Home Crystal structure of bis{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl)borato-κN 3}manganese(II), C30H26B2F18MnN12
Article Open Access

Crystal structure of bis{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl)borato-κN 3}manganese(II), C30H26B2F18MnN12

  • Riko Ikarugi , Kiyoshi Fujisawa ORCID logo EMAIL logo and Edward R. T. Tiekink ORCID logo EMAIL logo
Published/Copyright: November 17, 2021

Abstract

C30H26B2F18MnN12, triclinic, P 1 (no. 2), a = 10.5322(3) Å, b = 10.6475(4) Å, c = 10.9890(4) Å, α = 111.755(3)°, β = 99.100(2)°, γ = 112.740(3)°, V = 988.07(7) Å3, Z = 1, R gt (F) = 0.0338, wR ref (F 2) = 0.0907, T = 178 K.

CCDC no.: 2120687

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless prism
Size: 0.15 × 0.07 × 0.07 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.46 mm−1
Diffractometer, scan mode: Rigaku XtaLAB P200, ω
θ max, completeness: 29.8°, >99%
N(hkl)measured, N(hkl)unique, R int: 33,278, 5266, 0.055
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 4626
N(param)refined: 289
Programs: CrysAlisPRO [1], SIR2014 [2], SHELX [3], WinGX/ORTEP [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Mn 0.5 0.5 0.5 0.01844 (8)
F1 0.60801 (11) 0.71851 (11) 0.85888 (9) 0.0374 (2)
F2 0.67936 (11) 0.95268 (11) 0.90127 (10) 0.0433 (2)
F3 0.51403 (12) 0.84652 (12) 0.97520 (9) 0.0425 (2)
F4 0.78545 (10) 0.59124 (12) 0.37393 (11) 0.0403 (2)
F5 0.84302 (11) 0.72809 (13) 0.26869 (13) 0.0509 (3)
F6 0.69270 (12) 0.48517 (13) 0.15174 (11) 0.0489 (3)
F7 0.30670 (10) 0.10565 (10) 0.38839 (11) 0.0394 (2)
F8 0.10751 (12) 0.06504 (12) 0.43182 (12) 0.0465 (3)
F9 0.09797 (11) −0.06723 (10) 0.22527 (11) 0.0457 (3)
N11 0.42836 (11) 0.67497 (12) 0.60777 (11) 0.0206 (2)
N12 0.31723 (11) 0.66981 (13) 0.51944 (11) 0.0214 (2)
N21 0.51569 (11) 0.59428 (12) 0.34249 (11) 0.0208 (2)
N22 0.41056 (12) 0.63583 (13) 0.31681 (11) 0.0216 (2)
N31 0.25589 (11) 0.33975 (12) 0.36216 (11) 0.0218 (2)
N32 0.19692 (11) 0.40706 (13) 0.30356 (11) 0.0223 (2)
C1 0.56021 (16) 0.81846 (16) 0.86567 (14) 0.0286 (3)
C2 0.44229 (15) 0.76831 (15) 0.73625 (14) 0.0247 (3)
C3 0.34203 (18) 0.8224 (2) 0.73256 (16) 0.0373 (4)
H3 0.329747 0.889214 0.809885 0.045*
C4 0.26415 (17) 0.75839 (19) 0.59259 (16) 0.0346 (3)
C5 0.1424 (3) 0.7777 (3) 0.5260 (2) 0.0685 (7)
H5A 0.124316 0.848799 0.598896 0.103*
H5B 0.052787 0.677053 0.472567 0.103*
H5C 0.170334 0.819961 0.463073 0.103*
C6 0.73202 (16) 0.61327 (18) 0.26985 (16) 0.0304 (3)
C7 0.60701 (15) 0.64516 (16) 0.27949 (14) 0.0250 (3)
C8 0.56450 (19) 0.7197 (2) 0.21522 (19) 0.0389 (4)
H8 0.611906 0.766133 0.164661 0.047*
C9 0.43846 (18) 0.7118 (2) 0.24071 (18) 0.0351 (3)
C10 0.3439 (3) 0.7737 (3) 0.1975 (3) 0.0628 (7)
H10A 0.385423 0.826195 0.145310 0.094*
H10B 0.339972 0.847296 0.280923 0.094*
H10C 0.244290 0.688148 0.137939 0.094*
C11 0.16908 (16) 0.07481 (16) 0.33558 (17) 0.0313 (3)
C12 0.15652 (14) 0.18939 (15) 0.29447 (15) 0.0263 (3)
C13 0.03585 (16) 0.15804 (17) 0.19204 (16) 0.0347 (3)
H13 −0.048269 0.060414 0.129803 0.042*
C14 0.06480 (16) 0.29914 (17) 0.20045 (15) 0.0316 (3)
C15 −0.0263 (2) 0.3365 (2) 0.1154 (2) 0.0529 (5)
H15A −0.115493 0.241067 0.045501 0.079*
H15B 0.030551 0.385493 0.067998 0.079*
H15C −0.053518 0.407377 0.176997 0.079*
B1 0.27407 (15) 0.58382 (17) 0.35890 (15) 0.0208 (3)
H1 0.195363 0.613257 0.310404 0.025*

