Home The crystal structure of (Z)-4-ethyl-2-((4-ethyl-3,5-dimethyl-1H-pyrrol-2-yl)methylene)-3,5-dimethyl-2H-pyrrol-1-ium 2,2'-spirobi[naphtho[1,8-de][1,3,2]dioxaborinin]-2-uide, C37H37BN2O4
Article Open Access

The crystal structure of (Z)-4-ethyl-2-((4-ethyl-3,5-dimethyl-1H-pyrrol-2-yl)methylene)-3,5-dimethyl-2H-pyrrol-1-ium 2,2'-spirobi[naphtho[1,8-de][1,3,2]dioxaborinin]-2-uide, C37H37BN2O4

  • Amnah Mohammed Alsuhaibani , Yazeed M. Asiri , Moamen S. Refat , Rabia Usman ORCID logo EMAIL logo and Arshad Khan ORCID logo EMAIL logo
Published/Copyright: April 4, 2024

Abstract

C37H37BN2O4, monoclinic, I2/a (no. 15), a = 13.8030(3) Å, b = 17.6109(2) Å, c = 14.1059(3) Å, β = 117.524(3)°, V = 3040.83(11) Å3, Z = 4, Rgt (F) = 0.0340, wRref (F 2) = 0.0867, T = 150 K.

CCDC no.: 2341022

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Orange plate
Size: 0.43 × 0.08 × 0.05 mm
Wavelength: Cu Kα radiation (1.54184 Å)
μ: 0.65 mm−1
Diffractometer, scan mode: Xcalibur, ω
θ max, completeness: 66.9°, >99 %
N(hkl)measured, N(hkl)unique, R int: 10,896, 2696, 0.027
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 2410
N(param)refined: 206
Programs: CrysAlisPro [1], SHELX [2, 3], Olex2 [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
O1 0.67809 (6) 0.70100 (5) 0.41408 (6) 0.0275 (2)
O2 0.69001 (7) 0.79929 (5) 0.54066 (6) 0.0295 (2)
N1 0.78953 (8) 0.56589 (6) 0.41272 (8) 0.0238 (2)
H1 0.7457 (12) 0.6017 (8) 0.4184 (11) 0.029*
C1 0.86661 (9) 0.45483 (7) 0.40453 (9) 0.0237 (3)
C2 0.89341 (9) 0.50969 (7) 0.34997 (9) 0.0252 (3)
C3 0.84312 (9) 0.57779 (7) 0.35489 (9) 0.0251 (3)
C8 0.7500 0.45713 (9) 0.5000 0.0232 (3)
H8 0.7500 0.4032 0.5000 0.028*
C9 0.79956 (9) 0.49010 (7) 0.44387 (9) 0.0223 (3)
C10 0.90618 (10) 0.37450 (7) 0.42373 (10) 0.0281 (3)
H10A 0.8740 0.3467 0.3559 0.042*
H10B 0.8845 0.3503 0.4736 0.042*
H10C 0.9860 0.3738 0.4543 0.042*
C11 0.96002 (11) 0.50007 (8) 0.29149 (11) 0.0329 (3)
H11A 1.0079 0.4551 0.3202 0.039*
H11B 1.0073 0.5452 0.3043 0.039*
C12 0.88885 (13) 0.49009 (9) 0.17155 (11) 0.0440 (4)
H12A 0.9355 0.4838 0.1368 0.066*
H12B 0.8425 0.5350 0.1424 0.066*
H12C 0.8427 0.4450 0.1583 0.066*
C13 0.84431 (11) 0.65271 (7) 0.30741 (10) 0.0327 (3)
H13A 0.7873 0.6540 0.2329 0.049*
H13B 0.9158 0.6608 0.3101 0.049*
H13C 0.8307 0.6928 0.3479 0.049*
C14 0.57882 (9) 0.72763 (7) 0.34104 (9) 0.0239 (3)
C15 0.52492 (10) 0.69411 (7) 0.24262 (10) 0.0283 (3)
H15 0.5577 0.6534 0.2237 0.034*
C16 0.42069 (11) 0.72048 (8) 0.16981 (10) 0.0346 (3)
H16 0.3836 0.6975 0.1013 0.041*
C17 0.37170 (11) 0.77857 (8) 0.19572 (11) 0.0365 (3)
H17 0.3008 0.7949 0.1455 0.044*
C18 0.37849 (11) 0.87430 (8) 0.32951 (11) 0.0374 (3)
H18 0.3076 0.8925 0.2820 0.045*
C19 0.43468 (12) 0.90563 (8) 0.42898 (11) 0.0366 (3)
H19 0.4015 0.9449 0.4500 0.044*
C20 0.54027 (11) 0.88116 (7) 0.50087 (10) 0.0313 (3)
H20 0.5779 0.9041 0.5693 0.038*
C21 0.58888 (10) 0.82405 (7) 0.47205 (9) 0.0257 (3)
C23 0.53162 (10) 0.78921 (7) 0.36981 (9) 0.0248 (3)
C24 0.42564 (10) 0.81482 (7) 0.29707 (10) 0.0304 (3)
B4 0.7500 0.75178 (11) 0.5000 0.0268 (4)

