Startseite Crystal structure of 2,2′-(p-tolylazanediyl)bis(1-phenylethan-1-one), C23H21NO2
Artikel Open Access

Crystal structure of 2,2′-(p-tolylazanediyl)bis(1-phenylethan-1-one), C23H21NO2

  • Yameng Li ORCID logo , Yongquan Xu EMAIL logo , Ziwen Zhang , Nan Li , Xiaofan Bai , Jingyu He ORCID logo EMAIL logo und Haixia Wu ORCID logo
Veröffentlicht/Copyright: 10. November 2021

Abstract

C23H21NO2, monoclinic, C2/c (no. 15), a = 20.163(3) Å, b = 10.1693(16) Å, c = 8.8032(19) Å, β = 95.992(12)°, V = 1795.2(4) Å3, Z = 4, R gt (F) = 0.0624, wR ref(F 2) = 0.1411, T = 150 K.

CCDC no.: 2108404

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.15 × 0.12 × 0.10 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.08 mm−1
Diffractometer, scan mode: SuperNova, ω
θ max, completeness: 29.4°, >99%
N(hkl)measured, N(hkl)unique, R int: 2111, 2111
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 1425
N(param)refined: 122
Programs: CrysAlisPRO [1], SHELX [2, 3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.500000 1.0609 (3) 0.750000 0.0476 (10)
H1Aa 0.542913 1.092370 0.792123 0.071*
H1Ba 0.466430 1.092370 0.810699 0.071*
H1Ca 0.490657 1.092370 0.647178 0.071*
C2 0.500000 0.9124 (3) 0.750000 0.0289 (7)
C3 0.54704 (11) 0.8408 (2) 0.6809 (2) 0.0278 (5)
H3 0.579037 0.885868 0.632481 0.033*
C4 0.54817 (10) 0.7049 (2) 0.6812 (2) 0.0241 (5)
H4 0.581198 0.660691 0.635253 0.029*
C5 0.500000 0.6328 (3) 0.750000 0.0194 (6)
C6 0.54436 (10) 0.42012 (19) 0.6661 (2) 0.0222 (5)
H6A 0.556256 0.471462 0.580111 0.027*
H6B 0.520915 0.342290 0.625783 0.027*
C7 0.60772 (10) 0.3781 (2) 0.7621 (2) 0.0213 (5)
C8 0.65091 (10) 0.27674 (19) 0.6994 (2) 0.0225 (5)
C9 0.70461 (11) 0.2267 (2) 0.7929 (2) 0.0332 (6)
H9 0.713725 0.258651 0.891864 0.040*
C10 0.74458 (12) 0.1304 (2) 0.7410 (3) 0.0396 (6)
H10 0.780408 0.097503 0.804850 0.047*
C11 0.73155 (12) 0.0827 (2) 0.5946 (3) 0.0386 (6)
H11 0.758561 0.017679 0.559449 0.046*
C12 0.67846 (12) 0.1315 (2) 0.5005 (3) 0.0386 (6)
H12 0.669769 0.099266 0.401513 0.046*
C13 0.63794 (11) 0.2279 (2) 0.5518 (2) 0.0319 (5)
H13 0.602031 0.260045 0.487664 0.038*
N1 0.500000 0.4970 (2) 0.750000 0.0224 (5)
O1 0.62217 (7) 0.42488 (14) 0.88885 (15) 0.0305 (4)
  1. aOccupancy: 0.5.

Source of material

The mixture of α-acetophenone bromide (49.8 mg, 0.25 mmol), p-toluidine (10.7 mg, 0.1 mmol), anhydrous sodium carbonate (15.9 mg, 0.1 mmol), and ethanol solvent (10 ml) was added into a 50 ml three mouth flask. The reaction solution was heated and refluxed at 90 °C for 48 h, then cooled to room temperature and filtered. Subsequently, the filter residue was washed three times with ethanol and water and dried to obtain a powder with a yield of 64.5%. Moreover, put the powdered product into a single mouth bottle and add an appropriate amount of methanol to form a suspension by ultrasound. Afterward, the bottle placed in the oil bath is heated to boiling and then cooled to room temperature. After the reaction, the reaction solution was cooled to room temperature to obtain light yellow crystals.

