Startseite Crystal structure of N-(acridin-9-yl)-2-(4-methylpiperidin-1-yl) acetamide monohydrate, C21H25N3O2
Artikel Open Access

Crystal structure of N-(acridin-9-yl)-2-(4-methylpiperidin-1-yl) acetamide monohydrate, C21H25N3O2

  • Chen Yang Jing ORCID logo , Dan Zhou , Yu Qian Kan , Pei Rong Zhao und Wen Li EMAIL logo
Veröffentlicht/Copyright: 5. April 2024

Abstract

C21H25N3O2, triclinic, P1̄ (no. 2), a = 7.6536(6) Å, b = 11.027(1) Å, c = 12.6899(11) Å, α = 66.863(2)°, β = 80.598(2)°, γ = 71.772(2)°, V = 934.38(14) Å3, Z = 2, R gt(F) = 0.0679, wR ref(F 2) = 0.1150, T = 296 K.

CCDC no.: 2325357

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.22 × 0.20 × 0.18 mm
Wavelength:

μ:
MoKα radiation (0.71073 Å)

0.08 mm−1
Diffractometer, scan mode:

θ max, completeness:
Bruker D8 Quest, Ф and ω,

25.1°, 98 %
N(hkl)measured, N(hkl)unique, R int: 18493, 3284, 0.073
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 1852
N(param)refined: 242
Programs: SHELX [1, 2]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.1498 (4) 0.5873 (3) 0.5096 (2) 0.0411 (7)
C2 0.0292 (4) 0.7131 (3) 0.4432 (3) 0.0553 (9)
H2 0.0233 0.7344 0.3650 0.066*
C3 −0.0759 (4) 0.8013 (3) 0.4919 (3) 0.0645 (10)
H3 −0.1553 0.8827 0.4475 0.077*
C4 −0.0673 (4) 0.7719 (3) 0.6092 (3) 0.0640 (9)
H4 −0.1401 0.8346 0.6416 0.077*
C5 0.0449 (4) 0.6541 (3) 0.6758 (3) 0.0514 (8)
H5 0.0484 0.6368 0.7534 0.062*
C6 0.1580 (3) 0.5560 (3) 0.6293 (2) 0.0375 (7)
C7 0.2803 (3) 0.4341 (3) 0.6916 (2) 0.0377 (7)
C8 0.3874 (3) 0.3447 (3) 0.6370 (2) 0.0380 (7)
C9 0.3690 (4) 0.3858 (3) 0.5169 (2) 0.0413 (7)
C10 0.4754 (4) 0.2968 (3) 0.4595 (3) 0.0534 (8)
H10 0.4654 0.3228 0.3811 0.064*
C11 0.5904 (4) 0.1753 (3) 0.5177 (3) 0.0614 (9)
H11 0.6587 0.1178 0.4793 0.074*
C12 0.6080 (4) 0.1348 (3) 0.6360 (3) 0.0620 (9)
H12 0.6875 0.0503 0.6751 0.074*
C13 0.5116 (4) 0.2162 (3) 0.6937 (3) 0.0495 (8)
H13 0.5268 0.1877 0.7718 0.059*
C14 0.1755 (4) 0.3769 (3) 0.8936 (2) 0.0475 (8)
C15 0.2285 (4) 0.3539 (3) 1.0112 (2) 0.0509 (8)
H15A 0.1906 0.4410 1.0219 0.061*
H15B 0.1620 0.2939 1.0689 0.061*
C16 0.4765 (4) 0.1480 (3) 1.0505 (3) 0.0564 (9)
H16A 0.4396 0.1338 0.9876 0.068*
H16B 0.4126 0.1019 1.1202 0.068*
C17 0.6816 (4) 0.0868 (3) 1.0625 (3) 0.0630 (9)
H17A 0.7450 0.1287 0.9909 0.076*
H17B 0.7120 −0.0106 1.0779 0.076*
C18 0.7477 (4) 0.1082 (3) 1.1583 (3) 0.0621 (9)
H18 0.6898 0.0591 1.2308 0.075*
C19 0.6818 (4) 0.2595 (4) 1.1383 (3) 0.0643 (9)
H19A 0.7125 0.2737 1.2030 0.077*
H19B 0.7463 0.3086 1.0704 0.077*
C20 0.4769 (4) 0.3184 (3) 1.1229 (3) 0.0567 (9)
H20A 0.4112 0.2762 1.1933 0.068*
H20B 0.4432 0.4162 1.1068 0.068*
C21 0.9552 (5) 0.0514 (4) 1.1671 (4) 0.0948 (13)
H21A 1.0146 0.0986 1.0970 0.142*
H21B 0.9899 −0.0447 1.1801 0.142*
H21C 0.9921 0.0645 1.2298 0.142*
N1 0.2539 (3) 0.5046 (2) 0.45495 (19) 0.0437 (6)
N2 0.3063 (3) 0.4002 (2) 0.80914 (19) 0.0431 (6)
H2A 0.4127 0.3942 0.8276 0.052*
N3 0.4239 (3) 0.2942 (2) 1.02904 (18) 0.0414 (6)
O1 0.0202 (3) 0.3806 (2) 0.87866 (18) 0.0693 (7)
O2 0.3077 (3) 0.6093 (3) 0.21203 (18) 0.0691 (7)
H2WB 0.219 (4) 0.614 (4) 0.178 (3) 0.104*
H2WA 0.280 (5) 0.574 (4) 0.2824 (17) 0.104*

