Home Crystal structure of baryte from Mine du Pradet (France)
Article Open Access

Crystal structure of baryte from Mine du Pradet (France)

  • Christian Paulsen , Valérie Galéa-Clolus and Rainer Pöttgen ORCID logo EMAIL logo
Published/Copyright: April 26, 2023

Abstract

BaSO4, orthorhombic, Pnma (no. 62), a = 8.8806(8) Å, b = 5.4539(5) Å, c = 7.1570(7) Å, V = 346.64(6) Å3, Z = 4, Rgt (F 2) = 0.0141, wRref (F 2) = 0.0329, T = 293 K.

CCDC no.: 2256123

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Figure 1: 
The crystal structure of BaSO4 is shown in the left-hand part of the figure, emphasizing the sulfate groups and the barium coordination. The mineral sample is presented at the right.
Figure 1:

The crystal structure of BaSO4 is shown in the left-hand part of the figure, emphasizing the sulfate groups and the barium coordination. The mineral sample is presented at the right.

Table 1:

Data collection and handling.

Crystal: Colorless platelets
Size: 0.05 × 0.04 × 0.03 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 11.9 mm−1
Diffractometer, scan mode: IPDS-Ⅱ, Stoe
θ max, completeness: 33.4°, >99%
N(hkl)measured, N(hkl)unique, R int: 4105, 729, 0.032
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 559
N(param)refined: 35
Programs: X-Area [1], JANA2006 [2], SUPERFLIP [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Ba 0.18452 (2) 0.25 0.65843 (3) 0.01054 (5)
S 0.06250 (9) 0.25 0.19095 (10) 0.00902 (17)
O1 0.08056 (18) 0.0301 (3) 0.3111 (2) 0.0130 (4)
O2 0.1824 (3) 0.25 0.0501 (3) 0.0154 (6)
O3 0.4120 (3) 0.25 0.3927 (4) 0.0223 (7)

1 Source of material

Transparent, platelet-shaped baryte crystals (see Figure 1) were selected from a specimen of Mine du Pradet, Cap Garonne (France), which was collected in the Salle du Grand Bassin in the north part of the mine (Mine du Nord). The baryte crystals were accompanied by olivenite and pharmacosiderite.

2 Experimental details

The BaSO4 crystals were selected from the carefully, mechanically fragmented sample. The crystal quality was tested by Laue photographs, using a Buerger camera, which was equipped with an image plate detection system. Single crystal X-ray diffraction data was collected at room temperature on a Stoe IPDS–II diffractometer (graphite monochromatized Mo–K α radiation; oscillation mode). A numerical absorption correction was applied. The starting atomic parameters were deduced with the charge-flipping algorithm [3] implemented in Superflip [4] and the structure was refined on F 2 with the Jana2006 software package [2]. For the final refinement we used the standardized setting listed in the Pearson database [5]. An EDX analyses of the studied crystal gave no hint for contamination with other cations, especially Sr2+, Pb2+ or Cd2+.

3 Comment

Baryte is one of the frequently occurring minerals in Mine du Pradet at Cap Garonne in France [6]. It was already mentioned in the early work of Ferdinand [7] and Lacroix [8]. The present single crystal data are of high quality and fully confirm previous refinements (powder and single crystal X-ray data) on natural [9], [10], [11], [12], [13], [14], [15] and synthetic barium sulfate [16], [17], [18], [19]. The BaSO4 structure (see Figure 1) contains three crystallographically independent oxygen atoms, which lead to S–O distances in the range of 146.5–148.4 pm. The slight orthorhombic distortion is also expressed in the O–S–O angles (107.8–112.4°), which slightly deviate from the ideal tetrahedron angle. The barium atoms are coordinated by 12 oxygen atoms from seven sulfate tetrahedra. Five of these tetrahedra coordinate side-on as chelate ligands and two end-on. The Ba–O distances cover a broader range from 277.5 to 331.4 pm with an average of 295 pm, a consequence of the orthorhombic distortion. It is worthwhile to note, that the BaSO4 structure can geometrically be derived from the NaCl type. The barium and sulfur atoms (i.e. the centers of the sulfate tetrahedra) correspond to the sodium and chlorine sites. The room temperature modification (Pnma phase) shows a strong orthorhombic distortion. Above 1425 ± 5 K [20], BaSO4 transforms to its cubic polymorph with space group F 4 3 m [21], where the barium and chlorine atoms have NaCl-like topology. The Ba–O distances within the regular Ba@O12 polyhedra of 310 pm are larger than the average distance of 295 pm in the Pnma phase.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, 48149 Münster, Germany, E-mail:

