Startseite Synthesis and crystal structure of nonacarbonyltris[(2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-κ1 P)-2,2-dioxide]triruthenium(0) – acetonitrile (7/6), C25.71H32.57N9.86O15P3S3Ru3
Artikel Open Access

Synthesis and crystal structure of nonacarbonyltris[(2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-κ1 P)-2,2-dioxide]triruthenium(0) – acetonitrile (7/6), C25.71H32.57N9.86O15P3S3Ru3

  • Wisdom Ebong , Alexandra E. Muniz , David R. Khan , Daniel K. Unruh und Jason C. Yarbrough ORCID logo EMAIL logo
Veröffentlicht/Copyright: 5. November 2021

Abstract

C25.71H32.57N9.86O15P3S3Ru3, hexagonal, P63 (no. 173), a = 37.24213(9) Å, b = 37.24213(9) Å, c = 11.64828(3) Å, β = 90°, V = 13,991.40(8) Å3, Z = 14, R gt (F) = 0.0406, wR ref(F 2) = 0.1009, T = 100(2) K.

CCDC no.: 2117216

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Orange column
Size: 0.18 × 0.06 × 0.05 mm
Wavelength: Cu Kα radiation (1.54178 Å)
μ: 12.4 mm−1
Diffractometer, scan mode: XtaLAB Synergy, ω
θ max, completeness: 77.4°, >99%
N(hkl)measured, N(hkl)unique, R int: 180,987, 19,572, 0.049
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 19,241
N(param)refined: 1254
Programs: CrysAlisPRO [1], SCALE3 ABSPACK [2], SHELX [3, 4], OLEX2 [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Ru1 0.27257 (2) 0.19371 (2) 0.70735 (4) 0.03148 (10)
Ru2 0.18429 (2) 0.15030 (2) 0.70543 (4) 0.03215 (10)
Ru3 0.22916 (2) 0.23868 (2) 0.68830 (4) 0.03202 (10)
Ru4 0.47266 (2) 0.57221 (2) 0.50526 (4) 0.03336 (10)
Ru5 0.51829 (2) 0.65985 (2) 0.53670 (4) 0.03386 (10)
Ru6 0.56126 (2) 0.61429 (2) 0.51118 (4) 0.03300 (10)
Ru7 0.62640 (2) 0.34074 (2) 0.51535 (5) 0.04027 (11)
N7 0.36082 (15) 0.36315 (15) 0.5815 (5) 0.0366 (10)
S1 0.33708 (5) 0.10820 (5) 0.49979 (14) 0.0387 (3)
S2 0.02883 (4) 0.09322 (4) 0.52727 (13) 0.0368 (3)
S3 0.35897 (4) 0.39835 (4) 0.66440 (13) 0.0353 (3)
S4 0.31704 (4) 0.52069 (4) 0.67086 (14) 0.0382 (3)
S5 0.64719 (4) 0.82043 (4) 0.54765 (13) 0.0358 (3)
S6 0.61842 (5) 0.51739 (5) 0.68897 (15) 0.0423 (3)
S7 0.47674 (5) 0.25030 (5) 0.71995 (15) 0.0434 (3)
P1 0.29004 (4) 0.14413 (4) 0.66921 (13) 0.0330 (3)
P2 0.11724 (4) 0.13591 (4) 0.67513 (13) 0.0330 (3)
P3 0.27873 (4) 0.30363 (4) 0.62768 (13) 0.0326 (3)
P4 0.40686 (4) 0.56150 (4) 0.53102 (13) 0.0348 (3)
P5 0.56906 (4) 0.72507 (4) 0.58947 (14) 0.0347 (3)
P6 0.57609 (4) 0.56198 (4) 0.53439 (13) 0.0340 (3)
P7 0.55874 (5) 0.29156 (5) 0.54823 (15) 0.0412 (3)
O1 0.25253 (15) 0.16052 (15) 0.9546 (4) 0.0435 (10)
O2 0.28614 (15) 0.21715 (16) 0.4524 (4) 0.0458 (10)
O3 0.35954 (14) 0.25987 (13) 0.7772 (4) 0.0428 (9)
O4 0.17622 (14) 0.17737 (14) 0.9491 (4) 0.0407 (9)
O5 0.19897 (15) 0.13569 (15) 0.4542 (4) 0.0432 (10)
O6 0.16952 (15) 0.06485 (13) 0.7674 (4) 0.0428 (10)
O7 0.26443 (14) 0.25530 (14) 0.9334 (4) 0.0397 (9)
O8 0.19951 (14) 0.21894 (14) 0.4375 (4) 0.0420 (9)
