

  • Hao-Qi Guo , Yu-Lin Yang EMAIL logo and Yong-Xiang Li EMAIL logo
Published/Copyright: March 26, 2025

Abstract

C16H4N10O14, monoclinic, P21/c (no. 14), a = 7.3407(4) Å, b = 6.0054(3) Å, c = 22.8359(11) Å, β = 93.758(2)°, V = 1004.53(9) Å3, Z = 2, Rgt(F) = 0.0429, wRref(F2) = 0.1017, T = 170 K.

CCDC no.: 2387374

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.16 × 0.12 × 0.08 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.17 mm−1
Diffractometer, scan mode: D8 VENTURE, φ and ω
θmax, completeness: 26.4°, 99 %
N(hkl)measured, N(hkl)unique, Rint: 8940, 2036, 0.038
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 1,677
N(param)refined: 181
Programs: Olex2, 1 SHELX 2 , 3
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 0.4633 (3) 0.2703 (4) 0.33625 (10) 0.0251 (5)
C2 0.2880 (3) 0.3152 (4) 0.31427 (10) 0.0259 (5)
H2 0.231062 0.229455 0.283258 0.031*
C3 0.1982 (3) 0.4902 (4) 0.33915 (10) 0.0256 (5)
C4 0.2795 (3) 0.6252 (4) 0.38312 (10) 0.0254 (5)
C5 0.4596 (3) 0.5722 (4) 0.40147 (10) 0.0253 (5)
C6 0.5522 (3) 0.3929 (4) 0.38021 (10) 0.0266 (5)
H6 0.672126 0.355839 0.395253 0.032*
C7 0.1784 (3) 0.8099 (4) 0.40875 (10) 0.0256 (5)
C8 0.0371 (3) 0.9804 (4) 0.47180 (10) 0.0259 (5)
N1 0.5573 (3) 0.0768 (3) 0.31244 (9) 0.0317 (5)
N2 0.0051 (3) 0.5206 (3) 0.31926 (10) 0.0335 (5)
N3 0.1186 (3) 0.9894 (3) 0.38361 (8) 0.0307 (5)
N4 0.0234 (3) 1.1039 (3) 0.42567 (8) 0.0297 (4)
N5 0.5627 (3) 0.7170 (3) 0.44411 (9) 0.0318 (5)
O1 0.7236 (2) 0.0715 (3) 0.31911 (9) 0.0511 (5)
O2 0.4623 (3) −0.0667 (3) 0.28766 (8) 0.0421 (5)
O3 −0.0414 (3) 0.4609 (3) 0.26927 (9) 0.0497 (5)
O4 0.1335 (2) 0.7896 (3) 0.46532 (7) 0.0282 (4)
O5 −0.0972 (2) 0.5994 (3) 0.35414 (9) 0.0449 (5)
O6 0.5326 (3) 0.9168 (3) 0.44097 (8) 0.0448 (5)
O7 0.6749 (3) 0.6294 (3) 0.47835 (9) 0.0503 (5)

1 Source of materials

The nitromethane was purchased from commercial sources and used without further purification, and 5,5′-bis(2,4,6-trinitrophenyl)-2,2′-bis(1,3,4-oxadiazole) was synthesized by our laboratory. The 5,5′-bis(2,4,6-trinitrophenyl)-2,2′-bis(1,3,4-oxadiazole) (0.028 g, 0.05 mmol) was dissolved in nitromethane (15 ml) to obtain a clear colorless solution. After filtration, the obtained solution was slowly evaporated at room temperature for 4 months to give colorless and clear crystals, which were isolated by filtration and dried in air.

2 Experimental details

Hydrogen atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms. Crystal data, data collection and structure refinement details are summarized in Table 1. Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

3 Comment

Heat-resistant explosive has the excellent characteristics of high decomposition temperature, stability and reliability in high temperature or high vacuum environment, 4 and can meet the requirements of special military applications, such as aerospace special materials, 5 , 6 deep sea operations and space exploration. 7 , 8 , 9 , 10 With the development of the times, traditional explosives RDX and HMX have been unable to fully meet the current application requirements, and the research and development of high-performance heat-resistant explosives has gradually become a research hotspot in the field of energetic materials. At present, the methods to improve the thermal sensitivity of explosives include: (1) introducing amino group (–NH2); 11 , 12 (2) forming a conjugate system; 13 (3) salt formation. 14 In recent years, a series of heat-resistant compounds have been developed with the continuous efforts of energy containing workers at home and abroad, and have been applied in practice. In the title structure two 1,3,4-oxadiazole bridge two 2,4,6-trinitrophenyl groups to form a conjugated system. As a new type of heat-resistant explosive being insoluble in water, TKX-55 melting point above 350 ℃ has become a potential candidate for application of heat-resistant explosive due to its excellent performance and stable underwater work ability. At present, the main characterization methods of TKX-55 are: infrared spectroscopy, mass spectrometry, elemental analysis, nuclear magnetism, etc. There are relatively few reports on its crystal structure. The precise structure information of TKX-55 can be obtained by single crystal analysis (see the figure). By studying its spatial configuration, atomic bond length, bond angle and other parameters, the reason of its heat resistance and the mechanism of its poor solubility can be analyzed. Geometric parameters are all in the expected ranges.