Acknowledgements

We thank Dipl.–Ing. J. Kösters for the intensity data collection.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. X-Area. The Stoe Single Crystal Diffraction Software Package; STOE & Cie GmbH: Darmstadt, Germany.Search in Google Scholar

2. Petříček, V., Dušek, M., Palatinus, L. Crystallographic computing system JANA2006: general features. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar

3. Palatinus, L. The charge-flipping algorithm in crystallography. Acta Crystallogr. 2013, B69, 1–16; https://doi.org/10.1107/s0108768112051361.Search in Google Scholar

4. Palatinus, L., Chapuis, G. SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

5. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park, Ohio (USA), 2022.Search in Google Scholar

6. Favreau, G., Galéa-Clolus, V. Cap Garonne, Association des Amis de la Mine de Cap Garonne (AAMCG)–Association Française de Microminéralogie (AFM), Couleur et Impression Les Arcades; Castelnau-Le-Lez: France, 2014.Search in Google Scholar

7. Ferdinand, G. Addition aux minéraux de la mine de Cap Garonne (Var). Bull. Minéral. 1893, 16, 40–42.10.3406/bulmi.1893.2308Search in Google Scholar

8. Lacroix, A. Minéralogie de la France et de ces colonies, Vol. IV; Librairie polytechnique Baudry et Cie: Paris, 1910; p. 516.Search in Google Scholar

9. James, R. W., Wood, W. A. The crystal structure of barytes, celestine and anglesite. Proc. R. Soc. Lond. 1925, 109A, 598–620.10.1098/rspa.1925.0148Search in Google Scholar

10. Jellinek, F. On barium manganate and some related compounds. J. Inorg. Nucl. Chem. 1960, 13, 329–331; https://doi.org/10.1016/0022-1902(60)80316-8.Search in Google Scholar

11. Sahl, K. Die Verfeinerung der Kristallstrukturen von PbCl2 (Cotunnit), BaCl2, PbSO4 (Anglesit) und BaSO4 (Baryt). Beiträge Mineral. Petrogr. 1963, 9, 111–132.10.1007/BF02679983Search in Google Scholar

12. Colville, A. A., Staudhammer, K. A refinement of the structure of barite. Am. Mineral. 1967, 52, 1877–1880.Search in Google Scholar

13. Miyake, M., Minato, I., Morikawa, H., Iwai, S.-I. Crystal structures and sulfate force constants of barite, celestite, and anglesite. Am. Mineral. 1978, 63, 506–510.Search in Google Scholar

14. Sawada, H., Takéuchi, Y. The crystal structure of barite, β–BaSO4, at high temperatures. Z. Kristallogr. 1990, 191, 161–171; https://doi.org/10.1524/zkri.1990.191.14.161.Search in Google Scholar

15. Crichton, W. A., Merlini, M., Hanfland, M., Müller, H. The crystal structure of barite, BaSO4, at high pressure. Am. Mineral. 2011, 96, 364–367; https://doi.org/10.2138/am.2011.3656.Search in Google Scholar

16. Frevel, L. K. Indexing powder diffraction patterns of isomorphous substances. J. Appl. Phys. 1942, 13, 109–112; https://doi.org/10.1063/1.1714835.Search in Google Scholar

17. Matsuno, T., Takayanagi, H., Koishi, M., Kurematsu, K., Ogaru, H. The crystal structure of synthetic barium sulfate. Zair. Gijutsu 1986, 4, 409–414.Search in Google Scholar

18. Santamaría-Pérez, D., Gracia, L., Garbarino, G., Beltrán, A., Chuliá-Jordán, R., Gomis, O., Errandonea, D., Ferrer-Roca, Ch., Martínez-Garcíaa, D., Segura, A. High-pressure study of the behavior of mineral barite by X-ray diffraction. Phys. Rev. B 2011, 84, 054102; https://doi.org/10.1103/physrevb.84.054102.Search in Google Scholar

