Startseite The crystal structure of 2,2′-((1E,1′E)-(naphthalene-2,3 diylbis(azanylylidene)) bis(methanylylidene))bis(4-methylphenol), C26H22N2O2
Artikel Open Access

The crystal structure of 2,2′-((1E,1′E)-(naphthalene-2,3 diylbis(azanylylidene)) bis(methanylylidene))bis(4-methylphenol), C26H22N2O2

  • Nqobile Ndlangamandla und Hadley S. Clayton ORCID logo EMAIL logo
Veröffentlicht/Copyright: 10. November 2021

Abstract

C26H22N2O2, monoclinic, P21/n (No. 14), a = 6.2362(2) Å, b = 16.3148(6) Å, c = 20.0521(7) Å, β = 94.308(1)°, V = 2034.38(12) Å3, Z = 4, R gt (F) = 0.0439, wR ref (F2) = 0.1088, T = 173 K.

CCDC no.: 2107048

The asymmetric unit of the molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Prism, red
Size: 0.43 × 0.23 × 0.18 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.08 mm−1
Diffractometer, scan mode: Bruker D8 Venture Photon, ω-scans
θmax, completeness: 27°, >99%
N(hkl)measured, N(hkl)unique, Rint: 71,804, 4400, 0.026
Criterion for IobsN(hkl)gt: Iobs > 2 σ(Iobs), 3997
N(param)refined: 281
Programs: Bruker programs [1], SHELX [2], Win GX [3], PLATON [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 0.04502 (18) 0.56701 (7) 0.84538 (6) 0.0267 (2)
C2 −0.02471 (18) 0.61515 (7) 0.78952 (6) 0.0290 (2)
C3 −0.2084 (2) 0.66347 (8) 0.79207 (7) 0.0360 (3)
H3 −0.256288 0.696117 0.754641 0.043*
C4 −0.3210 (2) 0.66401 (8) 0.84886 (7) 0.0361 (3)
H4 −0.446258 0.697021 0.849589 0.043*
C5 −0.2559 (2) 0.61750 (8) 0.90511 (6) 0.0349 (3)
C6 −0.07337 (19) 0.56957 (8) 0.90212 (6) 0.0326 (3)
H6 −0.026736 0.537274 0.93988 0.039*
C7 0.23024 (18) 0.51351 (7) 0.84407 (6) 0.0279 (2)
H7 0.267685 0.479291 0.881473 0.033*
C8 0.52784 (17) 0.46098 (7) 0.79148 (5) 0.0252 (2)
C9 0.62047 (18) 0.41645 (7) 0.84422 (6) 0.0304 (2)
H9 0.555625 0.416804 0.885606 0.037*
C10 0.80979 (18) 0.37014 (7) 0.83849 (6) 0.0296 (2)
C11 0.9070 (2) 0.32391 (8) 0.89268 (7) 0.0394 (3)
H11 0.843501 0.323416 0.934281 0.047*
C12 1.0910 (2) 0.28010 (8) 0.88566 (8) 0.0412 (3)
H12 1.153802 0.24937 0.922342 0.049*
C13 1.1878 (2) 0.28022 (7) 0.82457 (7) 0.0388 (3)
H13 1.315396 0.249522 0.820161 0.047*
C14 1.09891 (19) 0.32438 (8) 0.77141 (7) 0.0347 (3)
H14 1.165854 0.324205 0.730389 0.042*
C15 0.90793 (17) 0.37043 (7) 0.77686 (6) 0.0277 (2)
C16 0.81133 (18) 0.41672 (7) 0.72296 (6) 0.0286 (2)
H16 0.8763 0.417534 0.681609 0.034*
C17 0.62594 (17) 0.46044 (7) 0.72913 (5) 0.0254 (2)
C18 0.62596 (17) 0.54356 (7) 0.63454 (5) 0.0268 (2)
H18 0.775122 0.552368 0.645323 0.032*
C19 0.52434 (17) 0.57827 (7) 0.57329 (5) 0.0252 (2)
C20 0.30617 (17) 0.56363 (7) 0.55348 (5) 0.0262 (2)
C21 0.21884 (19) 0.59586 (7) 0.49300 (6) 0.0308 (3)
H21 0.0726 0.585612 0.478716 0.037*
C22 0.3443 (2) 0.64256 (7) 0.45392 (6) 0.0319 (3)
H22 0.281255 0.664899 0.41331 0.038*
C23 0.5612 (2) 0.65815 (7) 0.47200 (6) 0.0315 (3)
C24 0.64721 (18) 0.62542 (7) 0.53185 (6) 0.0294 (2)
H24 0.794305 0.635234 0.545277 0.035*
C25 −0.3840 (2) 0.61715 (11) 0.96621 (7) 0.0518 (4)
H25A −0.328547 0.574343 0.997168 0.078*
H25B −0.535567 0.606249 0.952662 0.078*
H25C −0.370861 0.670625 0.9884 0.078*
C26 0.6953 (2) 0.70756 (10) 0.42709 (7) 0.0471 (3)
H26A 0.839967 0.71502 0.448897 0.071*
H26B 0.628259 0.761238 0.418558 0.071*
H26C 0.704933 0.678529 0.384633 0.071*
N1 0.34438 (15) 0.51130 (6) 0.79374 (5) 0.0271 (2)
N2 0.51790 (15) 0.50122 (6) 0.67432 (5) 0.0272 (2)
O1 0.07909 (15) 0.61439 (6) 0.73288 (5) 0.0394 (2)
O2 0.17886 (13) 0.51870 (6) 0.59130 (4) 0.0337 (2)
H1 0.199 (3) 0.5790 (13) 0.7413 (10) 0.073 (6)*
H2 0.266 (3) 0.5026 (12) 0.6290 (10) 0.065 (5)*

