Startseite The crystal structure of KNa3Te8O18·5H2O exhibiting a ∞2[Te4O9]2− layer
Artikel Open Access

The crystal structure of KNa3Te8O18·5H2O exhibiting a 2[Te4O9]2− layer

  • Lei Geng ORCID logo EMAIL logo
Veröffentlicht/Copyright: 22. Dezember 2021

Abstract

KNa3Te8O18·5H2O, triclinic, P 1 (no. 2), a = 8.5701(4) Å, b = 8.7278(4) Å, c = 10.4082(5) Å, α = 67.582(2)°, β = 66.167(2)°, γ = 77.861(2)°, V = 656.85(6) Å3, Z = 1, R gt (F) = 0.0180, wRref(F2) = 0.0452, T = 296(2) K.

CCDC no.: 2125811

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless plate-like
Size: 0.16 × 0.15 × 0.08 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 9.06 mm−1
θmax, completeness: 27.6°, >99%
N(hkl)measured, N(hkl)unique, Rint: 11,149, 3028, 0.021
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 2970
N(param)refined: 204
Programs: Bruker [1], SHELX [2], WinGX/ORTEP [3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
K1 0.5000 0.5000 0.5000 0.0718 (7)
Na1 0.5000 0.0000 0.0000 0.0719 (12)
Na2 0.6282 (2) 0.60310 (19) 0.04273 (17) 0.0271 (3)
Te1 0.14045 (3) 0.15162 (2) 0.66373 (2) 0.01183 (6)
Te2 0.17769 (3) 0.52011 (3) 0.30803 (2) 0.01277 (6)
Te3 0.17926 (3) −0.17465 (3) 0.97812 (2) 0.01326 (6)
Te4 0.46186 (3) 0.17301 (3) 0.32481 (2) 0.01295 (6)
O1 0.6810 (3) 0.1596 (3) 0.3230 (3) 0.0196 (5)
O2 0.3696 (3) 0.2070 (3) 0.5341 (3) 0.0189 (5)
O3 0.4302 (3) 0.4056 (3) 0.2427 (3) 0.0255 (6)
O4 0.1931 (3) 0.0903 (3) 0.8377 (3) 0.0164 (5)
O5 −0.1541 (3) 0.1123 (3) 0.8632 (3) 0.0194 (5)
O6 0.0960 (3) 0.3129 (3) 0.3831 (3) 0.0195 (5)
O7 0.5801 (3) 0.1798 (3) 0.0978 (3) 0.0196 (5)
O8 0.0787 (3) 0.3772 (3) 0.6528 (3) 0.0186 (5)
O9 0.2022 (4) 0.5754 (3) 0.1066 (3) 0.0247 (6)
O10 0.7538 (5) 0.2273 (5) 0.5285 (4) 0.0471 (9)
H1 0.715 (6) 0.199 (8) 0.478 (6) 0.071*
H2 0.859 (3) 0.246 (8) 0.480 (6) 0.071*
O11 0.5128 (4) 0.7766 (4) 0.2051 (3) 0.0278 (6)
H3 0.600 (3) 0.803 (6) 0.209 (5) 0.042*
H4 0.423 (3) 0.799 (6) 0.271 (4) 0.042*
O12 0.2025 (5) 0.1862 (4) 0.1443 (4) 0.0415 (8)
H5 0.163 (7) 0.101 (5) 0.151 (6) 0.062*
H6 0.149 (7) 0.211 (7) 0.224 (4) 0.062*
O13 0.8193 (6) 0.4849 (5) 0.1685 (6) 0.0664 (14)
H7 0.922 (4) 0.505 (9) 0.113 (7) 0.100*
H8a 0.786 (11) 0.534 (16) 0.233 (11) 0.100*
H9b 0.810 (11) 0.381 (2) 0.210 (16) 0.100*
  1. aOccupancy: 0.53(3), bOccupancy: 0.47(3).