Source of material

A solution of Na{HB(3-CF3-5-Mepz)3} (250 mg, 0.519 mmol) [5] in dichloromethane (10 mL) was added slowly to a solution of MnCl2·4H2O (103 mg, 0.520 mmol) in methanol (10 mL) over a period of 10 min. After the mixture was stirred for 90 min, degassed dichloromethane (20 mL) was added to the reaction mixture and stirring continued for another 90 min. Then, the solvent was evaporated under vacuum and the resulting solid was extracted with dichloromethane (40 mL). The filtrate was evaporated under vacuum and a white powder obtained. Colourless crystals of [Mn{HB(3-CF3-5-Mepz)3}2] were obtained by crystallisation from its dichloromethane solution (20 mL) held at 243 K. Yield: 28% (139 mg, 0.143 mmol). Anal. Calcd. for C30H26B2F18MnN12. C, 37.03; H, 2.69; N, 17.27%. Found: C; 37.00, H; 2.84, N; 17.09%. IR (JASCO FT/IR-550 spectrophotometer, KBr; cm−1): 2941 (s) ν(C–H), 2584 (s) ν(B–H), 1494 (s) ν(C=N), 1465 (s) ν(C=N).

Experimental details

The C- and B-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å & B–H = 1.12 Å) and refined as riding with U iso(H) = 1.2–1.5U eq(C) and 1.2U eq(B). Owing to poor agreement, four reflections, i.e. (1 0 0), (−2 −6 4), (−4 7 0) and (−2 −3 1), were omitted from the final cycles of refinement.

Comment

Hydridotris(alkyl substituted-1-pyrazolyl)borates are well-known in inorganic and coordination chemistry [6, 7]. Among the alkyl groups in these species, the trifluoromethyl group has unique electronegativity, hydrophobicity, metabolic stability and bioavailability. With these attributes, the –CF3 substituent is widely found in organic molecules for use in medicine, agrochemicals and organic materials [8]; the development of synthetic methods for the inclusion of –CF3 in molecules is therefore, an active area of research in modern organic chemistry [9], [10], [11]. In this connection, investigations have been undertaken on hydridotris(3-trifluoromethyl-5-methylpyrazol-1-yl)borate, hereafter {HB(3-CF3-5-Mepz)3} as a ligand towards various metal centres. For example, the synthesis and characterisation of copper(I) carbonyl and triphenylphosphane complexes such as [Cu(CO){HB(3-CF3-5-Mepz)3}] and [(Ph3P)Cu{HB(3-CF3-5-Mepz)3}] have been described [5]. The –CF3 group is not particularly sterically bulky so that it can form the coordinatively saturated, six-coordinate copper(II) complex, formulated as [Cu{HB(3-CF3-5-Mepz)3}2] [12]. In the present contribution, [Mn{HB(3-CF3-5-Mepz)3}2] was synthesised and characterised by X-ray crystallography.