Experimental details

Comment

N,N-diacyl aromatic amine has played a vital role as an intermediate in the synthesis of pesticides, medicine, fine chemicals and other fields [5], [6], [7]. The reason is that N,N-diacyl aromatic amines can synthesize 1,4-dihydropyrazine [8], piperidine [9], oxazine [10] and other heterocyclic compounds through dehydration and ring closure. So far, researchers have made many attempts to synthesize N,N-diacyl arylamine derivatives, using the heating reflux method [11], grinding method [12], ultrasonic- assisted method [13] and so on. Heating reflux has the advantages of low cost and easy operation, but is limited by simple equipment, resulting in slow reaction speed and low yield. The grinding method can greatly reduce the pressure on the environment caused by solvent discharge because it does not use any solvent. Unfortunately, this method is only suitable for the preparation of a small amount of products. Moreover, the ultrasonic-assisted method significantly shortens the reaction time and improves the yield of N,N-diacyl aromatic amines, but this technology has been developed slowly and needs further research before it can be used for industrialization. However, regardless of the advantages and disadvantages of these methods, the products obtained are basically amorphous powder with low purity. In addition, some products have specific requirements for the crystal form of the raw materials during the synthesis process. Therefore, in order to improve the purity of the product, we use the recrystallization method to quickly and easily convert the powdered product into a crystal.

The title molecule is located on a two fold axis (see the figure). The bond lengths and bond angles of the crystal structure are within a reasonable range. Meanwhile, there is no hydrogen bonding interaction between molecules. The torsion angles of N1–C6–C7–O1 and N1–C6–C7–C8 are 10.95° and −167.80° respectively. In addition, the dihedral angle between half of the benzene ring plane (C2–C3–C4–C5) and the other benzene ring plane (C8–C9–C10–C11–C12–C13) is 87.87(7)°.


Corresponding authors: Yongquan Xu, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, #26 Yuxiang Street, Yuhua District, Shijiazhuang, 050018, China; and Hebei Research Centre of Analysis & Testing, Hebei University of Science and Technology, #26 Yuxiang Street, Yuhua District, Shijiazhuang, 050018, China, E-mail: ; and Jingyu He, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, #26 Yuxiang Street, Yuhua District, Shijiazhuang, 050018, China; and College of Chemical Engineering, Shijiazhaung University, Shijiazhuang, 050035, China, E-mail:

Funding source: Hebei Province Science and Technology Support Program http://dx.doi.org/10.13039/501100005064

Award Identifier / Grant number: 16211412

Funding source: Hebei Nucleoside Antiviral Drug Technology Innovation Center

Award Identifier / Grant number: SG2021019

Funding source: the Doctoral Research Foundation of Shijiazhuang University

Award Identifier / Grant number: 20BS014

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by Hebei Province Science and Technology Support Program (No. 16211412); Hebei Nucleoside Antiviral Drug Technology Innovation Center (No. SG2021019) and the Doctoral Research Foundation of Shijiazhuang University (No. 20BS014).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Agilent Technologies. CrysAlisPro Software System (version 1.171.38.41r); Agilent Technologies UK Ltd: Oxford, UK, 2015.Suche in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Brandenburg, K. Diamond. Visual Crystal Information System (Ver. 0); Crystal Impact: Bonn, Germany, 2015.Suche in Google Scholar

5. Ravindran, G., Muthusubramanian, S., Selvaraj, S., Perumal, S. Synthesis of 1,2,3,4,5-pentasubstituted symmetrical pyrroles. Arkivoc 2007, 13, 23–27; https://doi.org/10.3998/ark.5550190.0008.d03.Suche in Google Scholar

6. Kaur, N. Review on the synthesis of six-membered N,N-heterocycles by microwave irradiation. Synth. Commun. 2015, 45, 1145–1182; https://doi.org/10.1080/00397911.2013.827208.Suche in Google Scholar

7. Yan, H., Tan, H., Xin, H. Synthesis and photochemical properties of 2,4,6-triaryl-4H-1,4-oxazines. Heterocycles 2014, 89, 359–373; https://doi.org/10.3987/com-13-12876.Suche in Google Scholar

8. Ravindran, G., Renganathan, N. G. Condensation of 3-aza-1,5-diketones with N-nucleophiles. Org. Commun. 2010, 3, 76–83.Suche in Google Scholar

9. Ravindran, G., Muthusubramanian, S., Perumal, S. A convenient one pot synthesis of highly substituted piperidines through a Michael addition-aldol cyclization sequence. Arkivoc 2008, 13, 57–64; https://doi.org/10.3998/ark.5550190.0009.d07.Suche in Google Scholar

10. Correia, J. Synthesis of 2,4,6-triphenyl-1,4-oxazine. J. Org. Chem. 1973, 38, 3433–3434; https://doi.org/10.1021/jo00959a051.Suche in Google Scholar

