Startseite Crystal structure of dimethyl (R)-2-(3-(1-phenylethyl)thioureido)-[1,1′-biphenyl]-4,4′-dicarboxylate, C25H24N2O4S
Artikel Open Access

Crystal structure of dimethyl (R)-2-(3-(1-phenylethyl)thioureido)-[1,1′-biphenyl]-4,4′-dicarboxylate, C25H24N2O4S

  • Yi Chen und Da-Bin Shi ORCID logo EMAIL logo
Veröffentlicht/Copyright: 9. April 2024

Abstract

C25H24N2O4S, orthorhombic, P212121 (no. 19), a = 6.8049(5) Å, b = 12.2546(8) Å, c = 26.8916(18) Å, V = 2242.5(3) Å3, Z = 4, R gt(F) = 0.0581, wR ref(F 2) = 0.1560, T = 100 K.

CCDC no.: 2335862

The crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.16 × 0.13 × 0.11 mm
Wavelength: CuKα radiation (1.54184 Å)
μ: 1.57 mm−1
Diffractometer, scan mode: SuperNova, ω
θ max, completeness: 73.9°, >99 %
N(hkl)measured, N(hkl)unique, R int: 8288, 4391, 0.064
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 4162
N(param)refined: 293
Programs: CrysAlis PRO [1], Shelx [2, 4], Olex2 [3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
S1 0.57355 (15) 0.76164 (8) 0.44441 (4) 0.0226 (3)
O1 0.7224 (7) 0.8146 (4) 0.75507 (14) 0.0472 (10)
O2 0.4322 (7) 0.8491 (3) 0.71880 (13) 0.0427 (9)
O3 0.7761 (5) 0.1124 (3) 0.47781 (12) 0.0256 (7)
O4 0.7572 (4) 0.2416 (3) 0.41843 (11) 0.0233 (6)
N1 0.6712 (5) 0.5997 (3) 0.50425 (13) 0.0185 (7)
H1 0.739031 0.650545 0.519723 0.022*
N2 0.4112 (5) 0.5634 (3) 0.45226 (13) 0.0205 (7)
H2 0.403894 0.500464 0.467942 0.025*
C1 0.7559 (5) 0.2998 (3) 0.50157 (15) 0.0182 (8)
C2 0.7210 (6) 0.4067 (3) 0.48594 (15) 0.0182 (8)
H2A 0.710450 0.422151 0.451425 0.022*
C3 0.7017 (6) 0.4906 (3) 0.52024 (14) 0.0173 (8)
C4 0.7236 (6) 0.4696 (3) 0.57135 (15) 0.0179 (8)
C5 0.7690 (6) 0.3632 (4) 0.58616 (15) 0.0207 (8)
H5 0.792623 0.348709 0.620341 0.025*
C6 0.7802 (6) 0.2786 (3) 0.55232 (16) 0.0208 (8)
H6 0.804393 0.206329 0.563480 0.025*
C7 0.7652 (6) 0.2084 (4) 0.46602 (16) 0.0199 (8)
C8 0.6936 (6) 0.5552 (4) 0.60974 (15) 0.0203 (8)
C9 0.8367 (6) 0.5755 (4) 0.64587 (16) 0.0246 (9)
H9 0.955772 0.535017 0.645720 0.030*
C10 0.8052 (7) 0.6547 (4) 0.68205 (15) 0.0272 (9)
H10 0.904492 0.669527 0.705938 0.033*
C11 0.6291 (7) 0.7122 (4) 0.68344 (16) 0.0259 (10)
C12 0.4846 (7) 0.6916 (4) 0.64785 (18) 0.0268 (9)
H12 0.364092 0.730747 0.648612 0.032*
C13 0.5177 (7) 0.6136 (4) 0.61129 (17) 0.0242 (9)
H13 0.419248 0.599842 0.587040 0.029*
C14 0.5474 (6) 0.6342 (4) 0.46728 (14) 0.0197 (8)
C15 0.2719 (6) 0.5829 (4) 0.41122 (16) 0.0210 (8)
H15 0.306319 0.654241 0.395401 0.025*
C16 0.0668 (7) 0.5922 (4) 0.43213 (17) 0.0287 (9)
H16A 0.031440 0.523847 0.448808 0.043*
H16B −0.026133 0.606374 0.405048 0.043*
H16C 0.061891 0.652346 0.456102 0.043*
C17 0.2978 (6) 0.4935 (4) 0.37234 (15) 0.0222 (9)
C18 0.4849 (7) 0.4751 (4) 0.35238 (18) 0.0303 (10)
H18 0.592132 0.519335 0.362636 0.036*
C19 0.5153 (8) 0.3924 (5) 0.3175 (2) 0.0369 (12)
H19 0.643518 0.379520 0.304869 0.044*
C20 0.3599 (9) 0.3293 (4) 0.30143 (18) 0.0363 (12)
H20 0.380720 0.273260 0.277590 0.044*
C21 0.1741 (8) 0.3480 (5) 0.32014 (19) 0.0355 (11)
H21 0.066555 0.305222 0.308878 0.043*
C22 0.1438 (7) 0.4293 (4) 0.35548 (18) 0.0299 (10)
H22 0.015342 0.441080 0.368251 0.036*
C23 0.7613 (7) 0.1567 (4) 0.38139 (17) 0.0275 (10)
H23A 0.720811 0.186828 0.349221 0.041*
H23B 0.671090 0.098129 0.391046 0.041*
H23C 0.894972 0.127509 0.378691 0.041*
C24 0.6038 (8) 0.7969 (4) 0.72255 (17) 0.0326 (11)
C25 0.3982 (12) 0.9330 (5) 0.7556 (2) 0.0553 (18)
H25A 0.266905 0.964121 0.750805 0.083*
H25B 0.497180 0.990523 0.751935 0.083*
H25C 0.407474 0.901187 0.788933 0.083*