Corresponding author: Yu-Lin Yang, State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China, E-mail: ; and Yong-Xiang Li, School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, Shanxi Province, P.R. China, E-mail:

Acknowledgments

We are grateful to the support of the Testing and Analysis Center of Huaiyin Normal University.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest: The authors declare no conflicts of interest regarding this article.

  3. Research funding: National Natural Science Foundation of China (22072034).

References

1. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

2. Sheldrick, G. M. SHELXT-Integrated Space-Group and Crystal Structure Determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Pagoria, P. F.; Lee, G. S.; Mitchell, A. R.; Schmidt, R. D. A Review of Energetic Materials Synthesis. Thermochim. Acta 2002, 384, 187–204; https://doi.org/10.1016/s0040-6031(01)00805-x.Search in Google Scholar

5. Wang, B. G.; Zhang, J. L.; Chen, Y. F. Preparation and Performance Testing of Ultra-fine PYX. Chin. J. Energ. Mater. 2007, 15, 198–200, 213.Search in Google Scholar

6. Deng, M. Z.; Ye, Z. H.; Zhao, S. X.; Tian, Z. H. Synthesis and Application of the Heat-Resistant Explosive PCS. Chin. J. Explos. Propellants 2007, 30, 42–44.Search in Google Scholar

7. Sikder, A. K.; Sikder, N. A Review of Advanced High Performance, Insensitive and Thermally Stable Energetic Materials Emerging for Military and Space Applications. J. Hazard. Mater. 2004, 112, 1–15; https://doi.org/10.1016/j.jhazmat.2004.04.003.Search in Google Scholar PubMed

8. Liu, N.; Shu, Y. J.; Li, H.; Zhai, L. J.; Li, Y. N.; Wang, B. Z. Synthesis, Characterization and Properties of Heat-resistant Explosive Materials: Polynitroaromatic Substituted Difurazano [3,4-b:3′,4′- e]Pyrazines. RSC Adv. 2015, 5, 43780–43785; https://doi.org/10.1039/c5ra07105d.Search in Google Scholar

9. Li, C.; Zhang, M.; Chen, Q.; Gao, H.; Fu, W.; Zhou, Z. M. Three-dimensional Metalorganic Framework as Super Heat-Resistant Explosive: Potassium 4-(5-Amino-3-Nitro-1h-1,2,4-Triazol-1-Yl)-3,5-Dinitropyrazole. Chem. Eur. J. 2017, 23, 1490–1493; https://doi.org/10.1002/chem.201605382.Search in Google Scholar PubMed

10. Nair, U. R.; Gore, G. M.; Sivabalan, R.; Pawar, S. J.; Asthana, S. N.; Venugopalan, S. Preparation and Thermal Studies on Tetranitrodibenzo Tetraazapentalene (Tacot): A Thermally Stable High Explosive. J. Hazard. Mater. 2007, 143, 500–505; https://doi.org/10.1016/j.jhazmat.2006.09.065.Search in Google Scholar PubMed

11. Cao, X.; Xiang, B.; Zhang, C. Y. Review on Relationships between the Molecular and Crystal Structure of Explosives and Their Sensitivities. Chin. J. Energ. Mater. 2012, 20, 643–649.Search in Google Scholar

12. Agrawal, J. P. Past, Present & Future of Thermally Stable Explosives. Cent. Eur. J. Energetic Mater. 2012, 9, 273–290.Search in Google Scholar

13. Lu, C. X. Structure Analysis of Heat-Resistant Explosive Molecule and its Synthesis Research. Chin. J. Energetic Mater. 1993, 1, 13–18.Search in Google Scholar

14. Zhang, T. L.; Wu, B. D.; Yang, L.; Zhou, Z. N.; Zhang, J. G. Recent Research Progresses in Energetic Coordination Compounds. Chin. J. Energetic Mater. 2013, 21, 137–151.Search in Google Scholar

Received: 2024-10-09
Accepted: 2024-11-04
Published Online: 2025-03-26
Published in Print: 2025-06-26