Source of materials

All reagents are commercially available and were used without further purification. The Schiff base compound was prepared by the condensation reaction of 2,3-diaminonaphthalene 0.356 g (0.22 mmol) and 2-hydroxy-5-methylbenzaldehyde 0.598 (0.44 mmol) in 10 ml dry methanol. The reaction mixture was heated under microwave irradiation (100 °C, 100 W) for 10 min. On cooling to room temperature an orange powder precipitated out of the reaction mixture. The solid obtained was filtered and washed with methanol to give the target product in 97% yield. Crystals of the title compound were obtained as deep orange needles by slow evaporation of an ethanol solution at room temperature over a period of five days.

Experimental details

Intensity data was determined on a Bruker Venture D8 Photon CMOS diffractometer with graphite-monochromated Mo Kα1 (λ = 0.71073 Å) radiation at 173 K using an Oxford Cryostream 600 cooler. Data reduction was carried out using the program SAINT+, version 6.02 [1] and empirical absorption corrections were made using SADABS [1]. The structure was solved in the WinGX [2] Suite of programs, using intrinsic phasing through SHELXT [3] and refined using SHELXL-2017 [3]. All C bound hydrogen atoms were placed at idealized positions and refined as riding atoms with isotropic parameters 1.2 times or 1.5 times those of their parent atoms. O-bound hydrogen atoms were located in the difference Fourier map and their coordinates and isotropic displacement parameters refined freely. Diagrams and publication material were generated using ORTEP-3 [2], and PLATON [4].

Discussion

Salen-type ligands are a class of Schiff base compounds with nitrogen and oxygen donor atoms. These tetradentate ligands have received much attention due to their versatility and rich coordination chemistry [5], [6], [7]. The modularity of synthesis of these ligands allows for the selective modification of the steric and electronic properties by alteration of the diamine or salicylaldehyde moieties. The salen compounds have potential application in inorganic biochemistry, catalysis, magnetism and medical imaging [89]. When coordinated to transition metal ions; the complexes exhibit a broad range of biological activities including antifungal, antibacterial, antimalarial, antiproliferative and antiviral properties [5], [6], [7], [8]. As a part of our current research focus on Schiff base compounds as ligands, we herein report the molecular structure of a new naphthalene functionalized salen-type ligand.

The title compound crystallizes in the monoclinic space group P21/n (no. 14), with four molecules per unit cell. The bond lengths and angles are within the expected ranges and are comparable to related structures [10, 11]. As expected, selected carbon–carbon bond lengths within the aromatic naphthalene rings are shorter than typical aromatic double bonds, showing bond localization. The C8–C9, C16–C17, C11–C12 and C13–C14 bonds have values of 1.374, 1.372, 1.368 and 1.369 Å respectively which is ascribed to the Mills–Nixon effect which accounts for bond lengths changes during benzene ring annulation [12].

