Startseite Crystal structure of 1-(2-methylphenyl)-2-(2-methylbenzo[b]thienyl)-3,3,4,4,5,5-hexafluorocyclopent-ene, C21H14F6S
Artikel Open Access

Crystal structure of 1-(2-methylphenyl)-2-(2-methylbenzo[b]thienyl)-3,3,4,4,5,5-hexafluorocyclopent-ene, C21H14F6S

  • Duohua Jiang ORCID logo EMAIL logo
Veröffentlicht/Copyright: 23. November 2021

Abstract

C21H14F6S, monclinic, P21/n (no. 14), a = 9.9344(11) Å, b = 16.7106(18) Å, c = 11.6207(13) Å, β = 101.0080(10)°, V = 1893.7(4) Å3, Z = 4, R gt (F) = 0.0491, wR ref (F 2) = 0.1541, T = 296(2) K.

CCDC no.: 2120680

The molecular structure is shown in Figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.36 × 0.32 × 0.18 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.23 mm−1
Diffractometer, scan mode: φ and ω
θ max, completeness: 25.0°, >99%
N(hkl)measured, N(hkl)unique, R int: 14,820, 3318, 0.016
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2740
N(param)refined: 301
Programs: CrysAlisPRO [1], SHELX [2], [3], [4], Bruker [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.2919 (4) 0.2165 (2) 0.1952 (3) 0.0960 (10)
H1 0.2062 0.2353 0.2038 0.115*
C2 0.2985 (3) 0.1503 (2) 0.1314 (3) 0.0954 (10)
H2 0.2189 0.1237 0.0964 0.115*
C3 0.4235 (2) 0.12272 (18) 0.1187 (3) 0.0730 (7)
H3 0.4290 0.0767 0.0747 0.088*
C4 0.5460 (2) 0.16286 (13) 0.17137 (18) 0.0504 (5)
C5 0.5393 (3) 0.23013 (16) 0.2357 (2) 0.0709 (7)
C6 0.6623 (4) 0.2745 (2) 0.2896 (4) 0.1120 (12)
H6A 0.7134 0.2438 0.3530 0.168*
H6B 0.6360 0.3247 0.3191 0.168*
H6C 0.7181 0.2842 0.2321 0.168*
C7 0.4050 (4) 0.2573 (2) 0.2476 (3) 0.0901 (8)
H7 0.3959 0.3029 0.2914 0.108*
C8 0.6773 (2) 0.12904 (11) 0.14905 (16) 0.0416 (4)
C9 0.7122 (2) 0.13644 (15) 0.0291 (2) 0.0576 (6)
C10 0.8550 (3) 0.10295 (18) 0.0399 (2) 0.0726 (8)
C11 0.8831 (3) 0.05995 (15) 0.1578 (2) 0.0621 (6)
C12 0.77315 (19) 0.08805 (11) 0.22065 (17) 0.0427 (4)
C13 0.7749 (2) 0.06330 (12) 0.34280 (17) 0.0462 (5)
C14 0.8585 (2) 0.09500 (15) 0.4377 (2) 0.0612 (6)
C15 0.9618 (3) 0.16077 (19) 0.4447 (3) 0.0870 (9)
H15A 0.9623 0.1809 0.3674 0.131*
H15B 1.0511 0.1404 0.4782 0.131*
H15C 0.9383 0.2032 0.4930 0.131*
C16 0.6903 (2) −0.00101 (13) 0.37175 (18) 0.0499 (5)
C17 0.7130 (3) −0.01466 (15) 0.4928 (2) 0.0646 (6)
C18 0.6404 (4) −0.07443 (19) 0.5400 (3) 0.0872 (10)
H18 0.6546 −0.0829 0.6205 0.105*
C19 0.5491 (4) −0.11969 (19) 0.4655 (3) 0.0927 (10)
H19 0.5012 −0.1599 0.4958 0.111*
C20 0.5258 (4) −0.10737 (18) 0.3464 (3) 0.0859 (9)
H20 0.4621 −0.1390 0.2975 0.103*
C21 0.5956 (3) −0.04866 (14) 0.2984 (2) 0.0624 (6)
H21 0.5796 −0.0410 0.2177 0.075*
F1a 0.6945 (6) 0.2072 (4) −0.0196 (5) 0.0827 (17)
F1′b 0.743 (2) 0.2217 (9) 0.0215 (17) 0.112 (5)
F2a 0.6287 (10) 0.0853 (4) −0.0493 (7) 0.0920 (17)
F2′b 0.621 (2) 0.1239 (17) −0.0543 (15) 0.108 (8)
F3a 0.9418 (4) 0.1714 (3) 0.0556 (6) 0.0972 (16)
F3′b 0.9435 (12) 0.123 (2) −0.0027 (17) 0.147 (11)
F4a 0.8823 (6) 0.0666 (4) −0.0500 (4) 0.1025 (19)
F4′b 0.810 (3) 0.0245 (12) −0.0296 (16) 0.166 (10)
F5a 1.0077 (5) 0.0654 (4) 0.2135 (6) 0.098 (2)
F5′b 1.0104 (13) 0.0901 (14) 0.2141 (17) 0.121 (6)
F6 0.8716 (3) −0.01986 (10) 0.1372 (2) 0.1201 (8)
S1 0.83501 (9) 0.05003 (5) 0.56699 (5) 0.0820 (3)
  1. aOccupancy: 0.722 (14), bOccupancy: 0.278 (14).