11. Fourrey, J.-L., Beauhaire, J., Yuan, C. W. Preparation of stable 1,4-dihydropyrazines. J. Chem. Soc., Perkin Trans. 1987, 1, 1841–1843; https://doi.org/10.1039/p19870001841.Suche in Google Scholar

12. Ravindran, G., Muthusubramanian, S., Selvaraj, S., Perumal, S. Synthesis of novel 3,5,7-triaryl-5,6-dihydro-4H-1,2,5-triazepines. J. Heterocycl. Chem. 2007, 44, 133–136; https://doi.org/10.1002/jhet.5570440121.Suche in Google Scholar

13. He, J. Y., Shi, L. X., Liu, S. J., Jia, P., Wang, J., Hu, R. S. Ultrasound-mediated synthesis of N,N-bis(phenacyl)aniline under solvent-free conditions. Monatsh. Chem. 2014, 145, 213–216; https://doi.org/10.1007/s00706-013-0978-7.Suche in Google Scholar

Received: 2021-10-09
Accepted: 2021-10-29
Published Online: 2021-11-10
Published in Print: 2022-02-23

© 2021 Yameng Li et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-3-yl)methylene)-3, 4-dihydronaphthalen-1(2H)-one, C17H15NO3
  4. Crystal structure of (E)-7-methoxy-2-((2-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1 (2H)-one, C18H17NO3
  5. The crystal structure of N 6,N 6′-di(pyridin-2-yl)-[2,2′-bipyridine]-6,6′-diamine, C20H16N6
  6. The crystal structure of {N 1,N 2-bis[2,4-dimethyl-6-(4-(tert-butyl)phenyl)(phenyl)methyl]acenaphthylene-1,2-diimino-κ2 N, N′}-dibromido-nickel(II) – dichloromethane(1/2), C64H64Br2Cl4N2Ni
  7. Synthesis and crystal structure of nonacarbonyltris[(2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-κ1 P)-2,2-dioxide]triruthenium(0) – acetonitrile (7/6), C25.71H32.57N9.86O15P3S3Ru3
  8. A new polymorph of 1-(4-nitrophenyl)-1H-benzimidazole (C13H9N3O2)
  9. The crystal structure of 2,2′-((1E,1′E)-(naphthalene-2,3 diylbis(azanylylidene)) bis(methanylylidene))bis(4-methylphenol), C26H22N2O2
  10. The crystal structure of bis(μ2-iodido)-bis(η6-benzene)-bis(iodido)-diosmium(II), C12H12I4Os2
  11. Redetermination of the crystal structure of bis{hydridotris(3,5-dimethylpyrazol-1-yl-κN 3)borato}copper(II), C30H44B2CuN12
  12. Crystal structure of (E)-3-((4-(tert-butyl)phenyl)thio)-4-hydroxypent-3-en-2-one, C15H20O2S
  13. Crystal structure of 2,2′-(p-tolylazanediyl)bis(1-phenylethan-1-one), C23H21NO2
  14. Redetermination of the crystal structure of the crystal sponge the poly[tetrakis(μ3-2,4,6-tris(pyridin-4-yl)-1,3,5-triazine)-dodecaiodidohexazinc(II) nitrobenzene solvate], C72H48I12N24Zn6⋅10(C6H5NO2)
  15. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(6-methylpyridin-2-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C44H45N5O2
  16. Crystal structure of (E)-7-fluoro-2-(3-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C17H12F2O1
  17. Crystal structure of tetrabutylammonium sulfanilate – 1-(diaminomethylene)thiourea (1/2)
  18. Crystal structure of [2,2′-{azanediyl)bis[(propane-3,1-diyl)(azanylylidene)methylylidene]} bis(3,5-dichlorophenolato)-κ2O,O′]-isothiocyanato-κN-iron(III), C21H19Cl4FeN4O2S
  19. Crystal structure of (4-chlorophenyl)(4-hydroxyphenyl)methanone, C13H9ClO2
  20. Crystal structure of 6,6′-((pentane-1,3-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dibromolphenolato-κ4 N,N′,O,O′)copper(II),) C19H16Br4CuN2O2
  21. Chlorido-(2,2′-(ethane-bis(5-methoxyphenolato))-κ4 N,N,O,O′)manganese(III) monohydrate, C19H18Cl2CuN2O2
  22. Crystal structure of 2,6-di-tert-butyl-4-(4-methoxybenzylidene)cyclohexa-2,5-dien-1-one, C22H28O2
  23. Crystal structure of [6,6′-(((2,2-dimethylpropane-1,3-diyl)bis(azanylylidene))bis(methanylylidene))bis(2-chlorophenolato)-κ4N,N′,O,O′]copper(II)