1 Source of material

Dimethyl 2-amino-[1,1′-biphenyl]-4,4′-dicarboxylate was prepared following a modified literature procedure [6]. A mixture of (4-(methoxycarbonyl)phenyl)boronic acid (1.0 g, 5.5 mmol, 1.1 equiv), 4-bromo-2,6-diisopropylaniline (1.15 g, 5 mmol), palladium tetrakis(triphenylphosphine) (0.12 g, 0.1 mmol, 2 mol%), and potassium carbonate (2.3 g, 16.5 mmol, 3.3 equiv) in 40 mL of dioxane/H2O (3/1) was stirred under nitrogen for 48 h at 95 °C. After that the mixture was cooled to room temperature, it was extracted with CHCl3 and washed with H2O. The organic layer was dried with MgSO4, and the solvent was removed. The resulting crude product was purified by column chromatography using silica gel and petroleum ether/ethyl acetate (10/1) as the eluent. The product was obtained (1.1 g, 80.0 % yield).

Synthesis of dimethyl (R)-2-(3-(1-phenylethyl)thioureido)-[1,1′-biphenyl]-4,4′-dicarboxylate [7]. Thiophosgene (1.0 g, 9.0 mmol, 3.0 eq.) was added to a stirring emulsion of dimethyl 2-amino-[1,1′-biphenyl]-4,4′-dicarboxylate (0.86 g, 3.0 mmol, 1.0 eq.), 4 mL dichloromethane, and 4 mL of a saturated NaHCO3 solution at 0 °C and stirred for 1 h. The reaction mixture was slowly warmed to room temperature and stirred for an additional 24 h. The two-phase mixture was added to a separation funnel and extracted three times with 20 mL ethyl acetate. The organic layers were combined and the solvent was removed under reduced pressure to quantitatively yield dimethyl 2-isothiocyanato-[1,1′-biphenyl]-4,4′-dicarboxylate which was directly used in the next step without further purification. To a solution of dimethyl 2-isothiocyanato-[1,1′-biphenyl]-4,4′-dicarboxylate and 20 mL N,N-dimethylformamide (R)-1-phenylethan-1-amine (0.04 g, 0.3 mmol, 1.0 eq.) was added at room temperature and stirred under nitrogen for 24 h. After the complete disappearance of the starting material 20 mL ethyl acetate was added and the organic mixture was washed three times with 10 mL H2O, once with 10 mL brine, and dried over Na2SO4. The solvent was removed and the remaining solid was purified by column chromatography with (heptane/ethyl acetate) to give the target product (1.1 g 80 % yield) as white solid. Crystals were obtained by slow evaporation of an acetone solution at room temperature over a period of seven days. Elemental analysis – found: C, 66.88 %; H, 5.42 %; N, 6.20 %; S, 7.18 %; calculated for C25H24N2O4S: C, 66.95 %; H, 5.39 %; N, 6.25 %; S, 7.15 %.