19. Ye, Z., Li, B., Chen, W., Tang, R., Huang, S., Xu, J., Fan, D., Zhou, W., Ma, M., Xie, H. Phase transition and thermoelastic behavior of barite-group minerals at high-pressure and high-temperature conditions. Phys. Chem. Miner. 2019, 46, 607–621; https://doi.org/10.1007/s00269-019-01026-0.Search in Google Scholar

20. Butler, J. C., Sorrell, C. A. Thermal expansion and the orthorhombic-cubic transition of BaSO4 and SrSO4. High Temp. Sci. 1971, 3, 389–400.Search in Google Scholar

21. Sawada, H., Takéuchi, Y. Structure of the high-temperature forms of the barite-type compounds. I: α–BaSO4. Z. Kristallogr. 1987, 181, 179–186; https://doi.org/10.1524/zkri.1987.181.1-4.179.Search in Google Scholar

Received: 2023-03-14
Accepted: 2023-04-13
Published Online: 2023-04-26
Published in Print: 2023-08-28

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of a polymorph of potassium picrate, C6H2KN3O7
  4. The crystal structure of (1E,2E)-1,2-bis(quinolin-2-ylmethylene)hydrazine, C20H14N4
  5. 5-Amino-2-chloro-4-fluoro-N-(N-isopropyl-N-methylsulfamoyl) benzamide, C11H15O3ClFN3S
  6. Crystal structure of trans-N 1,N 8-bis(2-cyanoethyl)-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, C22H42N6
  7. The crystal structure of [N-{[2-(oxy)-4-methoxyphenyl](phenyl)methylidene}alaninato]-diphenyl-silicon(IV) – chloroform (1/1), C29H25NO4Si·CHCl3
  8. Crystal structure of tetracarbonyl-{μ-[N-(diphenylphosphanyl)-N,P,P-triphenylphosphinous amide]}-bis[μ-(phenylmethanethiolato)]diiron (Fe–Fe), C48H39Fe2NO4P2S2
  9. Crystal structure of baryte from Mine du Pradet (France)
  10. The crystal structure of [(2,2′-bipyridine-6-carboxylato-κ3 N,N,O)-(6-phenylpyridine-2-carboxylate-κ2 N,O)copper(II)] monohydrate, C23H17N3O5Cu
  11. Crystal structure of bis(μ-benzeneselenolato)-(μ-[N-benzyl-N-(diphenylphosphanyl)-P,P-diphenylphosphinous amide])-tetracarbonyl diiron (Fe–Fe), C47H37Fe2NO4P2Se2
  12. The crystal structure of diaqua-methanol-κ1 O- (3-thiophenecarboxylato-κO)-(2,2′-dipyridyl-κ2 N,N′)manganese(II) 3-thiophenecarboxylate, C21H22N2O7S2Mn
  13. Crystal structure of catena-poly[tetrakis(butyl)-μ2-2-((oxido(phenyl)methylene)hydrazineylidene)propanoato-κ4 O:O,O′,N-μ2-2-((oxido(phenyl)methylene)hydrazineylidene)propanoato-κ4 O,N,O′:N′-ditin(IV)], C34H50N6O6Sn2
  14. Crystal structure of 4-chloro-N′-[(1E)-(2-nitrophenyl)methylidene]benzohydrazide, C14H10ClN3O3
  15. The crystal structure of 3-(1′-deoxy-3′,5′-O-dibenzy-β-d-ribosyl)adenine dichloromethane solvate, C49H52Cl2N10O6
  16. The crystal structure of (Z)-4-amino-N′-(1-(o-tolyl)ethylidene)benzohydrazide, C16H17N3O
  17. The co-crystal structure of etoricoxib–phthalic acid (1/1), C18H15ClN2O2S·C8H6O4
  18. Crystal structure of (glycinto-κ 2 O,N )-[5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ 4 N,N ,N ,N ]nickel(II) perchlorate monohydrate C18H42ClN5NiO7
  19. The crystal structure of catena-poly[bis(1-ethylimidazole-k1 N)-(μ 2-benzene-1-carboxyl-3,5-dicarboxylato-κ 2 O, O′)zinc(II)], C19H20N4O6Zn
