Startseite The crystal structure of tetrakis(μ 2-(1H-benzimidazole-2-methoxo-κ2 N,O:O:O)-(n-butanol-κO)-chlorido)-tetranickel(II), C48H68Cl4N8O8Ni4
Artikel Open Access

The crystal structure of tetrakis(μ 2-(1H-benzimidazole-2-methoxo-κ2 N,O:O:O)-(n-butanol-κO)-chlorido)-tetranickel(II), C48H68Cl4N8O8Ni4

  • Yanfei Wang ORCID logo , Xiujuan He , Qian Mao ORCID logo und Jinlan Ji EMAIL logo
Veröffentlicht/Copyright: 11. April 2024

Abstract

C48H68Cl4N8O8Ni4, tetragonal, I41/a (no. 88), a = 16.9137(5) Å, c = 19.5028(13) Å, V = 5579.2(5) Å3, Z = 4, Rgt (F) = 0.0391, wRref (F 2) = 0.1221, T = 293 K.

CCDC no.: 1055581

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Figure: 
The cubane cluster structure of I is formed by four Ni(II) ions, four Cl− anions, four bm and four n-butyl alcohol ligands. The H-atoms and the symmetry-related Cl−, bm and n-butyl alcohol ligands are omitted for clarity (symmetry code: i. 1 − x, 1.5 − y, z; ii. 1.25 − y, 0.25 + x, 1.25 − z; iii. y − 0.25, 1.25 − x, 1.25 − z).
Figure:

The cubane cluster structure of I is formed by four Ni(II) ions, four Cl anions, four bm and four n-butyl alcohol ligands. The H-atoms and the symmetry-related Cl, bm and n-butyl alcohol ligands are omitted for clarity (symmetry code: i. 1 − x, 1.5 − y, z; ii. 1.25 − y, 0.25 + x, 1.25 − z; iii. y − 0.25, 1.25 − x, 1.25 − z).

Table 1:

Data collection and handling.

Crystal: Green prism
Size: 0.47 × 0.36 × 0.34 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.58 mm−1
Diffractometer, scan mode: φ and ω
θ max, completeness: 28.3°, >99 %
N(hkl)measuredN(hkl)uniqueR int: 25,550, 3459, 0.031
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2685
N(param)refined: 165
Programs: CrysAlisPRO [1], Olex2 [2], SHELX [3, 4], PLATON [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.60101 (16) 0.71142 (16) 0.40250 (14) 0.0431 (5)
C2 0.65484 (19) 0.7668 (2) 0.37804 (17) 0.0562 (7)
H2 0.682989 0.799679 0.407420 0.067*
C3 0.6643 (2) 0.7702 (2) 0.30771 (18) 0.0703 (9)
H3 0.699505 0.806876 0.289538 0.084*
C4 0.6231 (3) 0.7211 (2) 0.26307 (18) 0.0734 (10)
H4 0.631501 0.725966 0.216132 0.088*
C5 0.5703 (2) 0.6655 (2) 0.28654 (16) 0.0623 (8)
H5 0.543079 0.632257 0.256813 0.075*
C6 0.55991 (17) 0.66177 (17) 0.35736 (14) 0.0464 (6)
C7 0.52118 (16) 0.64037 (15) 0.46353 (13) 0.0398 (5)
C8 0.47547 (17) 0.61282 (16) 0.52500 (14) 0.0427 (5)
H8A 0.420399 0.604760 0.513005 0.051*
H8B 0.496834 0.563225 0.541745 0.051*
C9 0.7047 (3) 0.5769 (3) 0.5477 (3) 0.1080 (18)
H9A 0.743068 0.611430 0.526024 0.130*
H9B 0.674549 0.551177 0.511811 0.130*
C10 0.7481 (4) 0.5146 (4) 0.5893 (4) 0.146 (3)
H10A 0.772107 0.541356 0.628054 0.176*
H10B 0.708369 0.479132 0.607866 0.176*
C11 0.8058 (4) 0.4681 (4) 0.5600 (4) 0.171 (3)
H11A 0.846005 0.502223 0.540411 0.205*
H11B 0.782437 0.438104 0.522731 0.205*
C12 0.8439 (3) 0.4129 (3) 0.6075 (4) 0.134 (2)
H12A 0.872889 0.373926 0.582014 0.201*
H12B 0.804331 0.387169 0.634874 0.201*
H12C 0.879504 0.441340 0.636880 0.201*
Cl1 0.71336 (4) 0.79947 (5) 0.55939 (4) 0.04952 (19)
N1 0.57479 (13) 0.69609 (13) 0.46886 (11) 0.0420 (4)
N2 0.51047 (15) 0.61672 (14) 0.39796 (12) 0.0467 (5)
H2A 0.478737 0.580340 0.384100 0.056*
Ni1 0.59216 (2) 0.72735 (2) 0.56929 (2) 0.03550 (13)
O1 0.48216 (10) 0.67187 (10) 0.57579 (9) 0.0365 (4)
O2 0.65445 (14) 0.62170 (13) 0.58722 (12) 0.0582 (5)
H2B 0.626808 0.592473 0.610691 0.087*