The molecular structure of [Mn{HB(3-CF3-5-Mepz)3}2] is shown in the figure (35% displacement ellipsoids). The manganese(II) centre is located on a centre of inversion and is coordinated by the six nitrogen atoms derived from two {HB(3-CF3-5-Mepz)3} anions. Globally, the methyl groups are orientated to the either end of the molecule (in the vicinity of the boron termini) and the –CF3 groups define a perimeter about the manganese centre. When viewed down the HB⃛ Mn⃛BH axis, the sequence of dihedral angles between the planes of the N11-, N21- and N31-pyrazol-1-yl rings are 60.90(10), 60.61(10) and 65.86(9)°, respectively. The Mn–N11, N21 and N31 bond lengths lie in a narrow range, i.e. from Mn–N11 = 2.2751(11) Å to Mn–N21 = 2.2981(11) Å. This contrasts the experimental observations for [Cu{HB(3-CF3-5-Mepz)3}2] which deviates significantly from three-fold symmetry, as manifested in the range of Cu–N bond lengths, i.e. 2.055(8)–2.437(8) Å. The formation of these bis-chelate complexes with {HB(3-CF3-5-Mepz)3} indicate less steric hindrance exerted by –CF3 compared with the isopropyl group, as bis-chelates with hydridotris(3,5-diisopropylpyrazol-1-yl)borate are not observed [13, 14]. Further to this point, the title complex was also observed even when the reaction ratio was one metal:one ligand.

Magnetic properties were not conducted in the present study; typical would be high-spin (S = 5/2) or low-spin (S = 1/2) states. However, based on a comparison of Mn–N bond lengths a safe conclusion may be made. Thus, the independent Mn–N bond lengths of 2.310(3), 2.329(3) and 2.310(3) Å in [Mn{HB(3-Phpz)3}], where {HB(3-Phpz)3} = hydridotris(3-phenylpyrazol-1-yl)borate [15], and 2.256(3), 2.268(3) and 2.254(3) Å in [Mn{HB(3-Mepz)3}], where {HB(3-Mepz)3} = hydridotris(3methylpyrazol-1-yl)borate [16] are close to those of [Mn{HB(3-CF3-5-Mepz)3}2]. Therefore, it can be concluded that the latter complex is in the high-spin state, at least in the crystalline form.

Notable in the molecular packing, are C–H⃛F interactions, which extend in three-dimensions, with the shortest and most directional of these being a methyl-C–H⃛F contact [C10–H10a⃛F3 i : H10a⃛F3 i  = 2.50 Å, C10⃛F3 i  = 3.390(3) Å with angle at H10a = 151° for symmetry operation (i): x, y, −1+z]. Within this assembly, F⃛π(pyrazol-1-yl) interactions with the shortest of these involving the N31-ring [C1–F1⃛Cg(N31-ring) ii  = 3.1798(14) Å with angle at F1 = 119.26(10)° for (ii): 1−x, 1−y, 1−z]. The predominance of the F ⃛ H interactions was verified in an analysis of the calculated Hirshfeld surfaces and of the full and delineated two-dimensional fingerprint plots conducted following established protocols [17] employing Crystal Explorer 17 [18]. This analysis revealed 60.0% of all surface contacts on the Hirshfeld surface were of the type F⃛H/H⃛F. Next most prominent were H⃛H contacts, at 23.3%, followed by C⃛H/H⃛C [7.6%] and F⃛F [7.3%] contacts. Minor contributions to the Hirshfeld surface are due to F⃛C/C⃛F [1.5%] and N⃛H/H⃛N [0.3%] contacts.


Corresponding author: Edward R. T. Tiekink, Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, E-mail: ; and Kiyoshi Fujisawa, Department of Chemistry, Ibaraki University, Mito, Ibaraki 310-8512, Japan, E-mail:

Funding source: Sunway University

Award Identifier / Grant number: GRTIN-IRG-01-2021

Acknowledgements

KF is grateful for support from the joint usage/research programme “Artificial Photosynthesis” based at Osaka City University.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was financially supported by Sunway University Sdn Bhd Grant No. GRTIN-IRG-01-2021.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku Oxford Diffraction. CrysAlisPRO; Rigaku Corporation: Oxford, UK, 2015.Search in Google Scholar

2. Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. Crystal structure determination and refinement via SIR2014. J. Appl. Crystallogr. 2015, 48, 306–309; https://doi.org/10.1107/s1600576715001132.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

5. Fujisawa, K., Yoshida, M., Miyashita, Y., Okamoto, K. Copper(I) complexes with fluorinated hydrotris(pyrazolyl)borate: influence of electronic effects on their structure, physicochemical properties, and reactivity. Polyhedron 2009, 28, 1447–1454; https://doi.org/10.1016/j.poly.2009.03.006.Search in Google Scholar

6. Trofimenko, S. Scorpionates: The Coordination Chemistry of Polypyrazolyborate Ligands; Imperial College Press: London, 1999.10.1142/p148Search in Google Scholar

7. Pettinari, C. Scorpionates II: Chelating Borate Ligands; Imperial College Press: London, 2008.10.1142/p527Search in Google Scholar

8. Müller, K., Faeh, C., Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. Science 2007, 317, 1881–1886; https://doi.org/10.1126/science.1131943.Search in Google Scholar

9. Alonso, C., de Marigorta, E. M., Rubiales, G., Palacios, F. Carbon trifluoromethylation reactions of hydrocarbon derivatives and heteroarenes. Chem. Rev. 2015, 115, 1847–1935; https://doi.org/10.1021/cr500368h.Search in Google Scholar

10. Guo, S., AbuSalim, D. I., Cook, S. P. 1,2-(Bis)trifluoromethylation of alkynes: a one-step reaction to install an underutilized functional group. Angew. Chem. Int. Ed. 2019, 58, 11704–11708; https://doi.org/10.1002/anie.201905247.Search in Google Scholar

11. Li, C., Xue, L., Zhou, J., Zhao, Y., Han, G., Hou, J., Song, Y., Liu, Y. Copper-catalyzed trifluoromethylation of ynones coupled with dearomatizing spirocyclization of indoles: access to CF3-containing spiro[cyclopentane-1,3′-indole]. Org. Lett. 2020, 22, 3291–3296; https://doi.org/10.1021/acs.orglett.0c01097.Search in Google Scholar

12. Hu, Z., George, G. M., Gorun, S. M. Fluorine encapsulation and stabilization of biologically relevant low-valence copper-oxo cores. Inorg. Chem. 2001, 40, 4812–4813; https://doi.org/10.1021/ic015529r.Search in Google Scholar

13. Nabika, M., Kiuchi, S., Miyatake, T., Fujisawa, K. Influences of steric bulkiness in hydrotris(pyrazolyl)borate ligands on ethylene polymerization reaction. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 5720–5727; https://doi.org/10.1002/pola.23616.Search in Google Scholar

14. Kitajima, N., Fujisawa, K., Fujimoto, C., Moro-oka, Y., Hashimoto, S., Kitagawa, T., Toriumi, K., Tatsumi, K., Nakamura, A. A new model for dioxygen binding in hemocyanin. synthesis, characterization, and molecular structure of the μ-η2:η2 peroxo dinuclear copper(II) complexes, [Cu(HB(3,5-R2pz)3)2](O2) (R = i-Pr and Ph). J. Am. Chem. Soc. 1992, 114, 1277–1291; https://doi.org/10.1021/ja00030a025.Search in Google Scholar

15. Eichhorn, D. M., Armstrong, W. H. M{hydrotris(3-phenylprazol-1-yl)borate}: sterically encumbered iron(II) and manganese(II) complexes. Inorg. Chem. 1990, 29, 3607–3612; https://doi.org/10.1021/ic00343a058.Search in Google Scholar

16. Kitano, T., Sohrin, Y., Hata, Y., Wada, H., Hori, T., Ueda, K. Improved selectivity for Cu(II) of methyl-substituted poly(pyrazolyl)borates, [HB(3-Mepz)3]− and [B(3-Mepz)4]−, through steric contact. Bull. Chem. Soc. Jpn. 2003, 76, 1365–1373; https://doi.org/10.1246/bcsj.76.1365.Search in Google Scholar

17. Tan, S. L., Jotani, M. M., Tiekink, E. R. T. Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. 2019, E75, 308–318; https://doi.org/10.1107/s2056989019001129.Search in Google Scholar

18. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., Spackman, M. A. Crystal Explorer (v17); The University of Western Australia: Australia, 2017.Search in Google Scholar

Received: 2021-10-13
Accepted: 2021-11-08
Published Online: 2021-11-17
Published in Print: 2022-02-23

© 2021 Riko Ikarugi et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-3-yl)methylene)-3, 4-dihydronaphthalen-1(2H)-one, C17H15NO3
  4. Crystal structure of (E)-7-methoxy-2-((2-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1 (2H)-one, C18H17NO3
  5. The crystal structure of N 6,N 6′-di(pyridin-2-yl)-[2,2′-bipyridine]-6,6′-diamine, C20H16N6
  6. The crystal structure of {N 1,N 2-bis[2,4-dimethyl-6-(4-(tert-butyl)phenyl)(phenyl)methyl]acenaphthylene-1,2-diimino-κ2 N, N′}-dibromido-nickel(II) – dichloromethane(1/2), C64H64Br2Cl4N2Ni
  7. Synthesis and crystal structure of nonacarbonyltris[(2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-κ1 P)-2,2-dioxide]triruthenium(0) – acetonitrile (7/6), C25.71H32.57N9.86O15P3S3Ru3
  8. A new polymorph of 1-(4-nitrophenyl)-1H-benzimidazole (C13H9N3O2)
  9. The crystal structure of 2,2′-((1E,1′E)-(naphthalene-2,3 diylbis(azanylylidene)) bis(methanylylidene))bis(4-methylphenol), C26H22N2O2
  10. The crystal structure of bis(μ2-iodido)-bis(η6-benzene)-bis(iodido)-diosmium(II), C12H12I4Os2
  11. Redetermination of the crystal structure of bis{hydridotris(3,5-dimethylpyrazol-1-yl-κN 3)borato}copper(II), C30H44B2CuN12
  12. Crystal structure of (E)-3-((4-(tert-butyl)phenyl)thio)-4-hydroxypent-3-en-2-one, C15H20O2S
  13. Crystal structure of 2,2′-(p-tolylazanediyl)bis(1-phenylethan-1-one), C23H21NO2
  14. Redetermination of the crystal structure of the crystal sponge the poly[tetrakis(μ3-2,4,6-tris(pyridin-4-yl)-1,3,5-triazine)-dodecaiodidohexazinc(II) nitrobenzene solvate], C72H48I12N24Zn6⋅10(C6H5NO2)
  15. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(6-methylpyridin-2-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C44H45N5O2
  16. Crystal structure of (E)-7-fluoro-2-(3-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C17H12F2O1
  17. Crystal structure of tetrabutylammonium sulfanilate – 1-(diaminomethylene)thiourea (1/2)
  18. Crystal structure of [2,2′-{azanediyl)bis[(propane-3,1-diyl)(azanylylidene)methylylidene]} bis(3,5-dichlorophenolato)-κ2O,O′]-isothiocyanato-κN-iron(III), C21H19Cl4FeN4O2S
  19. Crystal structure of (4-chlorophenyl)(4-hydroxyphenyl)methanone, C13H9ClO2
  20. Crystal structure of 6,6′-((pentane-1,3-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dibromolphenolato-κ4 N,N′,O,O′)copper(II),) C19H16Br4CuN2O2
  21. Chlorido-(2,2′-(ethane-bis(5-methoxyphenolato))-κ4 N,N,O,O′)manganese(III) monohydrate, C19H18Cl2CuN2O2
  22. Crystal structure of 2,6-di-tert-butyl-4-(4-methoxybenzylidene)cyclohexa-2,5-dien-1-one, C22H28O2
  23. Crystal structure of [6,6′-(((2,2-dimethylpropane-1,3-diyl)bis(azanylylidene))bis(methanylylidene))bis(2-chlorophenolato)-κ4N,N′,O,O′]copper(II)
  24. Crystal structure of 2-chloro-3-((thiophen-2-ylmethyl)amino)naphthalene-1,4-dione, C30H20O4N2Cl2S2
  25. Crystal structure of bis{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl)borato-κN 3}manganese(II), C30H26B2F18MnN12