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of 5,5′-bis(2,4,6-trinitrophenyl)-2,2′-bi(1,3,4-oxadiazole), C16H4N10O14
  4. Crystal structure of catena-poly[(μ3-4,4′-oxydibenzoato- κ5 O,O: O,O:O)-bis(2,4,6-tri(3-pyridine)-1,3,5-triazine-κ1 N)cadmium(II)], C50H32CdN12O5
  5. The crystal structure of 1,4-diazepane-1,4-diium potassium trinitrate, C5H14KN5O9
  6. The crystal structure of benzyl 2,2,5,5-tetramethylthiazolidine-4-carboxylate, C15H21NO2S
  7. Crystal structure of 2-hydroxyethyl-triphenylphosphonium tetracyanidoborate, C24H20BN4OP
  8. The crystal structure of 1-methyl-3-(N-methylnitrous amide–N-methylene) imidazolidine-2,4,5-trione
  9. Crystal structure of N-((3-cyano-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-(2,2,2-trifluoroacetyl)-1H-pyrazol-5-yl)carbamoyl)-2,6-difluorobenzamide, C20H7Cl2F8N5O3S
  10. Crystal structure of 5-(2,2-difluoropropyl)-5-methylbenzo[4,5]imidazo[2,1-a] isoquinolin-6(5H)-one, C20H18F2N2O
  11. The crystal structure of N′,N″-[1,2-bis(4-chlorophenyl)ethane-1,2-diylidene]bis(furan-2- carbohydrazide), C24H16Cl2N4O4
  12. Crystal structure of [(4-bromobenzyl)triphenylphosphonium] tetrabromoantimony(III), [C25H21BrP]+[SbBr4]
  13. Crystal structure of [(4-bromobenzyl)triphenylphosphonium] tetrabromidoindium(III), [C25H21BrP]+[InBr4]
  14. The crystal structure of 4-carboxy-2-oxobutan-1-aminium chloride, C5H10ClNO3
  15. Crystal structure of (4-(4-chlorophenyl)-1H-pyrrole-3-carbonyl)ferrocene, C21H16ClFeNO
  16. The crystal structure of dichlorido(η6-p-cymene)(triphenylarsine)ruthenium(II), C28H29AsCl2Ru
  17. Crystal structure of (Z)-2-hydroxy-N′-(1-(o-tolyl)ethylidene)benzohydrazide, C16H16N2O2
  18. The crystal structure of 10-(1-bromoethyl)-14-(bromomethyl)dibenzo[a, c]acridine, C24H17NBr2
  19. Synthesis and crystal structure of 6-methoxy-7-[(4-methoxyphenyl)methoxy]-2H-1-benzopyran-2-one, C18H16O5
  20. Synthesis and crystal structure of ethyl 4-((4-trifluoromethylbenzyl)amino)benzo, C17H16F3NO2
  21. The crystal structure of (Z)-2-(tert-butyl)-6-(7-(tert-butyl)-5-methylbenzo[d][1,3]oxathiol-2-ylidene)-4-methylcyclohexa-2,4-dien-1-one, C23H28O2S
  22. The crystal structure of (R)-2-aminobutanamide hydrochloride, C4H11ClN2O
  23. Crystal structure of bromido[hydridotris(3-tert-butyl-5-isopropylpyrazolyl)borato-κ3 N,N′,N″]copper(II), C30H52BBrCuN6
  24. Crystal structure of chlorido{hydridotris[3-mesityl-5-methyl-1H-pyrazol-1-yl-κN3]borato}-copper(II) dichloromethane monosolvate
  25. Crystal structure of 4-[3,5-bis(propan-2-yl)-1H-pyrazol-4-yl]pyridine, C14H19N3
  26. Crystal structure of ((4-(4-bromophenyl)-1H-pyrrol-3-yl)methyl)ferrocene, C21H16BrFeNO
  27. Crystal structure of [(4-chlorobenzyl)triphenylphosphonium] dichloridocopper(I), {[C25H21ClP]+[CuCl2]}n
  28. The crystal structure of {Cu(2,9-diisopropyl-4,7-diphenyl-1,10-phenanthroline)[4,5-bis(diphenylphosphino)-9,9-dimethylxanthene]}+ PF6·1.5(EtOAC)
  29. Crystal structure of 3,5-bis(t-butyl)-1H-pyrazol-4-amine, C11H21N3
  30. Crystal structure of [(2,4-dichlorobenzyl)triphenylphosphonium] trichloridocopper(II), [C25H20Cl2P]+[CuCl3]
  31. The crystal structure of dipotassium sulfide, K2S
  32. Crystal structure of (4-(4-methoxyphenyl)-1H-pyrrole-3-carbonyl)ferrocene, C22H19FeNO2