Source of material

All starting materials were from commercial sources and used without further purification. The reagents of 2 mmol NaOH, 4 mmol TeO2, 1 mmol KF, and 2 mL H2O were thoroughly mixed and sealed in a stainless autoclave with a 23 mL Teflon liner. The mixture was heated at 463 K in an oven for three days, and then cooled to room temperature at a rate of 6 K/h. Colorless plate-like crystals of KNa3Te8O18·5H2O were collected and washed with purified water.

Experimental details

The structure was solved by direct method with SHELXS and further refined with the SHELXL program. The oxygen-bound H atoms were located on a difference Fourier map and refined with distances O–H = 0.85 Å and Uiso(H) = 1.5Ueq(O).

Comment

Metal tellurites with lone-pair electrons have received great attention owing to their structural diversity and potential applications such as in the field of piezoelectricity, pyroelectricity, and second-order nonlinear optics [4], [5], [6], [7]. Usually, the Te(IV)–O units can adopt three geometry patterns in various crystal structures: TeO3 trigonal pyramid, TeO4 sphenoid, and TeO5 distorted square pyramid. The three types of Te–O units can further build up a large number of structural motifs when connected with each other or with other atomic groups. Such examples include the recently synthesized hexamolybdotellurates A4Mo6TeO22·2H2O (A = NH4, Rb) and (NH4)2K2TeMo6O22·2H2O, which are built by the [Mo6O22]8− group with TeO4 units as connectors [8, 9]. Further rich examples are the alkali-metal tellurites, including Na2TeO3 [10], Na2Te2O5·2H2O [11], Na4Te4O10 [12], K2Te4O9·3.2H2O [13], K2Te4O9 [14]. Chen et al. discussed that the size of alkali-metal cations, H2O molecules, and the interaction between framework oxygen atoms and alkali cations can play great roles in the formation of centric-acentric structure for the alkali-metal tellurites [15]. Here we synthesized the title new double alkali-metal tellurite to provide further insight on the intrinsic mechanism of centric-acentric formation of alkali-metal tellurites.

The title compound contains the [Te4O9]2− anion layered structure that has been found in the double alkali-metal tellurite RbK3Te8O18·5H2O. However, different to the noncentrosymmetric structure of RbK3Te8O18·5H2O, substitution of Rb and K with the corresponding smaller K and Na leads to a centrosymmetric structure of KNa3Te8O18·5H2O [15]. There are two kinds of Te–O connection fashions, i.e., Te(1)O3 in trigonal pyramid, and Te(2)–Te(4) are in TeO4 sphenoid structures. Te(2)O4, Te(3)O4, and Te(4)O4 sphenoids are connected to each other through corner-sharing to form a [Te6O12O12/2] pentagonal ring. The Te(1)O3 trigonal pyramid connects three neighboring [Te6O12O12/2] pentagonal ring up to the [Te4O9]2− anion layer. The bond valence sums (BVS) are calculated to be 3.66, 4.02, 3.95, and 4.02 for central cations Te(1), Te(2), Te(3), and Te(4), respectively [16]. K+ and Na+ cations lie between the layers for charge balance, and the water molecules are arranged around the K+ cations to separate them with Na+ cations. The K–O distances are distributed in the range of 2.847–3.074 Å when the nearest six oxygen atoms are considered, and the BVS of the K+ cation is calculated to be 0.71, indicating that some more oxygen neighbors still contribute. Na(1) cation is coordinated by eight oxygen atoms with Na–O distances of 2.301–2.919 Å with BVS = 1.03, and Na(2) is coordinated by six oxygen atoms with Na–O distances of 2.321–2.737 Å with BVS = 1.09.


Corresponding author: Lei Geng, School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China, E-mail:

Award Identifier / Grant number: ZR2020ME021

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by the Shandong Provincial Natural Science Foundation, China (ZR2020ME021).