1 Source of materials

The mixture of N-(9-Acridinyl)-2-chloroacetamide (2.70 g, 10 mmol), 4-methylpiperidine (1.49 g, 15 mmol), K2CO3 (2.76 g, 20 mmol), KI (1.66 g, 10 mmol) and DMF (15 ml) was reacted at 25 °C for 12 h. After the reaction completed (monitored by TLC), extracted with ethyl acetate and water. The organic layer was washed with water, dried over sodium sulfate, and concentrated in vacuo. The crude complex was obtained by preparative TLC separation using petroleum ether/ethyl acetate (3:1, v/v) as the eluent. Yield 75.5 %. The product was dissolved in ethyl acetate and the crystals of the title compound were obtained by slow evaporation at room temperature for 2 days.

2 Experimental details

The structure was solved by Direct Methods and refined with the SHELX [1, 2] crystallographic software package. Hydrogen atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms. The crystal structure visualization was generated using the OLEX2 software package.

3 Comment

In recent years, antibacterial, anti-tumor and anti-malaria activities of 9-aminoacridine derivatives have been successively discovered [3], [4], [5], [6], [7]. Moreover, prior to these findings, 9-aminoacridine [8] amsacridine [9] ethacridine [10] acriflavine [11, 12] had been applied in clinical practice. However, compounds containing acridine moieties generally have lower water solubility and in vivo bioavailability [13]. Adding hydrophilic groups is an effective method to increase the solubility of compounds [14], [15], [16]. Therefore, we synthesized the title compound by introducing methylpyridine into 9-aminoacridine.

The asymmetric unit contains two molecules of N-(acridin-9-yl)-2-(4-methylpiperidin-1-yl) acetamide and two molecules of water. H(2WA) and H(2WB) of water molecules form hydrogen bonds with N1 and N3. 4-methylpiperidine moieties exist in a chair conformation, which is often the lowest energy state. The bond lengths of C(7)–N(2), C(14)–O(1), C(15)–N(3) are 1.449(3), 1.220(3) and 1.420(3) Å, respectively. The dihedral angles formed by the acridine ring N1–C1–C2–C3–C4–C5–C6–C7–C8–C9–C10–C11–C12–C13 plane, the piperidine group N3–C16–C17–C18–C19–C20 plane and the amide group N2–C14–O2 plane are 45.3° and 64.654°. 3-(difluoromethyl)-1-methyl-N-(4,11,11-trimethyl-1,2,3,4-tetrahydro-1,4-methanoacridin-9-yl)-1H-pyrazole-4-carboxamide monohydrate (CCDC no. 2153613) has the similar chemical structure to the title compound [17]. There are some differences in the bond length and bond angle of the C–N bond formed by the amino group on the quinoline moieties of the two compounds. The C–N bond lengths of the title compound are 1.420 Å (C7–N2) and 1.346 Å (N2–C14), and that of 3-(difluoromethyl)-1-methyl-N-(4,11,11-trimethyl-1,2,3,4-tetrahydro-1,4-methanoacridin-9-yl)-1H-pyrazole-4-carboxamide monohydrate are 1.429 Å (C7–N2) and 1.339Å (N2–C18). The bond angles of the title compound and 3-(difluoromethyl)-1-methyl-N-(4,11,11-trimethyl-1,2,3,4-tetrahydro-1,4-methanoacridin-9-yl)-1H-pyrazole-4-carboxamide monohydrate are 124.4° (C7–N2–C14) and 121.63° (C7–N2–C18), respectively.