  33. Crystal structure of (E)-6-(4-methylpiperazin-1-yl)-2-(4-(trifluoromethyl)benzylidene)-3, 4-dihydronaphthalen-1(2H)-one, C23H23F3N2O
  34. Crystal structure of (E)-6-morpholino-2-(4-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C22H20F3NO2
  35. Crystal structure of Ce9Ir37Ge25
  36. The crystal structure of ethyl 6-(2-nitrophenyl)imidazo[2,1-b]thiazole-3-carboxylate, C14H11N3O4S
  37. Crystal structure of (4-(4-isopropylphenyl)-1H-pyrrol-3-yl)(ferrocenyl)methanone, C24H23FeNO
  38. Crystal structure of bis(methylammonium) tetrathiotungstate(VI), (CH3NH3)2[WS4]
  39. Crystal structure of 6,11-dihydro-12H-benzo[e]indeno[1,2-b]oxepin-12-one, C17H12O2
  40. Crystal structure of 3-[(4-phenylpiperidin-1-yl)methyl]-5-(thiophen-2-yl)-2,3-dihydro-1,3,4- oxadiazole-2-thione, C18H19N3OS2
  41. Crystal structure of N-isopropyl-1,8-naphthalimide C15H13NO2
  42. TiNiSi-type EuPdBi
  43. Crystal structure of 1-(p-tolylphenyl)-4-(2-thienoyl)-3-methyl-1H-pyrazol-5-ol, C16H14N2O2S
  44. The crystal structure of 3-(3-carboxypropyl)-2-nitro-1H-pyrrole 1-oxide, C7H9N3O5
  45. The crystal structure of tetraaqua-bis(2-(2-methyl-5-nitro-1H-imidazol-1-yl)acetato-k2O:N)-tetrakis(2-(2-methyl-5-nitro-1H-imidazol-1-yl)acetato-k1N)trizinc(II) hexahydrate C36H52N18O32Zn3
  46. The crystal structure of 4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 4-hydroxy-3,5-dimethoxybenzoate monohydrate, C25H30FN3O9
  47. Crystal structure of bis(DL-1-carboxy-2-(1H-indol-3-yl)ethan-1-aminium) oxalate — acetic acid (1/2)
  48. Crystal structure of methyl (E)-4-((4-methylphenyl)sulfonamido)but-2-enoate, C12H15NO4S
  49. The crystal structure of actarit, C10H11NO3
  50. The crystal structure of bicyclol, C19H18O9
  51. The crystal structure of topiroxostat, C13H8N6
  52. Crystal structure of 2,2-dichloro-N-methyl-N-(4-p-tolylthiazol-2-yl)acetamide, C13H12Cl2N2OS
  53. Crystal structure of 4-(trifluoromethyl)-7-coumarinyl trifluoromethanesulfonate C11H4F6O5S
  54. Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O6)-((Z)-N,N′-bis(2-(dimethylamino)phenyl)carbamimidato-κ1N)potassium(I)
  55. Crystal structure of (Z)-2-(5-((4-(dimethylamino)naphthalen-1-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid, C18H16N2O3S2
  56. Crystal structure of (4-fluorobenzyl)triphenylphosphonium bromide, C25H21BrFP
  57. The crystal structure of dichlorido-[6-(pyridin-2-yl)phenanthridine-κ2N, N′]zinc(II)-chloroform (1/1), C19H13N2ZnCl5
  58. Crystal structure of (E)-(3-(2,4-dichlorophenyl)acryloyl)ferrocene, C19H14Cl2FeO
  59. The crystal structure of (E)-7-chloro-1-cyclopropyl-6-fluoro-3-((2-hydroxybenzylidene)amino)quinolin-4(1H)-one, C19H14ClFN2O2
  60. Crystal structure of 2-bromo-11-(((fluoromethyl)sulfonyl)methyl)-6-methyl-6,11-dihydrodibenzo[c,f][1,2]thiazepine 5,5-dioxide, C16H13BrFNO4S2
  61. Crystal structure of 2-chloro-11-(((fluoromethyl)sulfonyl)methyl)-6-methyl-6,11-dihydrodibenzo[c,f][1,2]thiazepine 5,5-dioxide, C16H13ClFNO4S2
  62. Crystal structure of 5-(2,2-difluoropropyl)-5-methyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline-3-carbonitrile, C20H15F2N3O
Downloaded on 14.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0399/html?srsltid=AfmBOoqzVNnWDFpoE6CjB_Iyowjf5bhC6llGpyI2-a6tvQVty79K9-e8
Scroll to top button