N8 0.31079 (15) 0.38925 (15) 0.6464 (5) 0.0361 (10)
O9 0.16083 (14) 0.25636 (15) 0.7586 (5) 0.0436 (10)
N9 0.30734 (17) 0.36055 (16) 0.4510 (5) 0.0397 (11)
O10 0.35054 (16) 0.07864 (15) 0.4849 (4) 0.0452 (10)
N10 0.32248 (16) 0.50218 (16) 0.5471 (5) 0.0387 (10)
O11 0.34402 (16) 0.13743 (15) 0.4124 (4) 0.0453 (10)
N11 0.34888 (15) 0.57146 (16) 0.6593 (5) 0.0380 (10)
O12 −0.01285 (13) 0.08509 (14) 0.5215 (4) 0.0418 (9)
N12 0.34095 (15) 0.56794 (17) 0.4469 (5) 0.0388 (11)
O13 0.04548 (15) 0.08046 (16) 0.4358 (5) 0.0469 (10)
N13 0.60053 (15) 0.78165 (15) 0.7667 (5) 0.0361 (10)
O14 0.36307 (14) 0.38950 (13) 0.7812 (4) 0.0412 (9)
N14 0.65164 (15) 0.78524 (15) 0.6247 (5) 0.0360 (10)
O15 0.38654 (14) 0.43817 (13) 0.6172 (5) 0.0427 (10)
C15 0.46071 (18) 0.51778 (19) 0.4629 (6) 0.0383 (12)
N15 0.59927 (15) 0.81047 (15) 0.5761 (5) 0.0356 (10)
N1 0.35826 (17) 0.13400 (17) 0.6207 (5) 0.0394 (10)
N2 0.30019 (18) 0.07891 (17) 0.7355 (5) 0.0414 (11)
N3 0.28686 (16) 0.08215 (15) 0.5288 (5) 0.0391 (10)
N4 0.04855 (16) 0.13782 (16) 0.7538 (5) 0.0378 (10)
N5 0.03428 (15) 0.07410 (16) 0.6489 (5) 0.0366 (10)
N6 0.05885 (16) 0.14406 (16) 0.5431 (5) 0.0379 (10)
C1 0.25802 (18) 0.17329 (19) 0.8636 (6) 0.0377 (12)
C2 0.27899 (18) 0.20916 (18) 0.5467 (6) 0.0367 (12)
C3 0.32728 (18) 0.23556 (17) 0.7478 (5) 0.0346 (11)
C4 0.18108 (17) 0.16907 (17) 0.8591 (6) 0.0360 (12)
C5 0.19451 (18) 0.14229 (18) 0.5465 (6) 0.0378 (12)
C6 0.17424 (18) 0.09692 (19) 0.7458 (6) 0.0379 (12)
C7 0.25228 (17) 0.24765 (17) 0.8422 (6) 0.0349 (11)
C8 0.21010 (17) 0.22416 (17) 0.5311 (6) 0.0357 (11)
C9 0.18674 (18) 0.25058 (18) 0.7296 (6) 0.0363 (12)
C10 0.34634 (18) 0.16589 (18) 0.6429 (6) 0.0363 (11)
H10A 0.354615 0.184822 0.576081 0.044*
H10B 0.361912 0.182489 0.710462 0.044*
C11 0.2823 (2) 0.10433 (19) 0.7754 (6) 0.0382 (12)
H11A 0.295556 0.117927 0.848744 0.046*
H11B 0.252295 0.086147 0.789555 0.046*
C12 0.26837 (18) 0.10940 (18) 0.5430 (6) 0.0365 (11)
H12A 0.237971 0.091907 0.552189 0.044*
H12B 0.273713 0.12639 0.472978 0.044*
C13 0.3450 (2) 0.1033 (2) 0.7185 (6) 0.0438 (13)
H13A 0.355636 0.084105 0.704025 0.053*
H13B 0.357939 0.118572 0.790216 0.053*
C14 0.2801 (2) 0.05580 (19) 0.6326 (6) 0.0428 (13)
H14A 0.249887 0.038977 0.647192 0.051*
H14B 0.290339 0.036429 0.616038 0.051*
C16 0.07695 (17) 0.08037 (18) 0.6626 (6) 0.0363 (11)
H16A 0.083383 0.068196 0.595636 0.044*
H16B 0.077722 0.065471 0.732092 0.044*
N16 0.56799 (17) 0.49485 (16) 0.6628 (5) 0.0406 (11)
O16 0.48419 (16) 0.55426 (16) 0.7565 (5) 0.0473 (10)
C17 0.10391 (18) 0.15685 (19) 0.5479 (6) 0.0389 (12)
H17A 0.120629 0.187498 0.549311 0.047*
H17B 0.111331 0.147125 0.477531 0.047*
N17 0.57932 (17) 0.49425 (16) 0.4535 (5) 0.0400 (11)
O17 0.46609 (14) 0.59873 (14) 0.2596 (4) 0.0425 (10)
C18 0.09169 (18) 0.15113 (19) 0.7848 (6) 0.0378 (12)
H18A 0.092137 0.138588 0.859339 0.045*
H18B 0.107325 0.181639 0.793953 0.045*