Corresponding author: Wen Li, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People’s Republic of China; and Henan Province Collaborative Innovation Center of New Drug Research and Safety Evaluation, Ministry of Education, Key Laboratory of Advanced Drug Preparation Technologies and Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, People’s Republic of China, E-mail:

Funding source: Key Technologies R & D Program of Henan Province of China

Award Identifier / Grant number: (No. 222102310279)

Acknowledgments

The Analysis and Testing Center of Zhengzhou University is acknowledged for the single crystal X-ray diffraction facility.

  1. Author contributions: The synthesis of compounds and crystal preparation were completed by Chen-Yang Jing, while the data analysis, writing and revision of the paper were completed by Chen-Yang Jing, Dan Zhou and Yu-Qian Kan; supervision, Wen Li. All authors have read and agreed to the published version of the manuscript.

  2. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  3. Research funding: This work was supported by the Key Technologies R & D Program of Henan Province of China (No. 222102310279) for WL.

References

1. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central

2. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

3. Wainwright, M. Acridine-a neglected antibacterial chromophore. J. Antimicrob. Chemother. 2001, 47, 1–13; https://doi.org/10.1093/jac/47.1.1.Suche in Google Scholar PubMed

4. Chen, C. C., Zhang, Y. Q., Zhong, D. X., Huang, X.-H., Zhang, Y.-H., Jiang, W.-H., Li, M., Chen, Q., Wong, W.-L., Lu, Y.-J. The study of 9,10-dihydroacridine derivatives as a new and effective molecular scaffold for antibacterial agent development. Biochem. Biophys. Res. Commun. 2021, 546, 40–45; https://doi.org/10.1016/j.bbrc.2021.01.096.Suche in Google Scholar PubMed

5. Dai, X. J., Liu, Y., Wang, N., Chen, H. X., Wu, J. W., Xiong, X. P., Ji, S. K., Zhou, Y., Shen, L., Wang, S. P., Liu, H. M., Zheng, Y. C. Novel acridine-based LSD1 inhibitors enhance immune response in gastric cancer. Eur. J. Med. Chem. 2023, 259, 115684; https://doi.org/10.1016/j.ejmech.2023.115684.Suche in Google Scholar PubMed

6. Liu, H. M., Xiong, X. P., Wu, J. W., Chen, H.-X., Zhou, Y., Ji, S.-K., Dai, X.-J., Zheng, Y.-C., Liu, H.-M. Discovery of acridine-based LSD1 inhibitors as immune activators targeting LSD1 in gastric cancer. Eur. J. Med. Chem. 2023, 251, 115255; https://doi.org/10.1016/j.ejmech.2023.115255.Suche in Google Scholar PubMed

7. Fonte, M., Tassi, N., Gomes, P., Teixeira, C. Acridine-based antimalarials-from the very first synthetic antimalarial to recent developments. Molecules 2021, 26, 600; https://doi.org/10.3390/molecules26030600.Suche in Google Scholar PubMed PubMed Central

8. She, P., Li, Y., Li, Z., Liu, S., Yang, Y., Li, L., Zhou, L., Wu, Y. Repurposing 9-aminoacridine as an adjuvant enhances the antimicrobial effects of rifampin against multidrug-resistant klebsiella pneumoniae. Microbiol. Spectr., 2023, 11, e0447424.10.1128/spectrum.04474-22Suche in Google Scholar PubMed PubMed Central