1 Source of materials

All chemicals were purchased from commercial sources and used as received. A mixture of NiCl2·6H2O (0.238 g, 1 mmol) and bm (benzimidazole, 0.150 g, 1 mmol) in 10 mL n-butyl alcohol, with a pH adjusted to 8.0 by addition of triethylamine, was poured into a Teflon-lined autoclave (15 mL) and then heated at 433 K for 4 days. After cooling to room temperature at a rate of 283 K h−1, green block-shaped crystals of I were collected by filtration, washed with n-butyl alcohol and dried in air. Phase pure crystals were obtained by manual separation (Yield: 65.2 mg ca. 21 % based on bm). Anal. Calc. for I: C48H68Cl4N8O8Ni4 (%) (Mr = 1261.74): C, 45.65; H, 5.39; N, 8.88. Found: C, 45.67; H, 5.38; N, 8.86 %. (CCDC number 1055581).

2 Experimental details

Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. Using Olex2 [2], the structure was solved with the ShelXT [3] structure solution program and refined with the ShelXL [4] refinement package. Carbon or nitrogen-bound hydrogen atoms were placed in calculated positions (d = 0.93 Å for CH, d = 0.97 Å for CH2, d = 0.96 Å for CH3, and d = 0.86 Å for NH) and were included in the refinement in the riding model approximation, with U iso(H) set to 1.2U eq(C or N) for –CH, for –NH and for –CH2, and with U iso(H) set to 1.5U eq(C) for –CH3. The H atoms of hydroxyl group of n-butyl alcohol in I were refined as rotating groups, with d O–H = 0.82 Å and U iso(H) = 1.5U eq(O). The structures were examined using the ADDSYM subroutine of PLATON [5] to ensure that no additional symmetry could be applied to the models.

3 Comment

Design and investigation of polynuclear transition metal complexes have received considerable attention because of their different potential applications, such as gas storage [6], separation [7], catalysis [8] and magnet [9]. With the aim of understanding the correlation between structures and kinds of properties, a series of polynuclear complexes have been synthesized, in which the search for key ligands is an important process to advance this investigation [10]. The benzimidazole-based derivatives have received so much interest due to their applications both in coordination chemistry [11] and in medicinal chemistry, such as antibacterial, antiviral and antitumor properties [12]. (1H-benzimidazol)-methanol (bm), as an excellent organic ligand with N, O-donor atoms, it can coordinate to the metal-ion to form different structures [13]. As a monodentate ligand it coordinates to the metal ion via the pyridine-type nitrogen to form mononuclear complex [14]. As an bidentate ligand, it coordinates to the metal ion via the pyridine-type nitrogen and the alkoxide oxygen to form mononuclear complex [15], polynuclear complex in which the alkoxide oxygen can bridge more than one metal ion [16]. The other pyrrol-type nitrogen (N–H) is usually involved in hydrogen bond formation with available hydrogen acceptor and/or hydrogen donor sites. Through hydrogen bond and other interactions, the solid state can dictate interesting structure [17]. With the aim of understanding the coordination chemistry, we have recently focussed our research on coordination polymers based on bm ligand. Herein, we describe the synthesis and crystal structure of a cubane Ni(II) cluster, {Ni4(bm)4Cl4(C4H9OH)4}, prepared by the reaction of NiCl2·6H2O with bm in n-butyl alcohol.