The molecule is non-planar, because there is a torsional twist observed about the naphthalene ring, with a (N1–C8–C17–N2) dihedral angle of −7.52°. While it is observed that the polyaromatic naphthalene ring is almost coplanar with one of the phenol rings of the molecule, the second phenol ring is rotated about the N2–C17 bond by ca. 27°. The conformation adopted may be due to steric and electronic effects experienced by the phenolic hydroxyl and imine groups of the molecule [13].

In the crystal, hydrogen bonds supported by the amine group can be observed. There are two strong intramolecular hydrogen bonds between the hydroxyl group and nitrogen atom of this compound, with O1–H1⃛N1 at 2.5984(13) Å and O2–H2⃛N2 at 2.6065(13) Å. In addition, π-stacking is a prominent feature in the crystal structure of the compound. There is intermolecular aromatic π–π- interactions observed between the out-of-plane phenol rings.


Corresponding author: Hadley S. Clayton, Chemistry Department, University of South Africa, Unisa Science Campus, Johannesburg, South Africa, E-mail:

Acknowledgments

The authors would like to thank Professor A. Lemmerer (University of the Witwatersrand) for his assistance with crystallographic data collection.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SAINT-Plus and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2004.Suche in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar

3. Farrugia, L. J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838; https://doi.org/10.1107/s0021889899006020.Suche in Google Scholar

4. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. 2009, D65, 148–155; https://doi.org/10.1107/s090744490804362x.Suche in Google Scholar

5. Nworie, F. S. Bis(salicylidene), ethylenediamine(salen) and bis(salicylidene) ethylenediamine-metal complexes: from structure to biological activity. J. Anal. Pharm. Res. 2016, 3, 1–10; https://doi.org/10.15406/japlr.2016.03.00076.Suche in Google Scholar

6. Cozzi, P. G. Metal-salen Schiff base complexes in catalysis: practical aspects. Chem. Soc. Rev. 2004, 33, 410–421; https://doi.org/10.1039/b307853c.Suche in Google Scholar

7. Leoni, L., Dalla Cort, A. The supramolecular attitude of metal-salophen and metal-salen complexes. Inorganics 2018, 6, 42; https://doi.org/10.3390/inorganics6020042.Suche in Google Scholar

8. Azam, M., Hussain, Z., Warad, I., Al-Resayes, S. I., Khan, M. S., Shakir, M., Kruszynski, R. Novel Pd(II)-salen complexes showing high in vitro anti-proliferative effects against human hepatoma cancer by modulating specific regulatory genes. Dalton Trans. 2012, 41, 10854–10864; https://doi.org/10.1039/c2dt31143g.Suche in Google Scholar

9. Kocyigit, O. Properties and synthesis of the Cr(III)-salen/salophen complexes containing triphenylamine core. Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 2012, 42, 196–204; https://doi.org/10.1080/15533174.2011.609517.Suche in Google Scholar

10. Mohamed, E. M., Muralidharan, S., Panchanatheswaran, K., Ramesh, R., Low, J. N., Glidewell, C. 6,6′-Dimethoxy-2,2′-[(1R,2R)-cyclohexane-1,2-diylbis(nitrilomethylidyne)] diphenol: three C–H⃛O hydrogen bonds generate a three-dimensional framework. Acta Crystallogr. C 2003, 59, 367–369; https://doi.org/10.1107/s0108270103010205.Suche in Google Scholar

11. Chandini, K. M., Fares, H. A., Eman, E. S., Nuha, Y. E., Hela, F., Sridhar, M. A., Lokanath, N. K. Synthesis, crystal structure, Hirshfeld surface analysis, DFT calculations, 3D energy frameworks studies of Schiff base derivative 2,2′-((1Z,1′)-(1,2-phenylene bis(azanylylidene)) bis(methanylylidene)) diphenol. J. Mol. Struct. 2021, 1244, 130910.10.1016/j.molstruc.2021.130910Suche in Google Scholar

12. Stanger, A. Is the Mills–Nixon effect real? J. Am. Chem. Soc. 1991, 113, 8277–8280; https://doi.org/10.1021/ja00022a012.Suche in Google Scholar