9. Lee, Y. C., Chiou, J. T., Wang, L. J., Chen, Y. J., Chang, L. S. Amsacrine downregulates BCL2L1 expression and triggers apoptosis in human chronic myeloid leukemia cells through the SIDT2/NOX4/ERK/HuR pathway. Toxicol. Appl. Pharmacol. 2023, 474, 116625; https://doi.org/10.1016/j.taap.2023.116625.Suche in Google Scholar PubMed

10. Zhang, H., Yang, H., Wei, W., Zhao, J., Vijayalakshmi, A., Wang, M. Ethacridine regulation of JAK/STAT/ERK signaling pathway in colon cancer cells SW620: in vitro approach. Phcog. Mag. 2023, 19, 214–221; https://doi.org/10.1177/09731296221136906.Suche in Google Scholar

11. Napolitano, V., Dabrowska, A., Schorpp, K., Mourão, A., Barreto-Duran, E., Benedyk, M., Botwina, P., Brandner, S., Bostock, M., Chykunova, Y., Czarna, A., Dubin, G., Fröhlich, T., Hoelscher, M., Jedrysik, M., Matsuda, A., Owczarek, K., Pachota, M., Plettenburg, O., Potempa, J., Rothenaigner, I., Schlauderer, F., Szczepanski, A., Mohn, K. G., Blomberg, B., Sattler, M., Hadian, K., Popowicz, G. M., Pyrc, K. Acriflavine, a clinically approved drug, inhibits SARS-CoV-2 and other betacoronaviruses. Cell Chem. Biol. 2022, 29, 774–784; https://doi.org/10.1016/j.chembiol.2021.11.006.Suche in Google Scholar PubMed PubMed Central

12. Piorecka, K., Kurjata, J., Stanczyk, W. A. Acriflavine, an acridine derivative for biomedical application: current state of the art. J. Med. Chem. 2022, 65, 11415–11432; https://doi.org/10.1021/acs.jmedchem.2c00573.Suche in Google Scholar PubMed PubMed Central

13. Ghiami-Shomami, A., Tshepelevitsh, S., Tammekivi, E., Ilisson, M., Mastitski, A., Kütt, A., Toom, L., Leito, I. Solubility of mono-aminoacridines. ChemistrySelect 2023, 8, e202300835; https://doi.org/10.1002/slct.202300835.Suche in Google Scholar

14. Chang, Y.-J., Ding, Y.-M., Zhu, L.-Y., Liu, H.-M., Li, W. Crystal structure of {tetraaqua-bis(1-(4-hydroxy-2-oxotetrahydrofuran-3-yl)-2-((4aS,6R,8aS)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylenedecahydronaphthalen-1-yl)ethane-1-sulfonato-κ2O,O′) calcium(II)}–{triaqua-bis(1-(4-hydroxy-2-oxotetrahydrofuran-3-yl)-2-((4aS,6R,8aS)-6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylenedecahydronaphthalen-1-yl)ethane-1-sulfonato-κ2O,O′) calcium(II)} – water – acetone (1/1/8/2), C43H78CaO22S2. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 87–91; https://doi.org/10.1515/ncrs-2020-0382.Suche in Google Scholar

15. Ding, Y.-M., Li, R.-P., Chang, Y.-J., Zhao, J., Liu, H.-M., Li, W. Crystal structure of triaqua-bis(2-(6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylenedecahydronaphthalen-1-yl)-1-(2-oxo-2,5-dihydrofuran-3-yl)ethane-1-sulfonato-κ2O,O′)calcium(II) – ethanol (1/2), C44H76CaO19S2. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 515–517; https://doi.org/10.1515/ncrs-2019-0709.Suche in Google Scholar

16. Jornada, D. H., Fernandes, G. F. d. S., Chiba, D. E., Ferreira de Melo, T. R., dos Santos, J. L., Chung, M. C. The prodrug approach: a successful tool for improving drug solubility. Molecules 2016, 21, 42; https://doi.org/10.3390/molecules21010042.Suche in Google Scholar PubMed PubMed Central