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

1. Bruker. Saint (v8.34A); Bruker AXS Inc.: Madison, WI, USA, 2013.Suche in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar

3. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Suche in Google Scholar

4. Bergman, J. G., Boyd, G. D., Ashkin, A. New nonlinear optical materials - metal oxides with nonbonded electrons. J. Appl. Phys. 1969, 40, 2860–2863; https://doi.org/10.1063/1.1658089.Suche in Google Scholar

5. Mercurio, D., El Farissi, M., Frit, B., Goursat, P. Etude structurale et densification d’un nouveau materiau piezoelectrique: Bi2TeO5. Mater. Chem. Phys. 1983, 9, 467–476; https://doi.org/10.1016/0254-0584(83)90073-1.Suche in Google Scholar

6. Goodey, J., Broussard, J., Halasyamani, P. S. Synthesis, structure, and characterization of a new second-harmonic-generating tellurite: Na2TeW2O9. Chem. Mater. 2002, 14, 3174–3180; https://doi.org/10.1021/cm020087i.Suche in Google Scholar

7. Ra, H. S., Ok, K. M., Halasyamani, P. S. Combining second-order Jahn–Teller distorted cations to create highly efficient SHG materials: synthesis, characterization, and NLO properties of BaTeM2O9 (M = Mo6+ or W6+). J. Am. Chem. Soc. 2003, 125, 7764–7765; https://doi.org/10.1021/ja035314b.Suche in Google Scholar

8. Vidyavathy, Vidyasagar, K. Hydrothermal synthesis and characterization of novel one-dimensional tellurites of molybdenum(VI), A4Mo6TeO22·2H2O (A = NH4, Rb). Inorg. Chem. 1999, 38, 1394–1400; https://doi.org/10.1021/ic980957r.Suche in Google Scholar

9. Geng, L., Wang, Y. Synthesis and characterization of ammonium potassium tellurium polyoxomolybdate: (NH4)2K2TeMo6O22·2H2O with one-dimensional anionic polymeric chain [TeMo6O22]4−. Crystals 2021, 11, 375; https://doi.org/10.3390/cryst11040375.Suche in Google Scholar

10. Masse, R., Guitel, J. C., Tordjman, I. Preparation chimioue et structure cristalline des tellurites de sodium et d’argent: Na2TeO3, Ag2TeO3. Mater. Res. Bull. 1980, 15, 431–436; https://doi.org/10.1016/0025-5408(80)90048-3.Suche in Google Scholar

11. Daniel, F., Moret, J., Maurin, M., Philippot, E. Etude cristallographique du tellurite de sodium a deux molecules d’eau, Na2TeIV2O5·2H2O. Acta Crystallogr. 1981, B37, 1278–1281; https://doi.org/10.1107/s0567740881005657.Suche in Google Scholar

12. Tagg, S. L., Huffman, J. C., Zwanziger, J. W., Occhailini, D., Pedersen, S. U., Niinisto, L., Styring, S., Tommos, C., Warncke, K., Wood, B. R. Crystal structure of sodium ditellurite, Na4Te4O10. Acta Chem. Scand. 1997, 51, 118–121; https://doi.org/10.3891/acta.chem.scand.51-0118.Suche in Google Scholar

13. Ok, K. M., Halasyamani, P. S. New tellurites: syntheses, structures, and characterization of K2Te4O9·3.2H2O, KGaTe6O14, and KGaTe2O6·1.8H2O. Chem. Mater. 2001, 13, 4278–4284; https://doi.org/10.1021/cm0103489.Suche in Google Scholar

14. Becker, C. R., Tagg, S. L., Huffman, J. C., Zwanziger, J. W. Crystal structures of potassium tetratellurite, K2Te4O9, and potassium ditellurite, K2Te2O5, and structural trends in solid alkali tellurites. Inorg. Chem. 1997, 36, 5559–5564; https://doi.org/10.1021/ic970497m.Suche in Google Scholar

15. Chen, Y.-G., Yang, N., Yao, X.-N., Li, C.-B., Guo, Y., Zhang, X.-M. Synergetic influence of alkali-metal and lone-pair cations on frameworks of tellurites. Inorg. Chem. 2018, 57, 5406–5412; https://doi.org/10.1021/acs.inorgchem.8b00266.Suche in Google Scholar

16. Brese, N. E., O’Keeffe, M. Bond-valence parameters for solids. Acta Crystallogr. 1991, B47, 192–197; https://doi.org/10.1107/s0108768190011041.Suche in Google Scholar