N18 0.63968 (16) 0.54398 (17) 0.5705 (5) 0.0397 (11)
O18 0.45614 (15) 0.48648 (14) 0.4373 (5) 0.0439 (10)
C19 0.02301 (18) 0.09283 (19) 0.7474 (6) 0.0390 (12)
H19A −0.0064 0.085324 0.73951 0.047*
H19B 0.025808 0.08071 0.820149 0.047*
N19 0.49880 (18) 0.22396 (18) 0.6723 (6) 0.0470 (12)
O19 0.49182 (16) 0.64037 (15) 0.7889 (5) 0.0477 (10)
C20 0.04550 (19) 0.15728 (19) 0.6506 (6) 0.0398 (12)
H20A 0.06288 0.187713 0.659123 0.048*
H20B 0.016414 0.150677 0.640978 0.048*
N20 0.48096 (19) 0.28078 (19) 0.6111 (5) 0.0451 (12)
O20 0.44937 (14) 0.68014 (14) 0.5063 (5) 0.0476 (11)
C21 0.33455 (18) 0.32017 (18) 0.6278 (6) 0.0366 (11)
H21A 0.343365 0.319103 0.707353 0.044*
H21B 0.338978 0.30057 0.580859 0.044*
N21 0.4819 (2) 0.2307 (2) 0.4711 (6) 0.0524 (14)
O21 0.57471 (16) 0.63320 (18) 0.7701 (5) 0.0490 (11)
C22 0.2752 (2) 0.31776 (19) 0.4777 (5) 0.0399 (12)
H22A 0.278187 0.298518 0.425088 0.048*
H22B 0.247543 0.31467 0.464661 0.048*
N22 0.3148 (2) 0.2842 (2) 0.2374 (6) 0.0513 (14)
O22 0.54347 (16) 0.58749 (16) 0.2585 (4) 0.0467 (10)
C23 0.28010 (17) 0.34877 (17) 0.6982 (6) 0.0361 (11)
H23A 0.252182 0.345766 0.693561 0.043*
H23B 0.286866 0.348841 0.780387 0.043*
N23 0.6067 (2) 0.7132 (3) 0.9833 (7) 0.0642 (18)
O23 0.64966 (14) 0.67933 (14) 0.4492 (5) 0.0468 (11)
C24 0.30272 (19) 0.39094 (18) 0.5204 (6) 0.0404 (12)
H24A 0.274217 0.386058 0.510551 0.049*
H24B 0.32216 0.419109 0.491245 0.049*
O24 0.33143 (14) 0.50539 (14) 0.7607 (5) 0.0447 (10)
C25 0.3488 (2) 0.36703 (19) 0.4603 (6) 0.0404 (13)
H25A 0.368705 0.395015 0.430817 0.049*
H25B 0.35109 0.346545 0.411148 0.049*
O25 0.27592 (14) 0.51410 (14) 0.6731 (5) 0.0444 (10)
C26 0.36450 (17) 0.50675 (17) 0.5360 (6) 0.0371 (12)
H26A 0.365388 0.492552 0.46516 0.044*
H26B 0.369237 0.492837 0.601934 0.044*
O26 0.67483 (14) 0.86039 (14) 0.5943 (4) 0.0423 (10)
C27 0.38406 (18) 0.57976 (19) 0.4195 (6) 0.0371 (12)
H27A 0.400928 0.610313 0.413054 0.045*
H27B 0.384824 0.56772 0.344382 0.045*
O27 0.64927 (14) 0.81242 (14) 0.4294 (4) 0.0412 (9)
C28 0.39348 (18) 0.58203 (19) 0.6590 (6) 0.0377 (12)
H28A 0.399018 0.57053 0.729041 0.045*
H28B 0.411509 0.612549 0.661263 0.045*
O28 0.62811 (16) 0.54566 (17) 0.7812 (5) 0.0509 (11)
C29 0.33803 (18) 0.58714 (19) 0.5535 (6) 0.0398 (12)
H29A 0.309386 0.582032 0.561447 0.048*
H29B 0.356808 0.617488 0.54812 0.048*
O29 0.62862 (15) 0.48528 (16) 0.6959 (5) 0.0497 (11)
C30 0.31369 (19) 0.52328 (19) 0.4503 (6) 0.0414 (13)
H30A 0.316224 0.511381 0.376773 0.05*
H30B 0.284688 0.517229 0.456907 0.05*
O30 0.61432 (18) 0.32376 (19) 0.2565 (5) 0.0546 (12)
C31 0.56841 (19) 0.73870 (18) 0.7406 (6) 0.0377 (12)
H31A 0.540842 0.735077 0.759073 0.045*
H31B 0.572716 0.719524 0.789863 0.045*
O31 0.43394 (16) 0.22140 (17) 0.7355 (5) 0.0514 (11)
C32 0.56791 (17) 0.76985 (17) 0.5255 (6) 0.0358 (11)
H32A 0.572933 0.77034 0.441937 0.043*
H32B 0.539925 0.766235 0.536395 0.043*