2 Experimental details

Data were collected via CrysAlis PRO 1.171.39.7e [1], the structure of crystal was determined by Shelxt [2] and refined by Olex2 [3] and Shelxl [4].

The absolute structure determination succeeded as the derived Flack parameter is found to be near zero with a low standard uncertainty [0.01(2) from 1665 selected quotients] using Parsons’ method [5].

3 Comment

Organocatalysts are a class of chemical reaction catalysts that consist of non-metal elements and are used in a wide variety of chemical reactions [8, 9]. Among the organocatalysts, thiourea-based organocatalysts are popular due to their non-covalent catalysis. A wide variety of chiral thiourea organocatalysts are known in the literature to accelerate various synthetically useful asymmetric organic transformations such as Michael addition, amination reaction, domino AZA–Michael–Henry reaction, Mannich–type reactions, Nazarov cyclizations, Diels–Alder reaction [10], [11], [12]. Here, we report a new chiral thiourea organocatalyst.

The asymmetric unit of the title structure contains one dimethyl (R)-2-(3-(1-phenylethyl)thioureido)-[1,1′-biphenyl]-4,4′-dicarboxylate. In the crystal structure, bond lengths and bond angles within the molecular system are in agreement with the values reported [13]. The dihedral angle between the planes of two phenyl moieties is 55.6°. The bond lengths of C14–S1 and C14–N1 are 1.688(4) Å and 1.370(5) Å, respectively. And the bond lengths of O1–C24 and O3–C7 are 1.210(7) Å and 1.220(5) Å, respectively. As a result of the conjugation of the benzene moiety and adjacent carbon-nitrogen bond, the bond length of C3–N1 is 1.419(5) Å, which is shorter than that of typical C–N (1.47 Å). Furthermore, the bond lengths of C24–O2 and C7–O4 are 1.335(7) Å and 1.344(5) Å, respectively. The bond angle (N1–C14–N2) and (C3–N1–C14) are 116.6(4)° and 126.9(4)°, respectively.


Corresponding author: Da-Bin Shi, School of Pharmaceutical Sciences, Zunyi Medical University, Zunyi 563000, People’s Republic of China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: National Natural Science Foundation of China (grant no. 21861045) and and Science and Technology Foundation of Guizhou Province (grant no. QKH-ZK2022-605).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku Corporation. CrysAlisPRO; Rigaku Corporation: Yarnton, Oxfordshire, England, 2015.Suche in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central

3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystal. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

5. Parsons, S., Flack, H. D., Wagner, T. Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr. 2013, B69, 249–259; https://doi.org/10.1107/s2052519213010014.Suche in Google Scholar PubMed PubMed Central

6. Shi, D., Ren, Y., Jiang, H., Cai, B., Lu, J. Synthesis, structures, and properties of two three-dimensional metal-organic frameworks, based on concurrent ligand extension. Inorg. Chem. 2012, 51, 6498–6506; https://doi.org/10.1021/ic202624e.Suche in Google Scholar PubMed

7. Rummel, L., Domanski, M. H. J., Hausmann, H., Becker, J., Schreiner, P. R. London dispersion favors sterically hindered diarylthiourea conformers in solution. Angew. Chem., Int. Ed. 2022, 61, e202204393; https://doi.org/10.1002/ange.202204393.Suche in Google Scholar

8. MacMillan, D. W. C. The advent and development of organocatalysis. Nature 2008, 455, 304–308; https://doi.org/10.1038/nature07367.Suche in Google Scholar PubMed

9. Bertelsen, S., Jorgensen, K. A. Organocatalysis—after the gold rush. Chem. Soc. Rev. 2009, 38, 2178–2189; https://doi.org/10.1039/b903816g.Suche in Google Scholar PubMed

10. Wang, C., Zhou, Z., Tang, C. Novel bifunctional chiral thiourea catalyzed highly enantioselective aza-Henry reaction. Org. Lett. 2008, 10, 1707–1710; https://doi.org/10.1021/ol8003035.Suche in Google Scholar PubMed