1 Source of materials

The 2,6-diethyl-3,5-dimethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (50 mg, 0.16 mmol) and TMSOTf (0.11 mL, 0.57 mmol) were dissolved in toluene (5 mL) and the mixture was heated under reflux for 30 min. The solution was cooled to room temperature, and 1,8-dihydroxynaphthalene (132 mg, 0.82 mmol) was added followed by diisopropylethylamine (0.10 mL, 0.57 mmol). The reaction mixture was stirred for 2 h at room temperature, the solvent was removed under reduced pressure, and the crude product was purified by column chromatography to give the title compound in 20 % yield. Good quality single crystal suitable for single crystal diffraction analysis was obtained by slow evaporation from a mixture of chloroform and hexane (1:3).

2 Experimental details

The structure of the as title compound was solved using SHELXT [2] and refined by SHELXL program [3] through the Olex2 interface [4]. All hydrogen atoms were positioned at calculated coordinates and refined isotropically.

3 Comment

Noncovalent interactions (NCIs) are ubiquitous in nature, playing a crucial role in the cohesion of chemical systems. The last decades have witnessed increased interest in the rational design of supramolecular architectures based on the self-assembly of various suitable building blocks using NCIs [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15]. Amongst the various strategies, the utilization of intermolecular hydrogen bond interactions in the design and self-assembly of well-defined supramolecular structures has become a promising synthetic approach with potential in host–guest chemistry, gas storage, and crystal engineering [16], [17], [18], [19], [20]. The synthesized complex was crystallized in the monoclinic space group I12/a1. Single-crystal structure analysis revealed the product as a salt in which the boron centre had been abstracted from the diypyrromethene core followed by formation of an anion with two molecules of the naphthalene-1,8-bis(olate). The nitrogen atoms of the cation were hydrogen-bonded to the oxygen atoms of the boron containing anion.


Corresponding authors: Rabia Usman, School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, China, E-mail: ; and Arshad Khan, Nanomedicine Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Kingdom of Saudi Arabia, E-mail:

Award Identifier / Grant number: PNURSP2024R65

Award Identifier / Grant number: NRC23R/746/11

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was financially supported by the Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R65), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. A. K thanks the support of King Abdullah International Medical Research Center (KAIMRC) through start up grant NRC23R/746/11.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku O. D. CrysAlisPRO; Rigaku Oxford Diffraction Ltd: Yarnton, Oxfordshire, England, 2015.Search in Google Scholar

2. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

5. Desiraju, G. R. Supramolecular synthons in crystal engineering? A new organic synthesis. Angew. Chem. Int. Ed. 1995, 34, 2311–2327; https://doi.org/10.1002/anie.199523111.Search in Google Scholar

6. Hosseini, M. W. Molecular tectonics: from simple tectons to complex molecular networks. Acc. Chem. Res. 2005, 38, 313–323; https://doi.org/10.1021/ar0401799.Search in Google Scholar PubMed

7. Khan, A., Bushnak, I., Jiang, Z., Usman, R., Choudhari, P. B., Feng, C., Al-Kaysi, R. O., Rahman, F.-U. Novel jellyfish-shaped resorcin[4]arene macrocyclic cocrystal via collaboration of macrocyclic chemistry and co-crystal engineering: insight into structural, noncovalent interactions and computational chemistry. J. Mol. Struct. 2024, 1298, 137034; https://doi.org/10.1016/j.molstruc.2023.137034.Search in Google Scholar