Source of material

Based on the literature method [6], the title compound was synthesized in 41.4% yield. The title compound crystallized from hexane-dichloromethane co-solvent at room temperature.

Experimental details

The hydrogen atoms were located by geometrically calculations, and their positions and thermal parameters were fixed during the structure refinement. The occupancies of the disorder fluorine atoms at the central cyclopentene ring are refined to a 0.722(14):0.278(14) ratio for F1:F1′, F2:F2′, F3:F3′, F4:F4′, and F5:F5′. All H atoms attached to C were fixed geometrically and treated as riding with C–H = 0.96 Å (methyl) or 0.93 Å (phenzyl and thienyl) with U iso(H) = 1.2U eq (ethyl and thienyl) or U iso(H) = 1.5U eq (methyl).

Comment

It is well known that multifunctional materials have been vastly investigated due to their promising applications in special fields. Photochromic diarylethene compounds with photoresponse characteristics are a class of multifunctional materials that can undergo fatigueresistant electrocyclization and cycloreversion between two stable isomers. The difference in their electronic or geometric structures between open- and closed-ring isomers have attracted significant interest for their distinctive performance which can be used in the fields of optical memories and switches [7], solar energy [8], gas separation [9], sensors [10, 11], and so on. However, the reports focusing on the photochromic diarylethene systems is composed of five-membered heterocyclic rings or the combination of five-membered aryl ring [12, 13]. Photochromic diarylethene compounds bearing both five- and six-membered moieties have rarely been investigated on the structure-activity relationship. For a broad understanding of the structure-activity relationship of photochromic diarylethene compounds a new 3,3,4,4,5,5-hexafluorocyclopent-ene derivative was synthesized and its crystal structure was analyzed in detail.

The molecular structure of the title compound is shown in the Figure. In the perfluorocyclopentene ring, the benzothienyl and phenyl rings are linked by the C12=C8 double bond (1.329(3) Å), which is shorter than the formal single bond (such as C12–C11, 1.501(3) Å and C8–C4, 1.489(3) Å). The molecule includes three kinds of planar rings and they can form three dihedral angles. The dihedral angle between the perfluorocyclopentene ring and the adjacent benzothiophene ring was 105.7°. The dihedral angles between the perfluorocyclopentene ring and the adjacent six-membered phenyl ring was 104.5°. And the dihedral angle between the benzothiophene ring and the phenyl ring is 77.38°. Bond lengths are all in the expected ranges [12, 14, 15].

It is found that the molecule is packed in a parallel conformation, and the intramolecular distance between the two reactive carbon atoms (C5⃛C14) was 4.222(2) Å [16, 17]. The former researcher concluded that in the case that the distance of reactive carbon atoms is larger than 4.2 Å, its crystal cannot display color change upon irradiation by UV light [16]. When the colorless crystals were dissolved in hexane, irradiation with UV irradiation, the colorless solution did not changed its color. Compared with the other photochromic diarylethene [7, 18], the anti-parallel formation and the distance of reactive carbon atoms play a very important role in triggering the process of photochromism.