11. Mayr, F., Brimioulle, R., Bach, T. A chiral thiourea as a template for enantioselective intramolecular [2 + 2] photocycloaddition reactions. J. Org. Chem. 2016, 81, 6965–6971; https://doi.org/10.1021/acs.joc.6b01039.Suche in Google Scholar PubMed PubMed Central

12. Brown, A. R., Uyeda, C., Brotherton, C. A., Jacobsen, E. N. Enantioselective thiourea-catalyzed intramolecular cope-type hydroamination. J. Am. Chem. Soc. 2013, 135, 6747–6749; https://doi.org/10.1021/ja402893z.Suche in Google Scholar PubMed PubMed Central

13. McGuirk, C. M., Katz, M. J., Stern, C. L., Sarjeant, A. A., Hupp, J. T., Farha, O. K., Mirkin, C. A. Turning on catalysis: incorporation of a hydrogen-bond-donating squaramide moiety into a Zr metal-organic framework. J. Am. Chem. Soc. 2015, 137, 919–925; https://doi.org/10.1021/ja511403t.Suche in Google Scholar PubMed

Received: 2024-03-01
Accepted: 2024-03-27
Published Online: 2024-04-09
Published in Print: 2024-06-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of tris((Z)-2-hydroxy-N-((E)-pyridin-2-ylmethylene)benzohydrazonato-k2O,N)europium(III), C39H30N9O6Eu
  4. Crystal structure of (E)-3-(benzylideneamino)-2-phenylthiazolidin-4-one, C16H14N2OS
  5. The crystal structure of (E)-4-fluoro-N′-(1-(o-tolyl)ethylidene)benzohydrazide, C16H15FN2O
  6. Crystal structure of (6-chloropyridin-3-yl)methyl 2-(6-methoxynaphthalen-2-yl)propanoate, C20H18ClNO3
  7. Crystal structure of methyl 3-methoxy-4-(2-methoxy-2-oxoethoxy)benzoate, C12H14O6
  8. The crystal structure of bis[(4-methoxyphenyl)(picolinoyl)amido-κ2 N:N′]copper(II), C26H22CuN4O4
  9. The crystal structure of poly[di(μ2-aqua)-diaqua-bis(3-aminopyridine-4-carboxylate-κ2 O: O′)-tetra(μ2-3-aminopyridine-4-carboxylate-κ2 O: O′)-dineodymium(III), [Nd2(C6H5N2O2)6(H2O)4] n
  10. The crystal structure of t-butyl 7-[3-(4-fluorophenyl)-1-(propan-2-yl)-1H-indol-2-yl]-3,5-dihydroxyhept-6-enoate, C28H34FNO4
  11. Crystal structure of catena-poly[(benzylamine-κ1 N)-(sorbato-κ1 O)-(μ2-sorbato-κ2 O,O′)-copper(II), C19H23CuNO4
  12. Crystal structure of (4-(2-chlorophenyl)-1H-pyrrol-3-yl)(ferrocenyl) methanone, C21H16ClFeNO
  13. The crystal structure of N-[4-(4-bromophenyl)-1,3-thiazol-2-yl]-3-(2-methylphenyl)-2-sulfanylprop-2-enamide hydrate, C19H17BrN2O2S2
  14. The crystal structure of N′-{5-[2-(2,6-dimethylphenoxy) acetamido]-4-hydroxy-1,6-diphenylhexan-2-yl}-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butanamide hydrate
  15. Crystal structure of 2-(naphthalen-1-yl)ethyl 2-(6-methoxynaphthalen-2-yl)propanoate, C26H24O3
  16. Crystal structure of naphthalen-1-ylmethyl 2-(6-methoxynaphthalen-2-yl)propanoate, C25H22O3
  17. Crystal structure of poly[diaqua- (μ4-5-(1H-1,2,4-triazol-1-yl)benzene-1,3-dicarboxylato-κ5N:O,O’:O’’:O’’’)calcium(II), C10H9CaN3O6
  18. Crystal structure of (E)-N′-(4-((E)-3-(dimethylamino)acryloyl)-3-hydroxyphenyl)-N, N-dimethylformimidamide, C14H19N3O2
  19. Crystal structure of (E)-3-(dimethylamino)-1-(2-hydroxy-4,6-dimethoxyphenyl)prop-2-en-1-one, C13H17NO4