8. Feng, Q., Wang, M., Xu, C., Khan, A., Wu, X., Lu, J., Wei, X. Investigation of molecular arrangements and solid-state fluorescence properties of solvates and cocrystals of 1-acetyl-3-phenyl-5-(9-anthryl)-2-pyrazoline. CrystEngComm 2014, 16, 5820–5826; https://doi.org/10.1039/c3ce42210k.Search in Google Scholar

9. Khan, A., Liu, M., Usman, R., He, N., Li, R., Sayed, S. M., Li, S., Sun, W., Chen, H., Zhang, L. Solid emission color tuning of organic charge transfer cocrystals based on planar p-conjugated donors and TCNB. J. Solid State Chem. 2019, 272, 96–101; https://doi.org/10.1016/j.jssc.2019.02.005.Search in Google Scholar

10. Khan, A., Usman, R., Li, R., Hajji, M., Tang, H., Ma, D. Polycyclic motif engineering in cyanostilbene-based donors towards highly efficient modulable emission properties in two-component systems. CrystEngComm 2021, 23, 8462–8470; https://doi.org/10.1039/d1ce00959a.Search in Google Scholar

11. Khan, A., Usman, R., Sayed, S. M., Li, R., Chen, H., He, N. Supramolecular design of highly efficient two-component molecular hybrids toward structure and emission properties tailoring. Cryst. Growth Des. 2019, 19, 2772–2778; https://doi.org/10.1021/acs.cgd.8b01922.Search in Google Scholar

12. Khan, A., Wang, M., Usman, R., Lu, J., Sun, H., Du, M., Zhang, R., Xu, C. Organic charge-transfer complexes for the selective accommodation of aromatic isomers using anthracene derivatives and TCNQ. New J. Chem. 2016, 40, 5277–5284; https://doi.org/10.1039/c5nj03442f.Search in Google Scholar

13. Khan, A., Wang, M., Usman, R., Sun, H., Du, M., Xu, C. Molecular marriage via charge transfer interaction in organic charge transfer co-crystals toward solid-state fluorescence modulation. Cryst. Growth Des. 2017, 17, 1251–1257; https://doi.org/10.1021/acs.cgd.6b01636.Search in Google Scholar

14. Sun, H., Wang, M., Wei, X., Zhang, R., Wang, S., Khan, A., Usman, R., Feng, Q., Du, M., Yu, F. Understanding charge-transfer interaction mode in cocrystals and solvates of 1-phenyl-3-(pyren-1-yl) prop-2-en-1-one and TCNQ. Cryst. Growth Des. 2015, 15, 4032–4038; https://doi.org/10.1021/acs.cgd.5b00656.Search in Google Scholar

15. Usman, R., Khan, A., Sun, H., Wang, M. Study of charge transfer interaction modes in the mixed donor-acceptor cocrystals of pyrene derivatives and TCNQ: a combined structural, thermal, spectroscopic, and hirshfeld surfaces analysis. J. Solid State Chem. 2018, 266, 112–120; https://doi.org/10.1016/j.jssc.2018.07.009.Search in Google Scholar

16. Usman, R., Khan, A., Tang, H., Ma, D., Alsuhaibani, A. M., Refat, M. S., Adnan, Ara, N., Fan, H.-J. S. Charge transfer and hydrogen bonding motifs in organic cocrystals derived from aromatic diamines and TCNB. J. Mol. Struct. 2022, 1254, 132360; https://doi.org/10.1016/j.molstruc.2022.132360.Search in Google Scholar

17. Usman, R., Khan, A., Wang, M. Study of H-bonded assemblies of the solvates of anthracene derivatives: guest effect on the crystal symmetry and spectroscopic properties. Supramol. Chem. 2017, 29, 497–505; https://doi.org/10.1080/10610278.2017.1284324.Search in Google Scholar

18. Usman, R., Khan, A., Wang, M., Luo, Y., Sun, W., Sun, H., Du, C., He, N. Investigation of charge-transfer interaction in mixed stack donor-acceptor cocrystals toward tunable solid-state emission characteristics. Cryst. Growth Des. 2018, 18, 6001–6008; https://doi.org/10.1021/acs.cgd.8b00852.Search in Google Scholar