Received: 2021-10-25
Accepted: 2021-12-02
Published Online: 2021-12-22
Published in Print: 2022-02-23

© 2021 Lei Geng, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-3-yl)methylene)-3, 4-dihydronaphthalen-1(2H)-one, C17H15NO3
  4. Crystal structure of (E)-7-methoxy-2-((2-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1 (2H)-one, C18H17NO3
  5. The crystal structure of N 6,N 6′-di(pyridin-2-yl)-[2,2′-bipyridine]-6,6′-diamine, C20H16N6
  6. The crystal structure of {N 1,N 2-bis[2,4-dimethyl-6-(4-(tert-butyl)phenyl)(phenyl)methyl]acenaphthylene-1,2-diimino-κ2 N, N′}-dibromido-nickel(II) – dichloromethane(1/2), C64H64Br2Cl4N2Ni
  7. Synthesis and crystal structure of nonacarbonyltris[(2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-κ1 P)-2,2-dioxide]triruthenium(0) – acetonitrile (7/6), C25.71H32.57N9.86O15P3S3Ru3
  8. A new polymorph of 1-(4-nitrophenyl)-1H-benzimidazole (C13H9N3O2)
  9. The crystal structure of 2,2′-((1E,1′E)-(naphthalene-2,3 diylbis(azanylylidene)) bis(methanylylidene))bis(4-methylphenol), C26H22N2O2
  10. The crystal structure of bis(μ2-iodido)-bis(η6-benzene)-bis(iodido)-diosmium(II), C12H12I4Os2
  11. Redetermination of the crystal structure of bis{hydridotris(3,5-dimethylpyrazol-1-yl-κN 3)borato}copper(II), C30H44B2CuN12
  12. Crystal structure of (E)-3-((4-(tert-butyl)phenyl)thio)-4-hydroxypent-3-en-2-one, C15H20O2S
  13. Crystal structure of 2,2′-(p-tolylazanediyl)bis(1-phenylethan-1-one), C23H21NO2
  14. Redetermination of the crystal structure of the crystal sponge the poly[tetrakis(μ3-2,4,6-tris(pyridin-4-yl)-1,3,5-triazine)-dodecaiodidohexazinc(II) nitrobenzene solvate], C72H48I12N24Zn6⋅10(C6H5NO2)
  15. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(6-methylpyridin-2-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C44H45N5O2
  16. Crystal structure of (E)-7-fluoro-2-(3-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C17H12F2O1
  17. Crystal structure of tetrabutylammonium sulfanilate – 1-(diaminomethylene)thiourea (1/2)
  18. Crystal structure of [2,2′-{azanediyl)bis[(propane-3,1-diyl)(azanylylidene)methylylidene]} bis(3,5-dichlorophenolato)-κ2O,O′]-isothiocyanato-κN-iron(III), C21H19Cl4FeN4O2S
  19. Crystal structure of (4-chlorophenyl)(4-hydroxyphenyl)methanone, C13H9ClO2
  20. Crystal structure of 6,6′-((pentane-1,3-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dibromolphenolato-κ4 N,N′,O,O′)copper(II),) C19H16Br4CuN2O2
  21. Chlorido-(2,2′-(ethane-bis(5-methoxyphenolato))-κ4 N,N,O,O′)manganese(III) monohydrate, C19H18Cl2CuN2O2
  22. Crystal structure of 2,6-di-tert-butyl-4-(4-methoxybenzylidene)cyclohexa-2,5-dien-1-one, C22H28O2
  23. Crystal structure of [6,6′-(((2,2-dimethylpropane-1,3-diyl)bis(azanylylidene))bis(methanylylidene))bis(2-chlorophenolato)-κ4N,N′,O,O′]copper(II)
  24. Crystal structure of 2-chloro-3-((thiophen-2-ylmethyl)amino)naphthalene-1,4-dione, C30H20O4N2Cl2S2
  25. Crystal structure of bis{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl)borato-κN 3}manganese(II), C30H26B2F18MnN12
  26. Crystal structure of 1-(2-methylphenyl)-2-(2-methylbenzo[b]thienyl)-3,3,4,4,5,5-hexafluorocyclopent-ene, C21H14F6S