  20. Crystal structure of (2-chloropyridin-3-yl)methyl-2-(6-methoxynaphthalen-2-yl)propanoate, C20H18ClNO3
  21. The crystal structure of diethyl 4-(3,4-dimethylphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate, C21H27NO4
  22. Crystal structure of (8R,9S,10R,13S,14S,17S)-17-hydroxy-10,13-dimethyl-17-((4-(2-phenylpropyl)phenyl)ethynyl)-1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenanthren-3-one, C36H42O2
  23. Synthesis and crystal structure of 4-(4-cyclopropylnaphthalen-1-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione, C15H13N3S
  24. Crystal structure of catena-poly[aqua-(2,6-di-(2-pyridyl)-pyridine-κ3 N,N′, N″)(μ2-1,4-naphthalene dicarboxylato-κ2 O,O′)nickel(II)], C27H19NiN3O5
  25. Crystal structure of 3-(diphenylphosphoryl)-3-hydroxy-1-phenylpropan-1-one, C21H19O3P
  26. The crystal structure of R,S-{N-[(2-oxidonaphthalen-1-yl)methylidene]phenylglycinato}divinylsilicon, C23H19NO3Si
  27. The crystal structure of 1,2,4-tris(bromomethyl)benzene, C9H9Br3
  28. Crystal structure of chlorido-[4-(pyridin-2-yl)benzaldehyde-κ2 N,C]-(diethylamine-κ1 N)platinum(II), C16H18ClN2OPt
  29. Crystal structure of 3-(methoxycarbonyl)-1-(4-methoxyphenyl)-2,3,4,9- tetrahydro-1H-pyrido[3,4-b]indol-2-ium chloride hydrate, C40H48Cl2N4O9
  30. The crystal structure of 1-(2-chlorobenzyl)-3-(3-chlorophenyl)urea, C14H12Cl2N2O
  31. Hydrothermal synthesis and crystal structure of aqua-tris(4-acetamidobenzoato-κ2 O,O′)-(1,10-phenanthroline-κ2 N,N′)terbium(III) hydrate C39H36N5O11Tb
  32. The crystal structure of zwitterionic 3-aminoisonicotinic acid, C6H6N2O2
  33. The crystal structure of bis{[monoaqua-μ2-4-[(pyridine-4-carbonyl)-amino]-phthalato-κ3 N:O,O′-(2,2′-bipyridine κ2 N,N′)copper(II)]}decahydrate, C48H56N8O22Cu2
  34. Crystal structure of poly[μ10-4,4′-methylene-bis(oxy)benzoatodipotassium], C15H10K2O6
  35. The crystal structure of catena-poly[[tetraaqua[(μ2-1,4-di(4-methyl-1-imidazolyl)benzene] cobalt(II)]bis(formate)], C16H24CoN4O8
  36. The crystal structure of (E)-2-chloro-5-((2-(nitromethylene)imidazolidin-1-yl)methyl)pyridine, C10H11ClN4O2
  37. The crystal structure of (E)-1-(((2-amino-4,5-dimethylphenyl)iminio)methyl)naphthalen-2-olate, C19H18N2O
  38. Crystal structure of N-(acridin-9-yl)-2-(4-methylpiperidin-1-yl) acetamide monohydrate, C21H25N3O2
  39. The crystal structure of dichlorido-bis(3-methyl-3-imidazolium-1-ylpropionato-κ2 O,O′)-zinc(II), C14H20Cl2N4O4Zn
  40. The crystal structure of 2,8-diethyl-1,3,7,9-tetramethyl-4λ4,5λ4-spiro[dipyrrolo[1,2-c:2′,1′-f][1,3,2]diazaborinine-5,2′-naphtho[1,8-de][1,3,2]dioxaborinine], C25H29BN2O2
  41. The crystal structure of 5-tert-butyl-2-(5-tert-butyl-3-iodo-benzofuran-2-yl)-3-iodobenzofuran, C24H24I2O2
  42. Synthesis and crystal structure of methyl 2-{[4-(4-cyclopropyl-1-naphthyl)-4H-1,2,4-triazole-3-yl]thio} acetate, C18H17N3O2S
  43. The crystal structure of n-propylammonium bis(2,3-dimethylbutane-2,3-diolato)borate-boric acid (1/1), [C3H10N][C12H24BO4]·B(OH)3
  44. Crystal structure of methyl 1-(2-bromophenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate, C19H17BrN2O2