17. Zhong, L., Wang, J.-L., Zhu, S.-S., Chen, S.-X., Peng, D.-Y. Crystal structure of 3-(difluoromethyl)-1-methyl-N-(4,11,11-trimethyl-1,2,3,4-tetrahydro-1,4-methanoacridin-9-yl)-1H-pyrazole-4-carboxamide monohydrate, C23H26F2N4O3. Z. Kristallogr. N. Cryst. Struct. 2022, 237, 341–343; https://doi.org/10.1515/ncrs-2022-0030.Suche in Google Scholar

Received: 2024-02-01
Accepted: 2024-03-01
Published Online: 2024-04-05
Published in Print: 2024-06-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of tris((Z)-2-hydroxy-N-((E)-pyridin-2-ylmethylene)benzohydrazonato-k2O,N)europium(III), C39H30N9O6Eu
  4. Crystal structure of (E)-3-(benzylideneamino)-2-phenylthiazolidin-4-one, C16H14N2OS
  5. The crystal structure of (E)-4-fluoro-N′-(1-(o-tolyl)ethylidene)benzohydrazide, C16H15FN2O
  6. Crystal structure of (6-chloropyridin-3-yl)methyl 2-(6-methoxynaphthalen-2-yl)propanoate, C20H18ClNO3
  7. Crystal structure of methyl 3-methoxy-4-(2-methoxy-2-oxoethoxy)benzoate, C12H14O6
  8. The crystal structure of bis[(4-methoxyphenyl)(picolinoyl)amido-κ2 N:N′]copper(II), C26H22CuN4O4
  9. The crystal structure of poly[di(μ2-aqua)-diaqua-bis(3-aminopyridine-4-carboxylate-κ2 O: O′)-tetra(μ2-3-aminopyridine-4-carboxylate-κ2 O: O′)-dineodymium(III), [Nd2(C6H5N2O2)6(H2O)4] n
  10. The crystal structure of t-butyl 7-[3-(4-fluorophenyl)-1-(propan-2-yl)-1H-indol-2-yl]-3,5-dihydroxyhept-6-enoate, C28H34FNO4
  11. Crystal structure of catena-poly[(benzylamine-κ1 N)-(sorbato-κ1 O)-(μ2-sorbato-κ2 O,O′)-copper(II), C19H23CuNO4
  12. Crystal structure of (4-(2-chlorophenyl)-1H-pyrrol-3-yl)(ferrocenyl) methanone, C21H16ClFeNO
  13. The crystal structure of N-[4-(4-bromophenyl)-1,3-thiazol-2-yl]-3-(2-methylphenyl)-2-sulfanylprop-2-enamide hydrate, C19H17BrN2O2S2
  14. The crystal structure of N′-{5-[2-(2,6-dimethylphenoxy) acetamido]-4-hydroxy-1,6-diphenylhexan-2-yl}-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butanamide hydrate
  15. Crystal structure of 2-(naphthalen-1-yl)ethyl 2-(6-methoxynaphthalen-2-yl)propanoate, C26H24O3
  16. Crystal structure of naphthalen-1-ylmethyl 2-(6-methoxynaphthalen-2-yl)propanoate, C25H22O3
  17. Crystal structure of poly[diaqua- (μ4-5-(1H-1,2,4-triazol-1-yl)benzene-1,3-dicarboxylato-κ5N:O,O’:O’’:O’’’)calcium(II), C10H9CaN3O6
  18. Crystal structure of (E)-N′-(4-((E)-3-(dimethylamino)acryloyl)-3-hydroxyphenyl)-N, N-dimethylformimidamide, C14H19N3O2
  19. Crystal structure of (E)-3-(dimethylamino)-1-(2-hydroxy-4,6-dimethoxyphenyl)prop-2-en-1-one, C13H17NO4
  20. Crystal structure of (2-chloropyridin-3-yl)methyl-2-(6-methoxynaphthalen-2-yl)propanoate, C20H18ClNO3
  21. The crystal structure of diethyl 4-(3,4-dimethylphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate, C21H27NO4
  22. Crystal structure of (8R,9S,10R,13S,14S,17S)-17-hydroxy-10,13-dimethyl-17-((4-(2-phenylpropyl)phenyl)ethynyl)-1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenanthren-3-one, C36H42O2