  27. Crystal structure of 2-(3-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  28. Crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium chloride – chloroform (1/1), C21H23Cl4I2N3
  29. Crystal structure of azido-k1 N-{6,6′-((((methylazanediyl)bis(propane-3,1-diyl))bis(azanylylidene))bis(methanylylidene))bis(2,4-dibromophenolato)k5 N,N′,N″,O,O′}cobalt(III)-methanol (1/1)), C21H23Br4CoN6O3
  30. The crystal structure of 2-(4-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  31. Crystal structure of 1,1′-(methane-1,1-diyl)bis(3-methyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C9H14F12N4P2
  32. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(pyren-1-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C54H48N4O2
  33. Crystal structure of poly[bis(μ2-2,6-bis(1-imidazoly)pyridine-κ2 N,N′)-bis(thiocyanato-κ1 N)copper(II)] dithiocyanate, C24H18CuN12S2
  34. Cones with a three-fold symmetry constructed from three hydrogen bonded theophyllinium cations that coat [FeCl4] anions in the crystal structure of tris(theophyllinium) bis(tetrachloridoferrate(III)) chloride trihydrate, C21H33Cl9Fe2N12O9
  35. Crystal structure of 14-O-[(4-(4-hydroxypiperidine-1-yl)-6-methylpyrimidine-2-yl)thioacetyl]-mutilin monohydrate, C32H49N3O6S
  36. The crystal structure of (E)-3-chloro-2-(2-(4-methylbenzylidene)hydrazinyl)pyridine, C13H12ClN3
  37. The crystal structure of 4-phenyl-4-[2-(pyridine-4-carbonyl)hydrazinylidene]butanoic acid, C16H15N3O3
  38. The crystal structure of 6-amino-5-carboxypyridin-1-ium pentaiodide monohydrate C6H9I5N2O3
  39. Crystal structure of bis(μ3-oxido)-bis(μ2-2-formylbenzoato-k2O:O′)-bis(2-(dimethoxymethyl)-benzoato-κO)-oktakismethyl-tetratin(IV)
  40. Crystal structure of 2-((E)-(((E)-2-hydroxy-4-methylbenzylidene) hydrazineylidene)methyl)-4-methylphenol, C16H16N2O2
  41. Crystal structure of (E)-amino(2-((5-methylfuran-2-yl)methylene)hydrazinyl) methaniminium nitrate monohydrate, C14H26N10O10
  42. The crystal structure of N′-(2-chloro-6-hydroxybenzylidene)thiophene-2-carbohydrazide monohydrate, C12H11ClN2O3S
  43. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)zinc(II)], C64H44Br4N8O8Zn2
  44. The crystal structure of catena-poly[(1-(4-carboxybenzyl)pyridin-1-ium-4-carboxylato-κ1O)-(μ2-oxalato-κ4 O:O′:O″:O‴)dioxidouranium(VI)], C16H11NO10U
  45. Crystal structure of 3-allyl-4-(2-bromoethyl)-5-(4-methoxyphenyl)-2-phenylfuran, C22H21BrO2
  46. Halogen bonds in the crystal structure of 4,3′:5′,4″-terpyridine — 1,3-diiodotetrafluorobenzene (1/1), C21H11F4I2N3
  47. Crystal structure of 2-(1H-indol-3-yl)ethan-1-aminium 2-(4-acetylphenoxy)acetate, C20H22N2O4
  48. Chalcogen bonds in the crystal structure of 4,7-dibromo-2,1,3-benzoselenadiazole, C6H2Br2N2Se
  49. The crystal structure of 1,4-bis((1H-benzimidazol-2-yl)methyl)-piperazine-2,5-dione dihydrate, C20H22N6O4
  50. The crystal structure of C19H20O8
  51. The crystal structure of KNa3Te8O18·5H2O exhibiting a 2[Te4O9]2− layer
  52. Erratum
  53. Erratum to: Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
Heruntergeladen am 9.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0415/html?lang=de
Button zum nach oben scrollen