  24. Crystal structure of 2-chloro-3-((thiophen-2-ylmethyl)amino)naphthalene-1,4-dione, C30H20O4N2Cl2S2
  25. Crystal structure of bis{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl)borato-κN 3}manganese(II), C30H26B2F18MnN12
  26. Crystal structure of 1-(2-methylphenyl)-2-(2-methylbenzo[b]thienyl)-3,3,4,4,5,5-hexafluorocyclopent-ene, C21H14F6S
  27. Crystal structure of 2-(3-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  28. Crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium chloride – chloroform (1/1), C21H23Cl4I2N3
  29. Crystal structure of azido-k1 N-{6,6′-((((methylazanediyl)bis(propane-3,1-diyl))bis(azanylylidene))bis(methanylylidene))bis(2,4-dibromophenolato)k5 N,N′,N″,O,O′}cobalt(III)-methanol (1/1)), C21H23Br4CoN6O3
  30. The crystal structure of 2-(4-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  31. Crystal structure of 1,1′-(methane-1,1-diyl)bis(3-methyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C9H14F12N4P2
  32. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(pyren-1-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C54H48N4O2
  33. Crystal structure of poly[bis(μ2-2,6-bis(1-imidazoly)pyridine-κ2 N,N′)-bis(thiocyanato-κ1 N)copper(II)] dithiocyanate, C24H18CuN12S2
  34. Cones with a three-fold symmetry constructed from three hydrogen bonded theophyllinium cations that coat [FeCl4] anions in the crystal structure of tris(theophyllinium) bis(tetrachloridoferrate(III)) chloride trihydrate, C21H33Cl9Fe2N12O9
  35. Crystal structure of 14-O-[(4-(4-hydroxypiperidine-1-yl)-6-methylpyrimidine-2-yl)thioacetyl]-mutilin monohydrate, C32H49N3O6S
  36. The crystal structure of (E)-3-chloro-2-(2-(4-methylbenzylidene)hydrazinyl)pyridine, C13H12ClN3
  37. The crystal structure of 4-phenyl-4-[2-(pyridine-4-carbonyl)hydrazinylidene]butanoic acid, C16H15N3O3
  38. The crystal structure of 6-amino-5-carboxypyridin-1-ium pentaiodide monohydrate C6H9I5N2O3
  39. Crystal structure of bis(μ3-oxido)-bis(μ2-2-formylbenzoato-k2O:O′)-bis(2-(dimethoxymethyl)-benzoato-κO)-oktakismethyl-tetratin(IV)
  40. Crystal structure of 2-((E)-(((E)-2-hydroxy-4-methylbenzylidene) hydrazineylidene)methyl)-4-methylphenol, C16H16N2O2
  41. Crystal structure of (E)-amino(2-((5-methylfuran-2-yl)methylene)hydrazinyl) methaniminium nitrate monohydrate, C14H26N10O10
  42. The crystal structure of N′-(2-chloro-6-hydroxybenzylidene)thiophene-2-carbohydrazide monohydrate, C12H11ClN2O3S
  43. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)zinc(II)], C64H44Br4N8O8Zn2
  44. The crystal structure of catena-poly[(1-(4-carboxybenzyl)pyridin-1-ium-4-carboxylato-κ1O)-(μ2-oxalato-κ4 O:O′:O″:O‴)dioxidouranium(VI)], C16H11NO10U
  45. Crystal structure of 3-allyl-4-(2-bromoethyl)-5-(4-methoxyphenyl)-2-phenylfuran, C22H21BrO2
  46. Halogen bonds in the crystal structure of 4,3′:5′,4″-terpyridine — 1,3-diiodotetrafluorobenzene (1/1), C21H11F4I2N3
  47. Crystal structure of 2-(1H-indol-3-yl)ethan-1-aminium 2-(4-acetylphenoxy)acetate, C20H22N2O4
  48. Chalcogen bonds in the crystal structure of 4,7-dibromo-2,1,3-benzoselenadiazole, C6H2Br2N2Se
  49. The crystal structure of 1,4-bis((1H-benzimidazol-2-yl)methyl)-piperazine-2,5-dione dihydrate, C20H22N6O4
  50. The crystal structure of C19H20O8
  51. The crystal structure of KNa3Te8O18·5H2O exhibiting a 2[Te4O9]2− layer
  52. Erratum
  53. Erratum to: Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0388/html
Button zum nach oben scrollen