  45. Crystal structure of (4-bromobenzyl)triphenylphosphonium bromide ethanol solvate, C52H48Br4OP2
  46. The crystal structure of unsymmetrical BOPHY C26H27BN4
  47. The crystal structure of Tb3B5O11(OH)2
  48. The crystal structure of (Z)-4-ethyl-2-((4-ethyl-3,5-dimethyl-1H-pyrrol-2-yl)methylene)-3,5-dimethyl-2H-pyrrol-1-ium 2,2'-spirobi[naphtho[1,8-de][1,3,2]dioxaborinin]-2-uide, C37H37BN2O4
  49. Crystal structure of bis(methylammonium) hexadecaselenidopalladate(II), (CH3NH3)2PdSe16
  50. The crystal structure of (2-diphenylphosphanylphenyl) 2-[7-(dimethylamino)-2-oxochromen-4-yl]acetate, C31H26NO4P
  51. Crystal structure of (E)-6-(4-ethylpiperazin-1-yl)-2-(3-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C23H25FN2O
  52. The structure of RUB-56, (C6H16N)8 [Si32O64(OH)8]·32 H2O, a hydrous layer silicate (2D-zeolite) that contains microporous levyne-type silicate layers
  53. Crystal structure of 4-amino-3,5-dibromobenzonitrile, C7H4Br2N2
  54. Crystal structure of 2-(naphthalen-1-yl)ethyl 2-acetoxybenzoate, C21H18O4
  55. Single-crystal structure determination of Tm3B12O19(OH)7
  56. Crystal structure determination of NdB3.6O7
  57. The crystal structure of NdB6O8(OH)5·H3BO3
  58. Crystal structure of 2-(5-ethylpyridin-2-yl)ethyl 2-(6-methoxynaphthalen-2-yl)propanoate, C23H25NO3
  59. Crystal structure of N-(1-(3,4-dimethoxyphenyl)-2-methylpropyl)aniline, C18H23NO2
  60. Crystal structure of Ba6Cd12Mn4SiF48
  61. Synthesis and crystal structure of 5-fluoro-1-methyl-2-oxo-3-(2-oxochroman-4-yl)indolin-3-yl acetate, C20H16FNO5
  62. The crystal structure of 6-methacryloylbenzo[d][1,3]dioxol-5-yl 4-nitrobenzenesulfonate, C17H13NO8S
  63. Crystal structure of ethyl 2-(3-benzyl-4-oxo-3,4-dihydrophthalazin-1-yl)- 2,2-difluoroacetate, C19H16F2N2O3
  64. The crystal structure of tetrakis(μ 2-(1H-benzimidazole-2-methoxo-κ2 N,O:O:O)-(n-butanol-κO)-chlorido)-tetranickel(II), C48H68Cl4N8O8Ni4
  65. Synthesis and crystal structure of trans-tetraaqua-bis((1-((7-hydroxy-3-(4-methoxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl)methyl)piperidin-1-ium-4-carbonyl)oxy-κO)zinc(II)hexahydrate, C46H64N2O28S2Zn
  66. The crystal structure of 1-(4-carboxybutyl)-3-methyl-1H-imidazol-3-ium hexafluoridophosphate, C9H15F6N2O2P
  67. Crystal structure of 1-(4-chlorophenyl)-4-(2-furoyl)-3-phenyl-1H-pyrazol-5-ol, C20H13ClN2O3
  68. Crystal structure of dimethyl (R)-2-(3-(1-phenylethyl)thioureido)-[1,1′-biphenyl]-4,4′-dicarboxylate, C25H24N2O4S
  69. The crystal structure of 1-(3-carboxypropyl)-1H-imidazole-3-oxide, C7H10N2O3
  70. Synthesis and crystal structure of dimethyl 4,4′-(propane-1,3-diylbis(oxy))dibenzoate, C19H20O6
  71. Crystal structure of methyl-1-(p-tolyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate, C20H20N2O2
  72. The crystal structure of 1-(1-adamantan-1-yl)ethyl-3-(3-methoxyphenyl)thiourea, C20H28N2OS
  73. The crystal structure of N,N′-carbonylbis(2,6-difluorobenzamide), C15H8F4N2O3
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0099/html
Button zum nach oben scrollen