Single-crystal X-ray diffraction analysis reveals that the title structure (I) belongs to the tetragonal space group I41/a, and contains a cubane cluster with four nickel(II) ion and oxygen atoms from four bm ligands occupying the alternate vertices of the cube. The cubane is formed by four Ni(II) ions, four Cl anions, four bm ligands and four n-butyl alcohol (Figure 1). The NiII ion is in a distorted octahedral geometry coordinated by one terminal n-butyl alcohol molecule (Ni1–O2, 2.106(2) Å), one Cl anion (Ni1–Cl1, 2.3914(8) Å). One benzimidazole N atom (Ni1–N1, 2.049(2) Å) and three μ 3-alkoxide oxygen atoms (Ni1–O1, 2.0908(18) Å; Ni1–O1 i , 2.1205(18) Å; Ni1–O1 ii , 2.0617(17) Å, symmetry codes: i. 1 − x, 1.5 − y, z; ii. 1.25 − y, 0.25 + x, 1.25 − z). It must be pointed out that bm exists as a mono-anion and displayed a μ 3η 3:η 1 coordination mode. It is interesting to note that such a coordinated mode was already observed in [Ni(bm)Cl(C2H5OH)]4 [17] and [Co4(bm)4Cl4(C3H7OH)4] [18]. The Ni⋯Ni distances of I are in the range 3.142–3.210 Å and the magnetic exchange Ni–O–Ni angles of I are in the range 97.41(7)–98.36(7)° [19], showing values for the Ni⋯Ni ferromagnetic exchange pathways to be dominant, being between 90° and 104° [20]. Complex I further forms a supramolecular 2–D network through N–H⋯Cl–M hydrogen bonds (N2–H2a⋯Cliv, 3.277(2) Å, 150.4°, symmetry code: (iv) −y + 5/4, x − 1/4, z − 1/4) in the bc plane. It must be mentioned that the importance of such types of N–H⋯Cl–M hydrogen bonds has already been reported in the literature [21].


Corresponding author: Jinlan Ji, Department of Chemical Engineering, Jincheng Institute of Technology, Jincheng, Shanxi 048026, People’s Republic of China; and Shanxi Institute of Technology, Jincheng, Shanxi 048000, People’s Republic of China, E-mail:

Funding source: Jincheng Institute of Technology scientific research project

Award Identifier / Grant number: LX2402

  1. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Research funding: This work was supported by the Jincheng Institute of Technology scientific research project (No. LX2402).

References

1. Oxford Diffraction Ltd. CrysAlisPRO; Rigaku Oxford Diffraction, Version 1.171.39.6a: England, 2018.Suche in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

5. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. 2009, D65, 148–155; https://doi.org/10.1107/s090744490804362x.Suche in Google Scholar

6. He, Y., Zhou, W., Qian, G., Chen, B. Methane storage in metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 5657–5678; https://doi.org/10.1039/c4cs00032c.Suche in Google Scholar PubMed

7. Min, K. S., Suh, M. P. Self-assembly and selective guest binding of three-dimensional open-framework solids from a macrocyclic complex as a trifunctional metal building block. Chem. Eur. J. 2001, 7, 303–313; https://doi.org/10.1002/1521-3765(20010105)7:1<303::aid-chem303>3.0.co;2-h.10.1002/1521-3765(20010105)7:1<303::AID-CHEM303>3.0.CO;2-HSuche in Google Scholar

8. Liu, J. W., Chen, L. F., Cui, H., Zhang, J. Y., Zhang, L., Su, C. Y. ChemInform abstract: applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 45, 6011–6061; https://doi.org/10.1002/chin.201443253.Suche in Google Scholar