Corresponding author: Duohua Jiang, Electronic and Information Engineering, Nanchang Normal College of Applied Technology, 1599 Ming Yueshan Avenue, Nanchang 330038, People’s Republic of China, E-mail:

Funding source: Nanchang Normal College of Applied Technology

Award Identifier / Grant number: 201802153216

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by Nanchang Normal College of Applied Technology (Cultivating Model about Practical Ability of Innovation and Entrepreneurship of College Students, 201802153216).

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

1. Oxford Diffraction. CrysAlisPRO; Oxford Diffraction Ltd: Abingdon, Oxfordshire, England, 2006.Suche in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Sheldrick, G. M. SADABS; University of Göttingen: Germany, 2014.Suche in Google Scholar

5. Bruker. APEX2, SADABS, SAINT and SHELXTL; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Suche in Google Scholar

6. Fan, C. B., Pu, S. Z., Liu, G. Synthesis, crystal structure and photochromism of new diarylethenes with a benzene moiety. Spectrochim. Acta, Part A 2014, 131, 235–242; https://doi.org/10.1016/j.saa.2014.04.131.Suche in Google Scholar

7. Irie, M., Fukaminato, T., Matsuda, K., Kobatake, S. Photochromism of diarylethenes molecules and crystals: memories, switches, and actuators. Chem. Rev. 2014, 114, 12174–12277; https://doi.org/10.1021/cr500249p.Suche in Google Scholar

8. Fan, C. B., Yang, P., Wang, X. M., Liu, G., Jiang, X. X., Chen, H. Z., Tao, X. T., Wang, X. M., Jiang, M. H. Synthesis and organic photovoltaic (OPV) properties of triphenylamine derivatives based on a hexafluorocyclopentene “core”. Sol. Energy Mater. Sol. Cells 2011, 95, 992–1000; https://doi.org/10.1016/j.solmat.2010.12.010.Suche in Google Scholar

9. Fan, C. B., Gong, L. L., Huang, L., Luo, F., Krishna, R., Yi, X. F., Zheng, A. M., Zhang, L., Pu, S. Z., Feng, X. F. Significant enhancement of C2H2/C2H4 separation by a photochromic diarylethene unit: a temperature- and light-responsive separation switch. Angew. Chem. Int. Ed. 2017, 56, 7900–7906; https://doi.org/10.1002/anie.201702484.Suche in Google Scholar

10. Fu, Y. L., Fan, C. B., Liu, G., Pu, S. Z. A colorimetric and fluorescent sensor for Cu2+ and F− based on a diarylethene with a 1,8-naphthalimide Schiff base unit. Sens. Actuators, B 2017, 239, 295–303; https://doi.org/10.1016/j.snb.2016.08.020.Suche in Google Scholar

11. Lv, J. F., Liu, G., Fan, C. B., Pu, S. Z. A highly sensitive fluorescent sensor for Cd2+ and Zn2+ based on diarylethene with a pyrene unit. Spectrochim. Acta, Part A 2020, 227, 117581; https://doi.org/10.1016/j.saa.2019.117581.Suche in Google Scholar

12. Kou, J. L. Structure of 7-(3,3,4,4,5,5-hexafluoro-2- (2-methylbenzo[b]thiophen-3-yl)cyclopent-1-en-1-yl)-8-methylquinoline, C24H15F6NS. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 1195–1197; https://doi.org/10.1515/ncrs-2020-0246.Suche in Google Scholar

13. Fan, C. B., Liu, Y., Zhang, D. B., Pu, S. Z. Crystal structure and crystalline state multiphotochromism properties of a fused diarylethene dimer. Chin. J. Struct. Chem. 2019, 38, 251–256.Suche in Google Scholar

14. Li, G. Photochromic properties and crystal structure of 3,3′-(perfluorocyclopent-1-ene-1,2-diyl)bis(5-(4-(azidomethyl)phenyl)-2-methylthiophene), C29H20F6N6S2. Z. Kristallogr. N. Cryst. Struct 2020, 235, 531–533; https://doi.org/10.1515/ncrs-2019-0753.Suche in Google Scholar

15. Li, Y. Crystal structure of 4-(2-(benzo[b]thiophen-2-yl)- 3,3,4,4,5,5-hexafluorocyclopent-1-en-1-yl)-1,5-dimethyl-1H-pyrrole- 2-carbonitrile, C20H12F6N2S. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 1457–1459; https://doi.org/10.1515/ncrs-2020-0357.Suche in Google Scholar