19. Torres-Huerta, A., Velásquez-Hernández, M. D. J., Martínez-Otero, D., Höpfl, H., Jancik, V. Structural induction via solvent variation in assemblies of triphenylboroxine and piperazine-potential application as self-assembly molecular sponge. Cryst. Growth Des. 2017, 17, 2438–2452; https://doi.org/10.1021/acs.cgd.6b01845.Search in Google Scholar

20. Patalag, L. J., Jones, P. G., Werz, D. B. BOIMPYs: rapid access to a family of red-emissive fluorophores and NIR dyes. Angew. Chem. Int. Ed. 2016, 55, 13340–13344; https://doi.org/10.1002/anie.201606883.Search in Google Scholar PubMed

Received: 2024-02-12
Accepted: 2024-03-20
Published Online: 2024-04-04
Published in Print: 2024-06-25

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of tris((Z)-2-hydroxy-N-((E)-pyridin-2-ylmethylene)benzohydrazonato-k2O,N)europium(III), C39H30N9O6Eu
  4. Crystal structure of (E)-3-(benzylideneamino)-2-phenylthiazolidin-4-one, C16H14N2OS
  5. The crystal structure of (E)-4-fluoro-N′-(1-(o-tolyl)ethylidene)benzohydrazide, C16H15FN2O
  6. Crystal structure of (6-chloropyridin-3-yl)methyl 2-(6-methoxynaphthalen-2-yl)propanoate, C20H18ClNO3
  7. Crystal structure of methyl 3-methoxy-4-(2-methoxy-2-oxoethoxy)benzoate, C12H14O6
  8. The crystal structure of bis[(4-methoxyphenyl)(picolinoyl)amido-κ2 N:N′]copper(II), C26H22CuN4O4
  9. The crystal structure of poly[di(μ2-aqua)-diaqua-bis(3-aminopyridine-4-carboxylate-κ2 O: O′)-tetra(μ2-3-aminopyridine-4-carboxylate-κ2 O: O′)-dineodymium(III), [Nd2(C6H5N2O2)6(H2O)4] n
  10. The crystal structure of t-butyl 7-[3-(4-fluorophenyl)-1-(propan-2-yl)-1H-indol-2-yl]-3,5-dihydroxyhept-6-enoate, C28H34FNO4
  11. Crystal structure of catena-poly[(benzylamine-κ1 N)-(sorbato-κ1 O)-(μ2-sorbato-κ2 O,O′)-copper(II), C19H23CuNO4
  12. Crystal structure of (4-(2-chlorophenyl)-1H-pyrrol-3-yl)(ferrocenyl) methanone, C21H16ClFeNO
  13. The crystal structure of N-[4-(4-bromophenyl)-1,3-thiazol-2-yl]-3-(2-methylphenyl)-2-sulfanylprop-2-enamide hydrate, C19H17BrN2O2S2
  14. The crystal structure of N′-{5-[2-(2,6-dimethylphenoxy) acetamido]-4-hydroxy-1,6-diphenylhexan-2-yl}-3-methyl-2-(2-oxo-1,3-diazinan-1-yl)butanamide hydrate
  15. Crystal structure of 2-(naphthalen-1-yl)ethyl 2-(6-methoxynaphthalen-2-yl)propanoate, C26H24O3
  16. Crystal structure of naphthalen-1-ylmethyl 2-(6-methoxynaphthalen-2-yl)propanoate, C25H22O3
  17. Crystal structure of poly[diaqua- (μ4-5-(1H-1,2,4-triazol-1-yl)benzene-1,3-dicarboxylato-κ5N:O,O’:O’’:O’’’)calcium(II), C10H9CaN3O6
  18. Crystal structure of (E)-N′-(4-((E)-3-(dimethylamino)acryloyl)-3-hydroxyphenyl)-N, N-dimethylformimidamide, C14H19N3O2
  19. Crystal structure of (E)-3-(dimethylamino)-1-(2-hydroxy-4,6-dimethoxyphenyl)prop-2-en-1-one, C13H17NO4
  20. Crystal structure of (2-chloropyridin-3-yl)methyl-2-(6-methoxynaphthalen-2-yl)propanoate, C20H18ClNO3
  21. The crystal structure of diethyl 4-(3,4-dimethylphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate, C21H27NO4