9. Hu, S., He, K. H., Zeng, M. H., Zou, H. H., Jiang, Y. M. Crystalline-state guest-exchange and gas-adsorption phenomenon for a “soft” supramolecular porous framework stacking by a rigid linear coordination polymer. Inorg. Chem. 2008, 47, 5218–5224; https://doi.org/10.1021/ic800050u.Suche in Google Scholar

10. Uemura, K., Saito, K., Kitagama, S., Kita, H. Hydrogen-bonded porous coordination polymers: structural transformation, sorption properties, and particle size from kinetic studies. J. Am. Chem. Soc. 2006, 128, 16122–16130; https://doi.org/10.1021/ja064152r.Suche in Google Scholar

11. Song, X. Y., Xu, Y. H., Li, L. C., Liao, D. Z., Jiang, Z. H. An unexpected cubane-like nickel(II) tetranuclear complex bridged by the anion of 2-hydroxymethylbenzimidazole: crystal structure and magnetic properties. Inorg. Chim. Acta 2007, 360, 2039–2044; https://doi.org/10.1016/j.ica.2006.10.037.Suche in Google Scholar

12. Sigel, H. Metal ion complexes of antivirally active nucleotide analogues. Conclusions regarding their biological action. Chem. Soc. Rev. 2014, 3, 191–200; https://doi.org/10.1039/b310349h.Suche in Google Scholar PubMed

13. Machura, B., Wolff, M., Palion, J., Kruszynski, R. Synthesis, spectroscopic characterization, X-ray structure and DFT calculations of novel mononuclear Re(V) complex with imidazole-derived ligand. Inorg. Chem. Commun. 2011, 14, 1358–1361; https://doi.org/10.1016/j.inoche.2011.05.020.Suche in Google Scholar

14. Checiriska, L., Malecka, M., Ochocki, J., Kalinowska, U. trans–Bis(1H-benzimidazol-2-yl-methyl-κN3 diethyl phosphate)-di-chloro-palladium(II) monohydrate. Acta Crystallogr. 2004, E60, m1558–m1561.10.1107/S1600536804023943Suche in Google Scholar

15. Zeng, L. L., Leng, J. D., Herchel, R., Lan, Y. H., Powell, A. K., Tong, M. L. Anion-dependent facile route to magnetic dinuclear and dodecanuclear cobalt clusters. Eur. J. Inorg. Chem. 2010, 2010, 2229–2234; https://doi.org/10.1002/ejic.201000222.Suche in Google Scholar

16. Zhou, Y. L., Zeng, M. H., Liu, X. C., Liang, H., Kurmoo, M. Exploring the effect of metal ions and counteranions on the structure and magnetic properties of five dodecanuclear CoII and NiII clusters. Chem. Eur. J. 2011, 17, 14084–14093; https://doi.org/10.1002/chem.201101070.Suche in Google Scholar PubMed

17. Zhang, S. H., Ma, L. F., Zou, H. H., Wang, Y. G., Liang, H., Zeng, M. H. Anion induced diversification from heptanuclear to tetranuclear clusters: syntheses, structures and magnetic properties. Dalton Trans. 2011, 40, 11402–11409; https://doi.org/10.1039/c1dt10517e.Suche in Google Scholar PubMed

18. Yang, L., Zhang, S. H., Wang, W., Guo, J. J., Huang, Q. P., Zhao, R. X., Zhang, C. L., Muller, G. Ligand induced diversification from tetranuclear to mononuclear compounds: syntheses, structures and magnetic properties. Polyhedron 2014, 74, 49–56; https://doi.org/10.1016/j.poly.2014.02.024.Suche in Google Scholar

19. García-Álvarez, A. C., Gamboa-Ramírez, S., Martínez-Otero, D., Orio, M., Castillo, I. Self-assembled nickel cubanes as oxygen evolution catalysts. Chem. Commun. 2021, 57, 8608–8611; https://doi.org/10.1039/d1cc03227e.Suche in Google Scholar PubMed

20. Tong, M. L., Monfort, M., Juan, J. M. C., Chen, X. M., Bu, X. H., Ohba, M., Kitagawa, S. A novel high-spin heterometallic Ni12K4 cluster incorporating large Ni-azide circles and an in situ cyanomethylated di-2-pyridyl ketone. Chem. Commun. 2005, 2, 233–235; https://doi.org/10.1039/b415431b.Suche in Google Scholar PubMed