16. Ramamurthy, V., Venkatesan, K. Photochemical reactions of organic crystals. Chem. Rev. 1987, 87, 433–481; https://doi.org/10.1021/cr00078a009.Suche in Google Scholar

17. Woodward, R. B., Hoffmann, R. The Conservation of Orbital Symmetry. Angew. Chem. Int. Ed. 1969, 11, 781–932. https://doi.org/10.1002/anie.196907811.10.1002/anie.196907811Suche in Google Scholar

18. Irie, M. Diarylethenes for memories and switches. Chem. Rev. 2000, 100, 1685–1716; https://doi.org/10.1021/cr980069d.Suche in Google Scholar

Received: 2021-10-12
Accepted: 2021-11-08
Published Online: 2021-11-23
Published in Print: 2022-02-23

© 2021 Duohua Jiang, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-3-yl)methylene)-3, 4-dihydronaphthalen-1(2H)-one, C17H15NO3
  4. Crystal structure of (E)-7-methoxy-2-((2-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1 (2H)-one, C18H17NO3
  5. The crystal structure of N 6,N 6′-di(pyridin-2-yl)-[2,2′-bipyridine]-6,6′-diamine, C20H16N6
  6. The crystal structure of {N 1,N 2-bis[2,4-dimethyl-6-(4-(tert-butyl)phenyl)(phenyl)methyl]acenaphthylene-1,2-diimino-κ2 N, N′}-dibromido-nickel(II) – dichloromethane(1/2), C64H64Br2Cl4N2Ni
  7. Synthesis and crystal structure of nonacarbonyltris[(2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-κ1 P)-2,2-dioxide]triruthenium(0) – acetonitrile (7/6), C25.71H32.57N9.86O15P3S3Ru3
  8. A new polymorph of 1-(4-nitrophenyl)-1H-benzimidazole (C13H9N3O2)
  9. The crystal structure of 2,2′-((1E,1′E)-(naphthalene-2,3 diylbis(azanylylidene)) bis(methanylylidene))bis(4-methylphenol), C26H22N2O2
  10. The crystal structure of bis(μ2-iodido)-bis(η6-benzene)-bis(iodido)-diosmium(II), C12H12I4Os2
  11. Redetermination of the crystal structure of bis{hydridotris(3,5-dimethylpyrazol-1-yl-κN 3)borato}copper(II), C30H44B2CuN12
  12. Crystal structure of (E)-3-((4-(tert-butyl)phenyl)thio)-4-hydroxypent-3-en-2-one, C15H20O2S
  13. Crystal structure of 2,2′-(p-tolylazanediyl)bis(1-phenylethan-1-one), C23H21NO2
  14. Redetermination of the crystal structure of the crystal sponge the poly[tetrakis(μ3-2,4,6-tris(pyridin-4-yl)-1,3,5-triazine)-dodecaiodidohexazinc(II) nitrobenzene solvate], C72H48I12N24Zn6⋅10(C6H5NO2)
  15. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(6-methylpyridin-2-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C44H45N5O2
  16. Crystal structure of (E)-7-fluoro-2-(3-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C17H12F2O1
  17. Crystal structure of tetrabutylammonium sulfanilate – 1-(diaminomethylene)thiourea (1/2)
  18. Crystal structure of [2,2′-{azanediyl)bis[(propane-3,1-diyl)(azanylylidene)methylylidene]} bis(3,5-dichlorophenolato)-κ2O,O′]-isothiocyanato-κN-iron(III), C21H19Cl4FeN4O2S
  19. Crystal structure of (4-chlorophenyl)(4-hydroxyphenyl)methanone, C13H9ClO2
  20. Crystal structure of 6,6′-((pentane-1,3-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dibromolphenolato-κ4 N,N′,O,O′)copper(II),) C19H16Br4CuN2O2
  21. Chlorido-(2,2′-(ethane-bis(5-methoxyphenolato))-κ4 N,N,O,O′)manganese(III) monohydrate, C19H18Cl2CuN2O2
  22. Crystal structure of 2,6-di-tert-butyl-4-(4-methoxybenzylidene)cyclohexa-2,5-dien-1-one, C22H28O2
  23. Crystal structure of [6,6′-(((2,2-dimethylpropane-1,3-diyl)bis(azanylylidene))bis(methanylylidene))bis(2-chlorophenolato)-κ4N,N′,O,O′]copper(II)
  24. Crystal structure of 2-chloro-3-((thiophen-2-ylmethyl)amino)naphthalene-1,4-dione, C30H20O4N2Cl2S2