13. Kargar, H., Torabi, V., Akbari, A., Behjatmanesh-Ardakani, R., Sahraei, A., Tahir, M. N. Synthesis, crystal structure, spectroscopic investigations, and computational studies of Ni(II) and Pd(II) complexes with asymmetric tetradentate NOON Schiff base ligand. Struct. Chem. 2019, 30, 2289–2299; https://doi.org/10.1007/s11224-019-01350-9.Suche in Google Scholar

Received: 2021-10-05
Accepted: 2021-10-22
Published Online: 2021-11-10
Published in Print: 2022-02-23

© 2021 Nqobile Ndlangamandla and Hadley S. Clayton, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-3-yl)methylene)-3, 4-dihydronaphthalen-1(2H)-one, C17H15NO3
  4. Crystal structure of (E)-7-methoxy-2-((2-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1 (2H)-one, C18H17NO3
  5. The crystal structure of N 6,N 6′-di(pyridin-2-yl)-[2,2′-bipyridine]-6,6′-diamine, C20H16N6
  6. The crystal structure of {N 1,N 2-bis[2,4-dimethyl-6-(4-(tert-butyl)phenyl)(phenyl)methyl]acenaphthylene-1,2-diimino-κ2 N, N′}-dibromido-nickel(II) – dichloromethane(1/2), C64H64Br2Cl4N2Ni
  7. Synthesis and crystal structure of nonacarbonyltris[(2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-κ1 P)-2,2-dioxide]triruthenium(0) – acetonitrile (7/6), C25.71H32.57N9.86O15P3S3Ru3
  8. A new polymorph of 1-(4-nitrophenyl)-1H-benzimidazole (C13H9N3O2)
  9. The crystal structure of 2,2′-((1E,1′E)-(naphthalene-2,3 diylbis(azanylylidene)) bis(methanylylidene))bis(4-methylphenol), C26H22N2O2
  10. The crystal structure of bis(μ2-iodido)-bis(η6-benzene)-bis(iodido)-diosmium(II), C12H12I4Os2
  11. Redetermination of the crystal structure of bis{hydridotris(3,5-dimethylpyrazol-1-yl-κN 3)borato}copper(II), C30H44B2CuN12
  12. Crystal structure of (E)-3-((4-(tert-butyl)phenyl)thio)-4-hydroxypent-3-en-2-one, C15H20O2S
  13. Crystal structure of 2,2′-(p-tolylazanediyl)bis(1-phenylethan-1-one), C23H21NO2
  14. Redetermination of the crystal structure of the crystal sponge the poly[tetrakis(μ3-2,4,6-tris(pyridin-4-yl)-1,3,5-triazine)-dodecaiodidohexazinc(II) nitrobenzene solvate], C72H48I12N24Zn6⋅10(C6H5NO2)
  15. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(6-methylpyridin-2-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C44H45N5O2
  16. Crystal structure of (E)-7-fluoro-2-(3-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C17H12F2O1
  17. Crystal structure of tetrabutylammonium sulfanilate – 1-(diaminomethylene)thiourea (1/2)
  18. Crystal structure of [2,2′-{azanediyl)bis[(propane-3,1-diyl)(azanylylidene)methylylidene]} bis(3,5-dichlorophenolato)-κ2O,O′]-isothiocyanato-κN-iron(III), C21H19Cl4FeN4O2S
  19. Crystal structure of (4-chlorophenyl)(4-hydroxyphenyl)methanone, C13H9ClO2
  20. Crystal structure of 6,6′-((pentane-1,3-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dibromolphenolato-κ4 N,N′,O,O′)copper(II),) C19H16Br4CuN2O2
  21. Chlorido-(2,2′-(ethane-bis(5-methoxyphenolato))-κ4 N,N,O,O′)manganese(III) monohydrate, C19H18Cl2CuN2O2
  22. Crystal structure of 2,6-di-tert-butyl-4-(4-methoxybenzylidene)cyclohexa-2,5-dien-1-one, C22H28O2
  23. Crystal structure of [6,6′-(((2,2-dimethylpropane-1,3-diyl)bis(azanylylidene))bis(methanylylidene))bis(2-chlorophenolato)-κ4N,N′,O,O′]copper(II)
  24. Crystal structure of 2-chloro-3-((thiophen-2-ylmethyl)amino)naphthalene-1,4-dione, C30H20O4N2Cl2S2