  23. Synthesis and crystal structure of 4-(4-cyclopropylnaphthalen-1-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione, C15H13N3S
  24. Crystal structure of catena-poly[aqua-(2,6-di-(2-pyridyl)-pyridine-κ3 N,N′, N″)(μ2-1,4-naphthalene dicarboxylato-κ2 O,O′)nickel(II)], C27H19NiN3O5
  25. Crystal structure of 3-(diphenylphosphoryl)-3-hydroxy-1-phenylpropan-1-one, C21H19O3P
  26. The crystal structure of R,S-{N-[(2-oxidonaphthalen-1-yl)methylidene]phenylglycinato}divinylsilicon, C23H19NO3Si
  27. The crystal structure of 1,2,4-tris(bromomethyl)benzene, C9H9Br3
  28. Crystal structure of chlorido-[4-(pyridin-2-yl)benzaldehyde-κ2 N,C]-(diethylamine-κ1 N)platinum(II), C16H18ClN2OPt
  29. Crystal structure of 3-(methoxycarbonyl)-1-(4-methoxyphenyl)-2,3,4,9- tetrahydro-1H-pyrido[3,4-b]indol-2-ium chloride hydrate, C40H48Cl2N4O9
  30. The crystal structure of 1-(2-chlorobenzyl)-3-(3-chlorophenyl)urea, C14H12Cl2N2O
  31. Hydrothermal synthesis and crystal structure of aqua-tris(4-acetamidobenzoato-κ2 O,O′)-(1,10-phenanthroline-κ2 N,N′)terbium(III) hydrate C39H36N5O11Tb
  32. The crystal structure of zwitterionic 3-aminoisonicotinic acid, C6H6N2O2
  33. The crystal structure of bis{[monoaqua-μ2-4-[(pyridine-4-carbonyl)-amino]-phthalato-κ3 N:O,O′-(2,2′-bipyridine κ2 N,N′)copper(II)]}decahydrate, C48H56N8O22Cu2
  34. Crystal structure of poly[μ10-4,4′-methylene-bis(oxy)benzoatodipotassium], C15H10K2O6
  35. The crystal structure of catena-poly[[tetraaqua[(μ2-1,4-di(4-methyl-1-imidazolyl)benzene] cobalt(II)]bis(formate)], C16H24CoN4O8
  36. The crystal structure of (E)-2-chloro-5-((2-(nitromethylene)imidazolidin-1-yl)methyl)pyridine, C10H11ClN4O2
  37. The crystal structure of (E)-1-(((2-amino-4,5-dimethylphenyl)iminio)methyl)naphthalen-2-olate, C19H18N2O
  38. Crystal structure of N-(acridin-9-yl)-2-(4-methylpiperidin-1-yl) acetamide monohydrate, C21H25N3O2
  39. The crystal structure of dichlorido-bis(3-methyl-3-imidazolium-1-ylpropionato-κ2 O,O′)-zinc(II), C14H20Cl2N4O4Zn
  40. The crystal structure of 2,8-diethyl-1,3,7,9-tetramethyl-4λ4,5λ4-spiro[dipyrrolo[1,2-c:2′,1′-f][1,3,2]diazaborinine-5,2′-naphtho[1,8-de][1,3,2]dioxaborinine], C25H29BN2O2
  41. The crystal structure of 5-tert-butyl-2-(5-tert-butyl-3-iodo-benzofuran-2-yl)-3-iodobenzofuran, C24H24I2O2
  42. Synthesis and crystal structure of methyl 2-{[4-(4-cyclopropyl-1-naphthyl)-4H-1,2,4-triazole-3-yl]thio} acetate, C18H17N3O2S
  43. The crystal structure of n-propylammonium bis(2,3-dimethylbutane-2,3-diolato)borate-boric acid (1/1), [C3H10N][C12H24BO4]·B(OH)3
  44. Crystal structure of methyl 1-(2-bromophenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate, C19H17BrN2O2
  45. Crystal structure of (4-bromobenzyl)triphenylphosphonium bromide ethanol solvate, C52H48Br4OP2
  46. The crystal structure of unsymmetrical BOPHY C26H27BN4