  25. Crystal structure of bis{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl)borato-κN 3}manganese(II), C30H26B2F18MnN12
  26. Crystal structure of 1-(2-methylphenyl)-2-(2-methylbenzo[b]thienyl)-3,3,4,4,5,5-hexafluorocyclopent-ene, C21H14F6S
  27. Crystal structure of 2-(3-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  28. Crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium chloride – chloroform (1/1), C21H23Cl4I2N3
  29. Crystal structure of azido-k1 N-{6,6′-((((methylazanediyl)bis(propane-3,1-diyl))bis(azanylylidene))bis(methanylylidene))bis(2,4-dibromophenolato)k5 N,N′,N″,O,O′}cobalt(III)-methanol (1/1)), C21H23Br4CoN6O3
  30. The crystal structure of 2-(4-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  31. Crystal structure of 1,1′-(methane-1,1-diyl)bis(3-methyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C9H14F12N4P2
  32. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(pyren-1-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C54H48N4O2
  33. Crystal structure of poly[bis(μ2-2,6-bis(1-imidazoly)pyridine-κ2 N,N′)-bis(thiocyanato-κ1 N)copper(II)] dithiocyanate, C24H18CuN12S2
  34. Cones with a three-fold symmetry constructed from three hydrogen bonded theophyllinium cations that coat [FeCl4] anions in the crystal structure of tris(theophyllinium) bis(tetrachloridoferrate(III)) chloride trihydrate, C21H33Cl9Fe2N12O9
  35. Crystal structure of 14-O-[(4-(4-hydroxypiperidine-1-yl)-6-methylpyrimidine-2-yl)thioacetyl]-mutilin monohydrate, C32H49N3O6S
  36. The crystal structure of (E)-3-chloro-2-(2-(4-methylbenzylidene)hydrazinyl)pyridine, C13H12ClN3
  37. The crystal structure of 4-phenyl-4-[2-(pyridine-4-carbonyl)hydrazinylidene]butanoic acid, C16H15N3O3
  38. The crystal structure of 6-amino-5-carboxypyridin-1-ium pentaiodide monohydrate C6H9I5N2O3
  39. Crystal structure of bis(μ3-oxido)-bis(μ2-2-formylbenzoato-k2O:O′)-bis(2-(dimethoxymethyl)-benzoato-κO)-oktakismethyl-tetratin(IV)
  40. Crystal structure of 2-((E)-(((E)-2-hydroxy-4-methylbenzylidene) hydrazineylidene)methyl)-4-methylphenol, C16H16N2O2
  41. Crystal structure of (E)-amino(2-((5-methylfuran-2-yl)methylene)hydrazinyl) methaniminium nitrate monohydrate, C14H26N10O10
  42. The crystal structure of N′-(2-chloro-6-hydroxybenzylidene)thiophene-2-carbohydrazide monohydrate, C12H11ClN2O3S
  43. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)zinc(II)], C64H44Br4N8O8Zn2
  44. The crystal structure of catena-poly[(1-(4-carboxybenzyl)pyridin-1-ium-4-carboxylato-κ1O)-(μ2-oxalato-κ4 O:O′:O″:O‴)dioxidouranium(VI)], C16H11NO10U
  45. Crystal structure of 3-allyl-4-(2-bromoethyl)-5-(4-methoxyphenyl)-2-phenylfuran, C22H21BrO2
  46. Halogen bonds in the crystal structure of 4,3′:5′,4″-terpyridine — 1,3-diiodotetrafluorobenzene (1/1), C21H11F4I2N3
  47. Crystal structure of 2-(1H-indol-3-yl)ethan-1-aminium 2-(4-acetylphenoxy)acetate, C20H22N2O4
  48. Chalcogen bonds in the crystal structure of 4,7-dibromo-2,1,3-benzoselenadiazole, C6H2Br2N2Se
  49. The crystal structure of 1,4-bis((1H-benzimidazol-2-yl)methyl)-piperazine-2,5-dione dihydrate, C20H22N6O4
  50. The crystal structure of C19H20O8
  51. The crystal structure of KNa3Te8O18·5H2O exhibiting a 2[Te4O9]2− layer
  52. Erratum
  53. Erratum to: Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0393/html
Button zum nach oben scrollen