21. Wernsdorfer, W., Aliaga-Alcalde, N., Hendrickson, D. N., Christou, G. Quantum tunneling in a three dimensional network of exchange coupled single-molecule magnets. Nature 2002, 416, 406–409; https://doi.org/10.1038/416406a.Suche in Google Scholar PubMed

Received: 2024-02-27
Accepted: 2024-03-27
Published Online: 2024-04-11
Published in Print: 2024-06-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of tris((Z)-2-hydroxy-N-((E)-pyridin-2-ylmethylene)benzohydrazonato-k2O,N)europium(III), C39H30N9O6Eu
  4. Crystal structure of (E)-3-(benzylideneamino)-2-phenylthiazolidin-4-one, C16H14N2OS
  5. The crystal structure of (E)-4-fluoro-N′-(1-(o-tolyl)ethylidene)benzohydrazide, C16H15FN2O
  6. Crystal structure of (6-chloropyridin-3-yl)methyl 2-(6-methoxynaphthalen-2-yl)propanoate, C20H18ClNO3
  7. Crystal structure of methyl 3-methoxy-4-(2-methoxy-2-oxoethoxy)benzoate, C12H14O6
  8. The crystal structure of bis[(4-methoxyphenyl)(picolinoyl)amido-κ2 N:N′]copper(II), C26H22CuN4O4
  9. The crystal structure of poly[di(μ2-aqua)-diaqua-bis(3-aminopyridine-4-carboxylate-κ2 O: O′)-tetra(μ2-3-aminopyridine-4-carboxylate-κ2 O: O′)-dineodymium(III), [Nd2(C6H5N2O2)6(H2O)4] n
  10. The crystal structure of t-butyl 7-[3-(4-fluorophenyl)-1-(propan-2-yl)-1H-indol-2-yl]-3,5-dihydroxyhept-6-enoate, C28H34FNO4
  11. Crystal structure of catena-poly[(benzylamine-κ1 N)-(sorbato-κ1 O)-(μ2-sorbato-κ2 O,O′)-copper(II), C19H23CuNO4
  12. Crystal structure of (4-(2-chlorophenyl)-1H-pyrrol-3-yl)(ferrocenyl) methanone, C21H16ClFeNO
  13. The crystal structure of N-[4-(4-bromophenyl)-1,3-thiazol-2-yl]-3-(2-methylphenyl)-2-sulfanylprop-2-enamide hydrate, C19H17BrN2O2S2
  14. The crystal structure of N′-{5-[2-(2,6-dimethylphenoxy) acetamido]-4-hydroxy-1,6-diphenylhexan-2-yl}-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butanamide hydrate
  15. Crystal structure of 2-(naphthalen-1-yl)ethyl 2-(6-methoxynaphthalen-2-yl)propanoate, C26H24O3
  16. Crystal structure of naphthalen-1-ylmethyl 2-(6-methoxynaphthalen-2-yl)propanoate, C25H22O3
  17. Crystal structure of poly[diaqua- (μ4-5-(1H-1,2,4-triazol-1-yl)benzene-1,3-dicarboxylato-κ5N:O,O’:O’’:O’’’)calcium(II), C10H9CaN3O6
  18. Crystal structure of (E)-N′-(4-((E)-3-(dimethylamino)acryloyl)-3-hydroxyphenyl)-N, N-dimethylformimidamide, C14H19N3O2
  19. Crystal structure of (E)-3-(dimethylamino)-1-(2-hydroxy-4,6-dimethoxyphenyl)prop-2-en-1-one, C13H17NO4
  20. Crystal structure of (2-chloropyridin-3-yl)methyl-2-(6-methoxynaphthalen-2-yl)propanoate, C20H18ClNO3
  21. The crystal structure of diethyl 4-(3,4-dimethylphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate, C21H27NO4
  22. Crystal structure of (8R,9S,10R,13S,14S,17S)-17-hydroxy-10,13-dimethyl-17-((4-(2-phenylpropyl)phenyl)ethynyl)-1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenanthren-3-one, C36H42O2