  20. Crystal structure of 3-(thiazol-2-ylcarbamoyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylic acid, C11H12N2O4S
  21. Rietveld structure analysis of keatite, a rare, metastable SiO2 polymorph
  22. Crystal structure of catena-poly[(μ2-isophthalato-k3 O,O′:O″)(4-(4-pyridyl)-2,5-dipyrazylpyridine-k3 N,N′,N″)cobalt(II)] trihydrate C26H22N6O7Co1
  23. Crystal structure of 3,5–di-O-benzoyl-1,2-O-isopropylidene-α–D-ribose, C22H22O7
  24. The crystal structure of fac-tricarbonyl(6-bromo-2,2-bipyridine-κ2 N,N)-(nitrato-κO)rhenium(I), C13H7BrN3O6Re
  25. The crystal structure of (E)-N′-(4-hydroxy-3-methoxybenzylidene)-2-naphthohydrazide monohydrate, C19H18N2O4
  26. The crystal structure of 5,5′-diselanediyl-bis(2-hydroxybenzaldehyde), C14H10O4Se2
  27. The crystal structure of catena-poly[diaqua-m2-dicyanido-κ2 C:N-dicyanido-κ1 C-bis(4-(pyridin-4-yl)benzaldehyde-κ1N)iron(II)-platinum(II), C28H22N6O4PtFe
  28. Redetermination of the crystal structure of 5,14-dihydro-6,17-dimethyl-8,15-diphenyldibenzo(b,i)(1,4,8,11)tetra-azacyclotetradecine, C32H28N4
  29. Crystal structure of poly[(μ3-2-(3,5-dicarboxyphenyl) benzimidazole-6-carboxylato-κ4O:O:O′:O″)lead(II)] monohydrate, C16H10N2O7Pb
  30. The crystal structure of fac-tricarbonyl(2-pyridin-2-yl-quinoline-κ2 N,N′)-(pyrazole-κN)rhenium(I)nitrate, C20H14N4O3ReNO3
  31. Crystal structure of dibromo-dicarbonyl-bis(tricyclohexylphosphine)-osmium(II) dichloromethane solvate, C38H66Br2O2OsP2
  32. Crystal structure of poly[bis(μ 2-2,6-bis(1-imidazoly)pyridine-κ 2 N:N′)copper(II)] diperchlorate dihydrate, C22H22Cl2CuN10O10
  33. The crystal structure of fac-tricarbonyl(N-benzoyl-N,N-cyclohexylmethylcarbamimidothioato-κ2 S,O)-(pyridine-κN)rhenium(I), C23H24N3O4ReS
  34. Crystal structure of (E)-7-fluoro-2-(4-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C17H12F2O
  35. Synthesis and crystal structure of 1-((3R,10S,13S, 17S)-3-((2-methoxyphenyl)amino)-10,13-dimethylhexadecahydro-1H-cyclopenta[α]phenanthren-17-yl)ethan-1-one, C28H41NO2
  36. The crystal structure of fac-tricarbonyl((pyridin-2-yl)methanamino-κ2 N,N′)-((pyridin-2-yl)methanamino-κN)rhenium(I) nitrate, C15H16O3N4Re
  37. The crystal structure of (1-(pyridin-2-yl)-N-(pyridin-2-ylmethyl)-N-((1-(4-vinylbenzyl)-1H-benzo[d]imidazol-2-yl)methyl)methanamine-κ 4 N,N′,N″,N‴)tris(nitrato-kO,O′)-erbium(III), C29H27ErN8O9
  38. Crystal structure of tetracene-5,12-dione, C18H10O2
  39. Crystal structure of (3R,3aS,6R,6aR)-6-hexyl-3-methyltetrahydrofuro[3,4-b]furan-2,4-dione, C13H20O4
  40. The crystal structure of N1,N3-bis((E)-thiophen-2-ylmethylene)isophthalohydrazide monohydrate, C18H16N4O3S2
  41. Crystal structure of methyl ((4-aminobenzyl)sulfonyl)-L-prolinate, C13H18N2O4S
  42. Crystal structure of (E)-3-(3-methoxybenzylidene)benzofuran-2(3H)-one, C16H12O3
  43. Synthesis and crystal structure (E)-1-(4-bromo-2-hydroxyphenyl)-3-(dimethylamino)prop-2-en-1-one, C11H12BrNO2