  25. Crystal structure of bis{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl)borato-κN 3}manganese(II), C30H26B2F18MnN12
  26. Crystal structure of 1-(2-methylphenyl)-2-(2-methylbenzo[b]thienyl)-3,3,4,4,5,5-hexafluorocyclopent-ene, C21H14F6S
  27. Crystal structure of 2-(3-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  28. Crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium chloride – chloroform (1/1), C21H23Cl4I2N3
  29. Crystal structure of azido-k1 N-{6,6′-((((methylazanediyl)bis(propane-3,1-diyl))bis(azanylylidene))bis(methanylylidene))bis(2,4-dibromophenolato)k5 N,N′,N″,O,O′}cobalt(III)-methanol (1/1)), C21H23Br4CoN6O3
  30. The crystal structure of 2-(4-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  31. Crystal structure of 1,1′-(methane-1,1-diyl)bis(3-methyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C9H14F12N4P2
  32. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(pyren-1-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C54H48N4O2
  33. Crystal structure of poly[bis(μ2-2,6-bis(1-imidazoly)pyridine-κ2 N,N′)-bis(thiocyanato-κ1 N)copper(II)] dithiocyanate, C24H18CuN12S2
  34. Cones with a three-fold symmetry constructed from three hydrogen bonded theophyllinium cations that coat [FeCl4] anions in the crystal structure of tris(theophyllinium) bis(tetrachloridoferrate(III)) chloride trihydrate, C21H33Cl9Fe2N12O9
  35. Crystal structure of 14-O-[(4-(4-hydroxypiperidine-1-yl)-6-methylpyrimidine-2-yl)thioacetyl]-mutilin monohydrate, C32H49N3O6S
  36. The crystal structure of (E)-3-chloro-2-(2-(4-methylbenzylidene)hydrazinyl)pyridine, C13H12ClN3
  37. The crystal structure of 4-phenyl-4-[2-(pyridine-4-carbonyl)hydrazinylidene]butanoic acid, C16H15N3O3
  38. The crystal structure of 6-amino-5-carboxypyridin-1-ium pentaiodide monohydrate C6H9I5N2O3
  39. Crystal structure of bis(μ3-oxido)-bis(μ2-2-formylbenzoato-k2O:O′)-bis(2-(dimethoxymethyl)-benzoato-κO)-oktakismethyl-tetratin(IV)
  40. Crystal structure of 2-((E)-(((E)-2-hydroxy-4-methylbenzylidene) hydrazineylidene)methyl)-4-methylphenol, C16H16N2O2
  41. Crystal structure of (E)-amino(2-((5-methylfuran-2-yl)methylene)hydrazinyl) methaniminium nitrate monohydrate, C14H26N10O10
  42. The crystal structure of N′-(2-chloro-6-hydroxybenzylidene)thiophene-2-carbohydrazide monohydrate, C12H11ClN2O3S
  43. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)zinc(II)], C64H44Br4N8O8Zn2
  44. The crystal structure of catena-poly[(1-(4-carboxybenzyl)pyridin-1-ium-4-carboxylato-κ1O)-(μ2-oxalato-κ4 O:O′:O″:O‴)dioxidouranium(VI)], C16H11NO10U
  45. Crystal structure of 3-allyl-4-(2-bromoethyl)-5-(4-methoxyphenyl)-2-phenylfuran, C22H21BrO2
  46. Halogen bonds in the crystal structure of 4,3′:5′,4″-terpyridine — 1,3-diiodotetrafluorobenzene (1/1), C21H11F4I2N3
  47. Crystal structure of 2-(1H-indol-3-yl)ethan-1-aminium 2-(4-acetylphenoxy)acetate, C20H22N2O4
  48. Chalcogen bonds in the crystal structure of 4,7-dibromo-2,1,3-benzoselenadiazole, C6H2Br2N2Se
  49. The crystal structure of 1,4-bis((1H-benzimidazol-2-yl)methyl)-piperazine-2,5-dione dihydrate, C20H22N6O4
  50. The crystal structure of C19H20O8
  51. The crystal structure of KNa3Te8O18·5H2O exhibiting a 2[Te4O9]2− layer
  52. Erratum
  53. Erratum to: Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0385/html
Button zum nach oben scrollen