  26. Crystal structure of 1-(2-methylphenyl)-2-(2-methylbenzo[b]thienyl)-3,3,4,4,5,5-hexafluorocyclopent-ene, C21H14F6S
  27. Crystal structure of 2-(3-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  28. Crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium chloride – chloroform (1/1), C21H23Cl4I2N3
  29. Crystal structure of azido-k1 N-{6,6′-((((methylazanediyl)bis(propane-3,1-diyl))bis(azanylylidene))bis(methanylylidene))bis(2,4-dibromophenolato)k5 N,N′,N″,O,O′}cobalt(III)-methanol (1/1)), C21H23Br4CoN6O3
  30. The crystal structure of 2-(4-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  31. Crystal structure of 1,1′-(methane-1,1-diyl)bis(3-methyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C9H14F12N4P2
  32. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(pyren-1-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C54H48N4O2
  33. Crystal structure of poly[bis(μ2-2,6-bis(1-imidazoly)pyridine-κ2 N,N′)-bis(thiocyanato-κ1 N)copper(II)] dithiocyanate, C24H18CuN12S2
  34. Cones with a three-fold symmetry constructed from three hydrogen bonded theophyllinium cations that coat [FeCl4] anions in the crystal structure of tris(theophyllinium) bis(tetrachloridoferrate(III)) chloride trihydrate, C21H33Cl9Fe2N12O9
  35. Crystal structure of 14-O-[(4-(4-hydroxypiperidine-1-yl)-6-methylpyrimidine-2-yl)thioacetyl]-mutilin monohydrate, C32H49N3O6S
  36. The crystal structure of (E)-3-chloro-2-(2-(4-methylbenzylidene)hydrazinyl)pyridine, C13H12ClN3
  37. The crystal structure of 4-phenyl-4-[2-(pyridine-4-carbonyl)hydrazinylidene]butanoic acid, C16H15N3O3
  38. The crystal structure of 6-amino-5-carboxypyridin-1-ium pentaiodide monohydrate C6H9I5N2O3
  39. Crystal structure of bis(μ3-oxido)-bis(μ2-2-formylbenzoato-k2O:O′)-bis(2-(dimethoxymethyl)-benzoato-κO)-oktakismethyl-tetratin(IV)
  40. Crystal structure of 2-((E)-(((E)-2-hydroxy-4-methylbenzylidene) hydrazineylidene)methyl)-4-methylphenol, C16H16N2O2
  41. Crystal structure of (E)-amino(2-((5-methylfuran-2-yl)methylene)hydrazinyl) methaniminium nitrate monohydrate, C14H26N10O10
  42. The crystal structure of N′-(2-chloro-6-hydroxybenzylidene)thiophene-2-carbohydrazide monohydrate, C12H11ClN2O3S
  43. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)zinc(II)], C64H44Br4N8O8Zn2
  44. The crystal structure of catena-poly[(1-(4-carboxybenzyl)pyridin-1-ium-4-carboxylato-κ1O)-(μ2-oxalato-κ4 O:O′:O″:O‴)dioxidouranium(VI)], C16H11NO10U
  45. Crystal structure of 3-allyl-4-(2-bromoethyl)-5-(4-methoxyphenyl)-2-phenylfuran, C22H21BrO2
  46. Halogen bonds in the crystal structure of 4,3′:5′,4″-terpyridine — 1,3-diiodotetrafluorobenzene (1/1), C21H11F4I2N3
  47. Crystal structure of 2-(1H-indol-3-yl)ethan-1-aminium 2-(4-acetylphenoxy)acetate, C20H22N2O4
  48. Chalcogen bonds in the crystal structure of 4,7-dibromo-2,1,3-benzoselenadiazole, C6H2Br2N2Se
  49. The crystal structure of 1,4-bis((1H-benzimidazol-2-yl)methyl)-piperazine-2,5-dione dihydrate, C20H22N6O4
  50. The crystal structure of C19H20O8
  51. The crystal structure of KNa3Te8O18·5H2O exhibiting a 2[Te4O9]2− layer
  52. Erratum
  53. Erratum to: Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0395/html
Scroll to top button