O32 0.50132 (15) 0.27560 (16) 0.8122 (5) 0.0491 (11)
C33 0.62504 (18) 0.74269 (17) 0.5787 (6) 0.0361 (11)
H33A 0.630856 0.723195 0.621538 0.043*
H33B 0.632231 0.742082 0.497172 0.043*
O33 0.55090 (14) 0.67887 (14) 0.2879 (4) 0.0434 (10)
C34 0.47037 (17) 0.59034 (18) 0.3503 (6) 0.0363 (12)
O34 0.63399 (17) 0.35524 (18) 0.7762 (5) 0.0534 (12)
C35 0.48153 (19) 0.56259 (19) 0.6637 (6) 0.0388 (12)
O35 0.6139 (2) 0.41419 (19) 0.4726 (6) 0.0611 (14)
C36 0.50170 (18) 0.64539 (18) 0.6950 (6) 0.0403 (13)
C37 0.53883 (18) 0.66992 (17) 0.3796 (6) 0.0357 (11)
C38 0.47575 (18) 0.67301 (17) 0.5146 (6) 0.0380 (12)
C39 0.56763 (19) 0.6267 (2) 0.6738 (6) 0.0405 (13)
C40 0.61645 (18) 0.65579 (18) 0.4754 (6) 0.0380 (12)
C41 0.54788 (19) 0.59789 (19) 0.3517 (6) 0.0381 (12)
C42 0.59366 (18) 0.81126 (18) 0.7045 (6) 0.0373 (11)
H42A 0.613128 0.839441 0.73347 0.045*
H42B 0.565141 0.805524 0.720238 0.045*
C43 0.64185 (19) 0.7885 (2) 0.7492 (6) 0.0389 (12)
H43A 0.645177 0.76788 0.794712 0.047*
H43B 0.662131 0.81637 0.778234 0.047*
C44 0.55298 (19) 0.5254 (2) 0.6563 (6) 0.0396 (12)
H44A 0.559936 0.541379 0.728809 0.048*
H44B 0.522422 0.510181 0.648191 0.048*
C45 0.5648 (2) 0.52326 (19) 0.4207 (6) 0.0388 (12)
H45A 0.534604 0.50747 0.406348 0.047*
H45B 0.578716 0.537646 0.348742 0.047*
C46 0.63153 (19) 0.57915 (19) 0.5563 (6) 0.0385 (12)
H46A 0.64754 0.59611 0.489671 0.046*
H46B 0.64153 0.596975 0.6254 0.046*
C47 0.5583 (2) 0.4702 (2) 0.5539 (7) 0.0436 (13)
H47A 0.565905 0.448407 0.56416 0.052*
H47B 0.528049 0.456121 0.540311 0.052*
C48 0.6241 (2) 0.5156 (2) 0.4680 (6) 0.0423 (13)
H48A 0.637293 0.531996 0.397995 0.051*
H48B 0.632884 0.494598 0.475527 0.051*
C49 0.6333 (2) 0.3499 (2) 0.6797 (6) 0.0433 (13)
C50 0.6207 (2) 0.3293 (2) 0.3515 (6) 0.0459 (15)
C51 0.6194 (2) 0.3872 (2) 0.4911 (7) 0.0445 (14)
C52 0.5255 (2) 0.3132 (2) 0.5918 (7) 0.0445 (14)
H52A 0.536666 0.329266 0.663462 0.053*
H52B 0.526729 0.332516 0.531593 0.053*
C53 0.5444 (2) 0.2509 (2) 0.6595 (6) 0.0440 (13)
H53A 0.556654 0.233522 0.638964 0.053*
H53B 0.556368 0.264384 0.734037 0.053*
C54 0.5253 (2) 0.2574 (2) 0.4332 (6) 0.0477 (15)
H54A 0.525795 0.274568 0.367646 0.057*
H54B 0.536389 0.239662 0.406266 0.057*
C55 0.4630 (2) 0.2551 (3) 0.5049 (7) 0.0513 (15)
H55A 0.433048 0.236034 0.517422 0.062*
H55B 0.46592 0.273716 0.440629 0.062*
C56 0.4789 (2) 0.2027 (2) 0.5600 (8) 0.0522 (16)
H56A 0.492303 0.187044 0.533043 0.063*
H56B 0.449281 0.182569 0.573955 0.063*
C57 0.2895 (2) 0.2510 (2) 0.2216 (6) 0.0430 (13)
C58 0.2568 (2) 0.2081 (2) 0.2022 (7) 0.0474 (14)
H58A 0.244078 0.205923 0.126897 0.071*
H58B 0.235646 0.199805 0.262149 0.071*
H58C 0.268747 0.189928 0.204394 0.071*
C59 0.5798 (3) 0.6804 (3) 1.0045 (7) 0.0578 (19)
C60 0.5465 (3) 0.6399 (3) 1.0295 (7) 0.0602 (19)
H60A 0.528563 0.628758 0.96206 0.09*
H60B 0.530438 0.641339 1.094207 0.09*
H60C 0.557672 0.621851 1.049642 0.09*