  44. Synthesis and crystal structure of (S,E)-4-hydroxy-3-(2-((4aR,6aS,7R,10aS,10bR)-3,3,6a,10b-tetramethyl-8-methylenedecahydro-1H-naphtho[2,1-d][1,3]dioxin-7-yl)ethylidene)dihydrofuran-2(3H)-one, C23H34O5
  45. The crystal structure of N,N′-(1,2-phenylene)bis (2-((2-oxopropyl)selanyl)benzamide), C26H24N2O4Se2
  46. The crystal structure of 1-ethyl-2-nitro-imidazole oxide, C5H7N3O3
  47. The crystal structure of 2-(2-fluorophenyl)naphtho[2,1-d]thiazole, C17H10FNS
  48. Crystal structure of (E)-2,4-di-tert-butyl-6-(((2-fluorophenyl)imino) methyl)phenol, C21H26FNO
  49. Synthesis and crystal structure of 3-methyl-2-(methylthio)-4H-chromen-4-one, C12H12O2S
  50. Crystal structure of dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-5,10-dione, C14H4O2S4
  51. The crystal structure of dimethyl 2,2ʹ-((adamantane-1,3-diylbis(4,1-phenylene)) bis(oxy))diacetate, C28H32O6
  52. The crystal structure of N-(6-chloro-2-methyl-2H-indazol-5-yl)acetamide, C10H10ClN3O
  53. Crystal structure of triaqua-(5-bromoisophthalato-κ1 O)-(2,2′-bipyridine-κ2 N:N′)nickel(II) hydrate, C18H19BrN2NiO8
  54. The crystal structure of 2-amino-4-carboxypyridin-1-ium perchlorate, C6H7ClN2O6
  55. The crystal structure of catena-poly[5-aminonicotinic acid-k1 N-m2-bromido-copper(I)], Cu(C6N2H6O2)Br
  56. The crystal structure of 2,2-bis(3-methoxyphenyl)-1-tosyl-1,2-dihydro- 4,3λ4  -[1,3,2]diazaborolo[4,5,1-ij]quinoline - dichloromethane (1/1)
  57. The crystal structure of catena-poly[bis(6-phenylpyridine-2-carboxylato-κ2 N,O)-(μ2-4,4′-bipyridne-κ2 N:N)cadmium(II)], C34H24N4O4Cd
  58. The crystal structure of 5,7-dinitropyrazolo[5,1-b]quinazolin-9(4H)-one, C10H5N5O5
  59. Crystal structure of rac-1,8-bis(2-carbamoylethyl)-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, C22H46N6O2
  60. The crystal structure of (E)-N -(2-bromobenzylidene)-2-naphthohydrazide, C36H26Br2N4O2
  61. The crystal structure of 5-nitronaphthoquinone, C10H5NO4
  62. The crystal structure of (S, R p )-4–benzhydrylideneamino-12-(4-tert-butyl oxazolin-2-yl)[2.2]paracyclophane, C36H36N2O
  63. Synthesis and crystal structure of 2-(2-oxo-2-(o-tolyl)ethyl)-4H-chromen-4-one, C18H14O3
  64. Crystal structure of 2-(thiazol-2-yl)hexahydro-1H-4,7-epoxyisoindole-1,3(2H)-dione, C11H10N2O3S
  65. Crystal structure of N-(diaminomethylene)-1-(dimethylamino)-1-iminiomethanaminium dichloride, C4H13Cl2N5
  66. Crystal structure of poly[(μ3-3, 5-dichloro-2-hydroxy-benzoato-κ4 Cl,O:O′:O″) silver(I)], C7H3AgCl2O3
  67. The crystal structure of tetrakis(1-isopropylimidazole-κ1 N)-[μ2- imidazole-4,5-dicarboxylato-κ4 O,N,O′,N′)]- trioxido-divanadium, C29H41N10O7V2
  68. Crystal structure of catena-[(μ3-bromido)-(1H-1,2,4-triazol-1-yl)benzoato-κ1 N)copper(I)], C9H7BrCuN3O2
  69. The crystal structure of (E)-4-fluoro-N′-(1-(2-hydroxyphenyl)propylidene)benzohydrazide, C16H15FN2O2
Downloaded on 5.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2023-0117/html?lang=en
Scroll to top button