  23. Synthesis and crystal structure of 4-(4-cyclopropylnaphthalen-1-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione, C15H13N3S
  24. Crystal structure of catena-poly[aqua-(2,6-di-(2-pyridyl)-pyridine-κ3 N,N′, N″)(μ2-1,4-naphthalene dicarboxylato-κ2 O,O′)nickel(II)], C27H19NiN3O5
  25. Crystal structure of 3-(diphenylphosphoryl)-3-hydroxy-1-phenylpropan-1-one, C21H19O3P
  26. The crystal structure of R,S-{N-[(2-oxidonaphthalen-1-yl)methylidene]phenylglycinato}divinylsilicon, C23H19NO3Si
  27. The crystal structure of 1,2,4-tris(bromomethyl)benzene, C9H9Br3
  28. Crystal structure of chlorido-[4-(pyridin-2-yl)benzaldehyde-κ2 N,C]-(diethylamine-κ1 N)platinum(II), C16H18ClN2OPt
  29. Crystal structure of 3-(methoxycarbonyl)-1-(4-methoxyphenyl)-2,3,4,9- tetrahydro-1H-pyrido[3,4-b]indol-2-ium chloride hydrate, C40H48Cl2N4O9
  30. The crystal structure of 1-(2-chlorobenzyl)-3-(3-chlorophenyl)urea, C14H12Cl2N2O
  31. Hydrothermal synthesis and crystal structure of aqua-tris(4-acetamidobenzoato-κ2 O,O′)-(1,10-phenanthroline-κ2 N,N′)terbium(III) hydrate C39H36N5O11Tb
  32. The crystal structure of zwitterionic 3-aminoisonicotinic acid, C6H6N2O2
  33. The crystal structure of bis{[monoaqua-μ2-4-[(pyridine-4-carbonyl)-amino]-phthalato-κ3 N:O,O′-(2,2′-bipyridine κ2 N,N′)copper(II)]}decahydrate, C48H56N8O22Cu2
  34. Crystal structure of poly[μ10-4,4′-methylene-bis(oxy)benzoatodipotassium], C15H10K2O6
  35. The crystal structure of catena-poly[[tetraaqua[(μ2-1,4-di(4-methyl-1-imidazolyl)benzene] cobalt(II)]bis(formate)], C16H24CoN4O8
  36. The crystal structure of (E)-2-chloro-5-((2-(nitromethylene)imidazolidin-1-yl)methyl)pyridine, C10H11ClN4O2
  37. The crystal structure of (E)-1-(((2-amino-4,5-dimethylphenyl)iminio)methyl)naphthalen-2-olate, C19H18N2O
  38. Crystal structure of N-(acridin-9-yl)-2-(4-methylpiperidin-1-yl) acetamide monohydrate, C21H25N3O2
  39. The crystal structure of dichlorido-bis(3-methyl-3-imidazolium-1-ylpropionato-κ2 O,O′)-zinc(II), C14H20Cl2N4O4Zn
  40. The crystal structure of 2,8-diethyl-1,3,7,9-tetramethyl-4λ4,5λ4-spiro[dipyrrolo[1,2-c:2′,1′-f][1,3,2]diazaborinine-5,2′-naphtho[1,8-de][1,3,2]dioxaborinine], C25H29BN2O2
  41. The crystal structure of 5-tert-butyl-2-(5-tert-butyl-3-iodo-benzofuran-2-yl)-3-iodobenzofuran, C24H24I2O2
  42. Synthesis and crystal structure of methyl 2-{[4-(4-cyclopropyl-1-naphthyl)-4H-1,2,4-triazole-3-yl]thio} acetate, C18H17N3O2S
  43. The crystal structure of n-propylammonium bis(2,3-dimethylbutane-2,3-diolato)borate-boric acid (1/1), [C3H10N][C12H24BO4]·B(OH)3
  44. Crystal structure of methyl 1-(2-bromophenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate, C19H17BrN2O2
  45. Crystal structure of (4-bromobenzyl)triphenylphosphonium bromide ethanol solvate, C52H48Br4OP2
  46. The crystal structure of unsymmetrical BOPHY C26H27BN4
  47. The crystal structure of Tb3B5O11(OH)2