Source of material

The phosphine ligand, 2-thia-1,3,5-triaza-7-phosphadamantane-2,2-dioxide (PASO2), was prepared according to previously published procedures [6, 7]. The title compound was obtained by combining 0.360 g (0.56 mmol) triruthenium dodecacarbonyl with 0.154 g (0.743 mmol) PASO2, in 130 ml of xylene. The resulting red solution was refluxed with stirring for 16 h under argon. The solution was then passed through alumina and the solvent removed in vacuo to yield an orange crystalline powder. Clear orange crystals suitable for X-ray diffraction were obtained via solvent diffusion, where a solution of the title compound in acetonitrile was layered with a two-fold excess of dichloromethane and allowed to sit for four weeks at reduced temperature (approximately 263 K).

Experimental details

Data were collected on a Rigaku XtaLAB Synergy-i Kappa diffractometer equipped with a PhotonJet-i X-ray source operated at 50 W (50 kV, 1 mA) to generate Cu Kα radiation (λ = 1.54178 Å) and a HyPix-6000HE HPC detector. The SHELX-2014 series of programs was used for the solution and refinement of the crystal structure [3, 4]. Hydrogen atoms bound to carbon atoms were geometrically constrained and refined by the riding model. For all H atoms, U iso(H) = 1.2U eq of the carrier atom was assumed (1.5 in the case of methyl groups). The absolute structure was determined by anomalous scattering.

Comment

The structural chemistry of metal-carbonyl cluster compounds and their derivatives has been an area of significant interest for many decades. This stems from their application in a variety of endeavors, including heterogeneous catalyst design as well as materials chemistry and engineering research [8]. Indeed, many structural studies are reported in the literature and not surprisingly therefore, standard empirical rules have been established which make the geometry and stoichiometry of ligand binding reasonably predictable in such compounds [9], [10], [11], [12]. Herein we report the synthesis and crystal structure of a solvated, triangulo-triruthenium compound, tri-substituted with the small, cage-like phosphine ligand, 2-thia-1,3,5-triaza-7-phosphaadamantane 2,2-dioxide (PASO2), Ru3(CO)9(PASO2)3: 6/7 C2H3N. The synthesis of the title compound, Ru3(CO)9(PASO2)3, was accomplished by the thermal reaction of Ru3(CO)12 and the PASO2 phosphine. Employing the crystallization method of solvent diffusion, the compound was found to crystallize into the non-centrosymmetric, hexagonal space group, P63. The asymmetric unit consists of 2 and 1/3 triruthenium clusters and two molecules of acetonitrile solvent. Further, each complex was determined to consist of a triangular Ru3 core with interior bond angles of approximately 60°, ranginging from 59.664(13) to 60.367(13)° for the two crystallographically distinct Ru3 cores in the asymmetric unit. Additionally, the corresponding Ru–Ru bond distances were all of similar length, ranging from 2.8473(5) to 2.8710(6) Å, consistent with the observed Ru–Ru bond lengths in the parent compound, Ru3(CO)12 which was previously reported in reference [13]. Furthermore, the crystallographically imposed bond angles and lengths corresponding to Ru7 are 60.0° and 2.8661(8) Å respectively. Analogous Ru3(CO)9(PR3)3 compounds reported previously [14], [15], [16] show similar bond lengths and angles with respect to the Ru3 core. A thermal ellipsoid depiction of the title compound is shown in the figure. Each ruthenium bears three terminal carbonyl ligands and an equatorially positioned PASO2 ligand, providing a somewhat distorted octahedral environment about each Ru center. The ruthenium–phosphorus bond lengths Ru1–P1, Ru2–P2, Ru3–P3, Ru4–P4, Ru5–P5, Ru6–P6 and Ru7–P7 are all fairly consistent and range from 2.2874(14) to 2.3042(14) Å. In all instances, the equatorial Ru–CO bond distances are shorter than those in the axial positions. These observations are consistent with the most analogous compound found in the chemical literature, Ru3(CO)9(PTA)3 [15]. Additionally, and as expected with binding of the PASO2 phosphine, the equatorial Ru–CO bond lengths are shorter than those in the structure of the unsubstituted parent compound, Ru3(CO)12 [13]. On this point, we can further note that binding of the phosphine ligands brings with it steric interactions which introduce significant distortion of the molecular symmetry from the D 3h molecular symmetry of Ru3(CO)12 to D 3 symmetry for the title compound. This is readily observed in the Ru–Ru–CO ax bond angles of the axial ligands, the average value of which is 78.6(9)° in contrast to that of roughly 90° for the parent compound, Ru3(CO)12 [13].