  22. Crystal structure of (8R,9S,10R,13S,14S,17S)-17-hydroxy-10,13-dimethyl-17-((4-(2-phenylpropyl)phenyl)ethynyl)-1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenanthren-3-one, C36H42O2
  23. Synthesis and crystal structure of 4-(4-cyclopropylnaphthalen-1-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione, C15H13N3S
  24. Crystal structure of catena-poly[aqua-(2,6-di-(2-pyridyl)-pyridine-κ3 N,N′, N″)(μ2-1,4-naphthalene dicarboxylato-κ2 O,O′)nickel(II)], C27H19NiN3O5
  25. Crystal structure of 3-(diphenylphosphoryl)-3-hydroxy-1-phenylpropan-1-one, C21H19O3P
  26. The crystal structure of R,S-{N-[(2-oxidonaphthalen-1-yl)methylidene]phenylglycinato}divinylsilicon, C23H19NO3Si
  27. The crystal structure of 1,2,4-tris(bromomethyl)benzene, C9H9Br3
  28. Crystal structure of chlorido-[4-(pyridin-2-yl)benzaldehyde-κ2 N,C]-(diethylamine-κ1 N)platinum(II), C16H18ClN2OPt
  29. Crystal structure of 3-(methoxycarbonyl)-1-(4-methoxyphenyl)-2,3,4,9- tetrahydro-1H-pyrido[3,4-b]indol-2-ium chloride hydrate, C40H48Cl2N4O9
  30. The crystal structure of 1-(2-chlorobenzyl)-3-(3-chlorophenyl)urea, C14H12Cl2N2O
  31. Hydrothermal synthesis and crystal structure of aqua-tris(4-acetamidobenzoato-κ2 O,O′)-(1,10-phenanthroline-κ2 N,N′)terbium(III) hydrate C39H36N5O11Tb
  32. The crystal structure of zwitterionic 3-aminoisonicotinic acid, C6H6N2O2
  33. The crystal structure of bis{[monoaqua-μ2-4-[(pyridine-4-carbonyl)-amino]-phthalato-κ3 N:O,O′-(2,2′-bipyridine κ2 N,N′)copper(II)]}decahydrate, C48H56N8O22Cu2
  34. Crystal structure of poly[μ10-4,4′-methylene-bis(oxy)benzoatodipotassium], C15H10K2O6
  35. The crystal structure of catena-poly[[tetraaqua[(μ2-1,4-di(4-methyl-1-imidazolyl)benzene] cobalt(II)]bis(formate)], C16H24CoN4O8
  36. The crystal structure of (E)-2-chloro-5-((2-(nitromethylene)imidazolidin-1-yl)methyl)pyridine, C10H11ClN4O2
  37. The crystal structure of (E)-1-(((2-amino-4,5-dimethylphenyl)iminio)methyl)naphthalen-2-olate, C19H18N2O
  38. Crystal structure of N-(acridin-9-yl)-2-(4-methylpiperidin-1-yl) acetamide monohydrate, C21H25N3O2
  39. The crystal structure of dichlorido-bis(3-methyl-3-imidazolium-1-ylpropionato-κ2 O,O′)-zinc(II), C14H20Cl2N4O4Zn
  40. The crystal structure of 2,8-diethyl-1,3,7,9-tetramethyl-4λ4,5λ4-spiro[dipyrrolo[1,2-c:2′,1′-f][1,3,2]diazaborinine-5,2′-naphtho[1,8-de][1,3,2]dioxaborinine], C25H29BN2O2
  41. The crystal structure of 5-tert-butyl-2-(5-tert-butyl-3-iodo-benzofuran-2-yl)-3-iodobenzofuran, C24H24I2O2
  42. Synthesis and crystal structure of methyl 2-{[4-(4-cyclopropyl-1-naphthyl)-4H-1,2,4-triazole-3-yl]thio} acetate, C18H17N3O2S
  43. The crystal structure of n-propylammonium bis(2,3-dimethylbutane-2,3-diolato)borate-boric acid (1/1), [C3H10N][C12H24BO4]·B(OH)3
  44. Crystal structure of methyl 1-(2-bromophenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate, C19H17BrN2O2
  45. Crystal structure of (4-bromobenzyl)triphenylphosphonium bromide ethanol solvate, C52H48Br4OP2
  46. The crystal structure of unsymmetrical BOPHY C26H27BN4