  48. The crystal structure of (Z)-4-ethyl-2-((4-ethyl-3,5-dimethyl-1H-pyrrol-2-yl)methylene)-3,5-dimethyl-2H-pyrrol-1-ium 2,2'-spirobi[naphtho[1,8-de][1,3,2]dioxaborinin]-2-uide, C37H37BN2O4
  49. Crystal structure of bis(methylammonium) hexadecaselenidopalladate(II), (CH3NH3)2PdSe16
  50. The crystal structure of (2-diphenylphosphanylphenyl) 2-[7-(dimethylamino)-2-oxochromen-4-yl]acetate, C31H26NO4P
  51. Crystal structure of (E)-6-(4-ethylpiperazin-1-yl)-2-(3-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C23H25FN2O
  52. The structure of RUB-56, (C6H16N)8 [Si32O64(OH)8]·32 H2O, a hydrous layer silicate (2D-zeolite) that contains microporous levyne-type silicate layers
  53. Crystal structure of 4-amino-3,5-dibromobenzonitrile, C7H4Br2N2
  54. Crystal structure of 2-(naphthalen-1-yl)ethyl 2-acetoxybenzoate, C21H18O4
  55. Single-crystal structure determination of Tm3B12O19(OH)7
  56. Crystal structure determination of NdB3.6O7
  57. The crystal structure of NdB6O8(OH)5·H3BO3
  58. Crystal structure of 2-(5-ethylpyridin-2-yl)ethyl 2-(6-methoxynaphthalen-2-yl)propanoate, C23H25NO3
  59. Crystal structure of N-(1-(3,4-dimethoxyphenyl)-2-methylpropyl)aniline, C18H23NO2
  60. Crystal structure of Ba6Cd12Mn4SiF48
  61. Synthesis and crystal structure of 5-fluoro-1-methyl-2-oxo-3-(2-oxochroman-4-yl)indolin-3-yl acetate, C20H16FNO5
  62. The crystal structure of 6-methacryloylbenzo[d][1,3]dioxol-5-yl 4-nitrobenzenesulfonate, C17H13NO8S
  63. Crystal structure of ethyl 2-(3-benzyl-4-oxo-3,4-dihydrophthalazin-1-yl)- 2,2-difluoroacetate, C19H16F2N2O3
  64. The crystal structure of tetrakis(μ 2-(1H-benzimidazole-2-methoxo-κ2 N,O:O:O)-(n-butanol-κO)-chlorido)-tetranickel(II), C48H68Cl4N8O8Ni4
  65. Synthesis and crystal structure of trans-tetraaqua-bis((1-((7-hydroxy-3-(4-methoxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl)methyl)piperidin-1-ium-4-carbonyl)oxy-κO)zinc(II)hexahydrate, C46H64N2O28S2Zn
  66. The crystal structure of 1-(4-carboxybutyl)-3-methyl-1H-imidazol-3-ium hexafluoridophosphate, C9H15F6N2O2P
  67. Crystal structure of 1-(4-chlorophenyl)-4-(2-furoyl)-3-phenyl-1H-pyrazol-5-ol, C20H13ClN2O3
  68. Crystal structure of dimethyl (R)-2-(3-(1-phenylethyl)thioureido)-[1,1′-biphenyl]-4,4′-dicarboxylate, C25H24N2O4S
  69. The crystal structure of 1-(3-carboxypropyl)-1H-imidazole-3-oxide, C7H10N2O3
  70. Synthesis and crystal structure of dimethyl 4,4′-(propane-1,3-diylbis(oxy))dibenzoate, C19H20O6
  71. Crystal structure of methyl-1-(p-tolyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate, C20H20N2O2
  72. The crystal structure of 1-(1-adamantan-1-yl)ethyl-3-(3-methoxyphenyl)thiourea, C20H28N2OS
  73. The crystal structure of N,N′-carbonylbis(2,6-difluorobenzamide), C15H8F4N2O3
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0092/html
Button zum nach oben scrollen