Corresponding author: Jason C. Yarbrough, Department of Chemistry & Physics, West Texas A&M University, WTAMU Box 60732, Canyon, TX 79016-0001, USA, E-mail:

Funding source: Welch Foundation

Award Identifier / Grant number: AE-0025

Funding source: West Texas A&M University

Award Identifier / Grant number: WT17-009

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Funding was generously provided by the Welch Foundation (grant number AE-0025), the Killgore Research Grant program and the Ross Wilson Endowed Chair in Chemistry (Jason C. Yarbrough) at West Texas A&M University.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Agilent Technologies Ltd. CrysAlisPro; Yarntton, Oxfordshire, England, 2018.Suche in Google Scholar

2. Oxford Diffraction Ltd. SCALE 3 ABSPACK: Abingdon, Oxfordshire, England, 2005.Suche in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Sheldrick, G. M. SHELXT – inetgrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A7, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar

5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/S0021889808042726.Suche in Google Scholar

6. Darensbourg, D. J., Yarbrough, J. C., Lewis, S. J. 2-Thia-1,3,5-triazaphosphaadamantane 2,2-dioxide (PASO2). Comparative structural and reactivity investigation with the water-soluble phosphine ligand 1,3,5-triazaphosphaadamantane (PTA). Organometallics 2003, 22, 2050–2056; https://doi.org/10.1021/om0300225.Suche in Google Scholar

7. Daigle, D. J., Pepperman, A. B., Boudreaux, G. Phosphaadamantanes synthesis of 2-thia-1,3,5-triazaphosphaadamantane 2,2-dioxide and derivatives. J. Heterocycl. Chem. 1974, 11, 1085–1086; https://doi.org/10.1002/jhet.5570110644.Suche in Google Scholar

8. Lou, Z., Castleman, A. W., Khanna, S. N. Reactivity of metal clusters. Chem. Rev. 2016, 116, 14456–14492.10.1021/acs.chemrev.6b00230Suche in Google Scholar

9. Lauher, J. W. A surface force field model for the molecular mechanics simulation of ligand structures in transition-metal carbonyl clusters. J. Am. Chem. Soc. 1986, 108, 1521–1531; https://doi.org/10.1021/ja00267a023.Suche in Google Scholar

10. Lauher, J. W. The bonding capabilities of transition metal clusters. IV. Three classes of carbonyl cluster compounds. J. Organomet. Chem. 1981, 213, 25–34; https://doi.org/10.1016/s0022-328x(00)93948-2.Suche in Google Scholar

11. Lauher, J. W. Bonding capabilities of transition metal clusters. 2. Relationships to bulk metals. J. Am. Chem. Soc. 1979, 101, 2604–2607; https://doi.org/10.1021/ja00504a016.Suche in Google Scholar

12. Lauher, J. W. The bonding capabilities of transition metal clusters. J. Am. Chem. Soc. 1978, 100, 5305–5315; https://doi.org/10.1021/ja00485a011.Suche in Google Scholar

13. Churchill, M. R., Hollander, F. J., Hutchinson, J. P. An accurate redetermination of the structure of triruthenium dodecacarbonyl, Ru3(CO)12. Inorg. Chem. 1977, 16, 2655–2659; https://doi.org/10.1021/ic50176a051.Suche in Google Scholar

14. Arce, A. J., De Sanctis, Y., Goite, M. C., Machado, R., Otero, Y., Gonzalez, T. Insertion of a phospholide unit into a metal-metal bond: synthesis and x-ray structure of [Ru3(CO)9(μ:η1:η5-PC4H2Me2) (η1-C6H5)]. Inorg. Chim. Acta 2012, 392, 241–245; https://doi.org/10.1016/j.ica.2012.01.033.Suche in Google Scholar