  47. The crystal structure of Tb3B5O11(OH)2
  48. The crystal structure of (Z)-4-ethyl-2-((4-ethyl-3,5-dimethyl-1H-pyrrol-2-yl)methylene)-3,5-dimethyl-2H-pyrrol-1-ium 2,2'-spirobi[naphtho[1,8-de][1,3,2]dioxaborinin]-2-uide, C37H37BN2O4
  49. Crystal structure of bis(methylammonium) hexadecaselenidopalladate(II), (CH3NH3)2PdSe16
  50. The crystal structure of (2-diphenylphosphanylphenyl) 2-[7-(dimethylamino)-2-oxochromen-4-yl]acetate, C31H26NO4P
  51. Crystal structure of (E)-6-(4-ethylpiperazin-1-yl)-2-(3-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C23H25FN2O
  52. The structure of RUB-56, (C6H16N)8 [Si32O64(OH)8]·32 H2O, a hydrous layer silicate (2D-zeolite) that contains microporous levyne-type silicate layers
  53. Crystal structure of 4-amino-3,5-dibromobenzonitrile, C7H4Br2N2
  54. Crystal structure of 2-(naphthalen-1-yl)ethyl 2-acetoxybenzoate, C21H18O4
  55. Single-crystal structure determination of Tm3B12O19(OH)7
  56. Crystal structure determination of NdB3.6O7
  57. The crystal structure of NdB6O8(OH)5·H3BO3
  58. Crystal structure of 2-(5-ethylpyridin-2-yl)ethyl 2-(6-methoxynaphthalen-2-yl)propanoate, C23H25NO3
  59. Crystal structure of N-(1-(3,4-dimethoxyphenyl)-2-methylpropyl)aniline, C18H23NO2
  60. Crystal structure of Ba6Cd12Mn4SiF48
  61. Synthesis and crystal structure of 5-fluoro-1-methyl-2-oxo-3-(2-oxochroman-4-yl)indolin-3-yl acetate, C20H16FNO5
  62. The crystal structure of 6-methacryloylbenzo[d][1,3]dioxol-5-yl 4-nitrobenzenesulfonate, C17H13NO8S
  63. Crystal structure of ethyl 2-(3-benzyl-4-oxo-3,4-dihydrophthalazin-1-yl)- 2,2-difluoroacetate, C19H16F2N2O3
  64. The crystal structure of tetrakis(μ 2-(1H-benzimidazole-2-methoxo-κ2 N,O:O:O)-(n-butanol-κO)-chlorido)-tetranickel(II), C48H68Cl4N8O8Ni4
  65. Synthesis and crystal structure of trans-tetraaqua-bis((1-((7-hydroxy-3-(4-methoxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl)methyl)piperidin-1-ium-4-carbonyl)oxy-κO)zinc(II)hexahydrate, C46H64N2O28S2Zn
  66. The crystal structure of 1-(4-carboxybutyl)-3-methyl-1H-imidazol-3-ium hexafluoridophosphate, C9H15F6N2O2P
  67. Crystal structure of 1-(4-chlorophenyl)-4-(2-furoyl)-3-phenyl-1H-pyrazol-5-ol, C20H13ClN2O3
  68. Crystal structure of dimethyl (R)-2-(3-(1-phenylethyl)thioureido)-[1,1′-biphenyl]-4,4′-dicarboxylate, C25H24N2O4S
  69. The crystal structure of 1-(3-carboxypropyl)-1H-imidazole-3-oxide, C7H10N2O3
  70. Synthesis and crystal structure of dimethyl 4,4′-(propane-1,3-diylbis(oxy))dibenzoate, C19H20O6
  71. Crystal structure of methyl-1-(p-tolyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate, C20H20N2O2
  72. The crystal structure of 1-(1-adamantan-1-yl)ethyl-3-(3-methoxyphenyl)thiourea, C20H28N2OS
  73. The crystal structure of N,N′-carbonylbis(2,6-difluorobenzamide), C15H8F4N2O3
Downloaded on 26.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0063/html?lang=en&srsltid=AfmBOopPXLqaOyedj9ew5GaQ24VVCcZ6paxfSIPPzR_2oLywCA7cYoIh
Scroll to top button