  47. The crystal structure of Tb3B5O11(OH)2
  48. The crystal structure of (Z)-4-ethyl-2-((4-ethyl-3,5-dimethyl-1H-pyrrol-2-yl)methylene)-3,5-dimethyl-2H-pyrrol-1-ium 2,2'-spirobi[naphtho[1,8-de][1,3,2]dioxaborinin]-2-uide, C37H37BN2O4
  49. Crystal structure of bis(methylammonium) hexadecaselenidopalladate(II), (CH3NH3)2PdSe16
  50. The crystal structure of (2-diphenylphosphanylphenyl) 2-[7-(dimethylamino)-2-oxochromen-4-yl]acetate, C31H26NO4P
  51. Crystal structure of (E)-6-(4-ethylpiperazin-1-yl)-2-(3-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C23H25FN2O
  52. The structure of RUB-56, (C6H16N)8 [Si32O64(OH)8]·32 H2O, a hydrous layer silicate (2D-zeolite) that contains microporous levyne-type silicate layers
  53. Crystal structure of 4-amino-3,5-dibromobenzonitrile, C7H4Br2N2
  54. Crystal structure of 2-(naphthalen-1-yl)ethyl 2-acetoxybenzoate, C21H18O4
  55. Single-crystal structure determination of Tm3B12O19(OH)7
  56. Crystal structure determination of NdB3.6O7
  57. The crystal structure of NdB6O8(OH)5·H3BO3
  58. Crystal structure of 2-(5-ethylpyridin-2-yl)ethyl 2-(6-methoxynaphthalen-2-yl)propanoate, C23H25NO3
  59. Crystal structure of N-(1-(3,4-dimethoxyphenyl)-2-methylpropyl)aniline, C18H23NO2
  60. Crystal structure of Ba6Cd12Mn4SiF48
  61. Synthesis and crystal structure of 5-fluoro-1-methyl-2-oxo-3-(2-oxochroman-4-yl)indolin-3-yl acetate, C20H16FNO5
  62. The crystal structure of 6-methacryloylbenzo[d][1,3]dioxol-5-yl 4-nitrobenzenesulfonate, C17H13NO8S
  63. Crystal structure of ethyl 2-(3-benzyl-4-oxo-3,4-dihydrophthalazin-1-yl)- 2,2-difluoroacetate, C19H16F2N2O3
  64. The crystal structure of tetrakis(μ 2-(1H-benzimidazole-2-methoxo-κ2 N,O:O:O)-(n-butanol-κO)-chlorido)-tetranickel(II), C48H68Cl4N8O8Ni4
  65. Synthesis and crystal structure of trans-tetraaqua-bis((1-((7-hydroxy-3-(4-methoxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl)methyl)piperidin-1-ium-4-carbonyl)oxy-κO)zinc(II)hexahydrate, C46H64N2O28S2Zn
  66. The crystal structure of 1-(4-carboxybutyl)-3-methyl-1H-imidazol-3-ium hexafluoridophosphate, C9H15F6N2O2P
  67. Crystal structure of 1-(4-chlorophenyl)-4-(2-furoyl)-3-phenyl-1H-pyrazol-5-ol, C20H13ClN2O3
  68. Crystal structure of dimethyl (R)-2-(3-(1-phenylethyl)thioureido)-[1,1′-biphenyl]-4,4′-dicarboxylate, C25H24N2O4S
  69. The crystal structure of 1-(3-carboxypropyl)-1H-imidazole-3-oxide, C7H10N2O3
  70. Synthesis and crystal structure of dimethyl 4,4′-(propane-1,3-diylbis(oxy))dibenzoate, C19H20O6
  71. Crystal structure of methyl-1-(p-tolyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate, C20H20N2O2
  72. The crystal structure of 1-(1-adamantan-1-yl)ethyl-3-(3-methoxyphenyl)thiourea, C20H28N2OS
  73. The crystal structure of N,N′-carbonylbis(2,6-difluorobenzamide), C15H8F4N2O3
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0050/html
Button zum nach oben scrollen