15. Darensbourg, D. J., Beckford, F. A., Reibenspies, J. H. Water-soluble organometallic compounds. 8. Synthesis, spectral properties and crystal structures of 1,3,5-triaza-7-phosphaadamantane (PTA) derivatives of metal carbonyl clusters: Ru3(CO)9(PTA)3 and Ir4(CO)7(PTA)5. J. Cluster Sci. 2000, 11, 95–107; https://doi.org/10.1023/a:1009060614412.10.1023/A:1009060614412Suche in Google Scholar

16. Bruce, M. I., Liddell, M. J., Shawkataly, O. LVII. Stereochemistry of group 15 ligand-substituted derivatives of M3(CO)12 (M = Ru, Os). C. X-ray structures of Ru3(CO)9(L)3 (L = PMe2(CH2Ph), PMe2Ph, AsMe2Ph, PPh(OMe)2, P(OEt)3, and P(OCH2CF3)3) and Os3(CO)9(PPh3)3. J. Organomet. Chem. 1988, 347, 207–235; https://doi.org/10.1016/0022-328x(88)80282-1.Suche in Google Scholar

Received: 2021-09-14
Accepted: 2021-10-22
Published Online: 2021-11-05
Published in Print: 2022-02-23

© 2021 Wisdom Ebong et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-3-yl)methylene)-3, 4-dihydronaphthalen-1(2H)-one, C17H15NO3
  4. Crystal structure of (E)-7-methoxy-2-((2-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1 (2H)-one, C18H17NO3
  5. The crystal structure of N 6,N 6′-di(pyridin-2-yl)-[2,2′-bipyridine]-6,6′-diamine, C20H16N6
  6. The crystal structure of {N 1,N 2-bis[2,4-dimethyl-6-(4-(tert-butyl)phenyl)(phenyl)methyl]acenaphthylene-1,2-diimino-κ2 N, N′}-dibromido-nickel(II) – dichloromethane(1/2), C64H64Br2Cl4N2Ni
  7. Synthesis and crystal structure of nonacarbonyltris[(2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-κ1 P)-2,2-dioxide]triruthenium(0) – acetonitrile (7/6), C25.71H32.57N9.86O15P3S3Ru3
  8. A new polymorph of 1-(4-nitrophenyl)-1H-benzimidazole (C13H9N3O2)
  9. The crystal structure of 2,2′-((1E,1′E)-(naphthalene-2,3 diylbis(azanylylidene)) bis(methanylylidene))bis(4-methylphenol), C26H22N2O2
  10. The crystal structure of bis(μ2-iodido)-bis(η6-benzene)-bis(iodido)-diosmium(II), C12H12I4Os2
  11. Redetermination of the crystal structure of bis{hydridotris(3,5-dimethylpyrazol-1-yl-κN 3)borato}copper(II), C30H44B2CuN12
  12. Crystal structure of (E)-3-((4-(tert-butyl)phenyl)thio)-4-hydroxypent-3-en-2-one, C15H20O2S
  13. Crystal structure of 2,2′-(p-tolylazanediyl)bis(1-phenylethan-1-one), C23H21NO2
  14. Redetermination of the crystal structure of the crystal sponge the poly[tetrakis(μ3-2,4,6-tris(pyridin-4-yl)-1,3,5-triazine)-dodecaiodidohexazinc(II) nitrobenzene solvate], C72H48I12N24Zn6⋅10(C6H5NO2)
  15. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(6-methylpyridin-2-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C44H45N5O2
  16. Crystal structure of (E)-7-fluoro-2-(3-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C17H12F2O1
  17. Crystal structure of tetrabutylammonium sulfanilate – 1-(diaminomethylene)thiourea (1/2)
  18. Crystal structure of [2,2′-{azanediyl)bis[(propane-3,1-diyl)(azanylylidene)methylylidene]} bis(3,5-dichlorophenolato)-κ2O,O′]-isothiocyanato-κN-iron(III), C21H19Cl4FeN4O2S
  19. Crystal structure of (4-chlorophenyl)(4-hydroxyphenyl)methanone, C13H9ClO2
  20. Crystal structure of 6,6′-((pentane-1,3-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dibromolphenolato-κ4 N,N′,O,O′)copper(II),) C19H16Br4CuN2O2
  21. Chlorido-(2,2′-(ethane-bis(5-methoxyphenolato))-κ4 N,N,O,O′)manganese(III) monohydrate, C19H18Cl2CuN2O2
  22. Crystal structure of 2,6-di-tert-butyl-4-(4-methoxybenzylidene)cyclohexa-2,5-dien-1-one, C22H28O2
  23. Crystal structure of [6,6′-(((2,2-dimethylpropane-1,3-diyl)bis(azanylylidene))bis(methanylylidene))bis(2-chlorophenolato)-κ4N,N′,O,O′]copper(II)
  24. Crystal structure of 2-chloro-3-((thiophen-2-ylmethyl)amino)naphthalene-1,4-dione, C30H20O4N2Cl2S2
  25. Crystal structure of bis{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl)borato-κN 3}manganese(II), C30H26B2F18MnN12
  26. Crystal structure of 1-(2-methylphenyl)-2-(2-methylbenzo[b]thienyl)-3,3,4,4,5,5-hexafluorocyclopent-ene, C21H14F6S
  27. Crystal structure of 2-(3-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  28. Crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium chloride – chloroform (1/1), C21H23Cl4I2N3
  29. Crystal structure of azido-k1 N-{6,6′-((((methylazanediyl)bis(propane-3,1-diyl))bis(azanylylidene))bis(methanylylidene))bis(2,4-dibromophenolato)k5 N,N′,N″,O,O′}cobalt(III)-methanol (1/1)), C21H23Br4CoN6O3
  30. The crystal structure of 2-(4-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  31. Crystal structure of 1,1′-(methane-1,1-diyl)bis(3-methyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C9H14F12N4P2
  32. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(pyren-1-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C54H48N4O2
  33. Crystal structure of poly[bis(μ2-2,6-bis(1-imidazoly)pyridine-κ2 N,N′)-bis(thiocyanato-κ1 N)copper(II)] dithiocyanate, C24H18CuN12S2
  34. Cones with a three-fold symmetry constructed from three hydrogen bonded theophyllinium cations that coat [FeCl4] anions in the crystal structure of tris(theophyllinium) bis(tetrachloridoferrate(III)) chloride trihydrate, C21H33Cl9Fe2N12O9
  35. Crystal structure of 14-O-[(4-(4-hydroxypiperidine-1-yl)-6-methylpyrimidine-2-yl)thioacetyl]-mutilin monohydrate, C32H49N3O6S
  36. The crystal structure of (E)-3-chloro-2-(2-(4-methylbenzylidene)hydrazinyl)pyridine, C13H12ClN3
  37. The crystal structure of 4-phenyl-4-[2-(pyridine-4-carbonyl)hydrazinylidene]butanoic acid, C16H15N3O3
  38. The crystal structure of 6-amino-5-carboxypyridin-1-ium pentaiodide monohydrate C6H9I5N2O3
  39. Crystal structure of bis(μ3-oxido)-bis(μ2-2-formylbenzoato-k2O:O′)-bis(2-(dimethoxymethyl)-benzoato-κO)-oktakismethyl-tetratin(IV)
  40. Crystal structure of 2-((E)-(((E)-2-hydroxy-4-methylbenzylidene) hydrazineylidene)methyl)-4-methylphenol, C16H16N2O2
  41. Crystal structure of (E)-amino(2-((5-methylfuran-2-yl)methylene)hydrazinyl) methaniminium nitrate monohydrate, C14H26N10O10
  42. The crystal structure of N′-(2-chloro-6-hydroxybenzylidene)thiophene-2-carbohydrazide monohydrate, C12H11ClN2O3S
  43. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)zinc(II)], C64H44Br4N8O8Zn2
  44. The crystal structure of catena-poly[(1-(4-carboxybenzyl)pyridin-1-ium-4-carboxylato-κ1O)-(μ2-oxalato-κ4 O:O′:O″:O‴)dioxidouranium(VI)], C16H11NO10U
  45. Crystal structure of 3-allyl-4-(2-bromoethyl)-5-(4-methoxyphenyl)-2-phenylfuran, C22H21BrO2
  46. Halogen bonds in the crystal structure of 4,3′:5′,4″-terpyridine — 1,3-diiodotetrafluorobenzene (1/1), C21H11F4I2N3
  47. Crystal structure of 2-(1H-indol-3-yl)ethan-1-aminium 2-(4-acetylphenoxy)acetate, C20H22N2O4
  48. Chalcogen bonds in the crystal structure of 4,7-dibromo-2,1,3-benzoselenadiazole, C6H2Br2N2Se
  49. The crystal structure of 1,4-bis((1H-benzimidazol-2-yl)methyl)-piperazine-2,5-dione dihydrate, C20H22N6O4
  50. The crystal structure of C19H20O8
  51. The crystal structure of KNa3Te8O18·5H2O exhibiting a 2[Te4O9]2− layer
  52. Erratum
  53. Erratum to: Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0359/html
Button zum nach oben scrollen