
9

Bin Cai*, Meng-En Zhu, Xin Bai, Yan-Ru Lin, Qian-Qian Guo and Yu-Ning Meng

The crystal structure of 5-bromopicolinic acid monohydrate, C₆H₆BrNO₃

https://doi.org/10.1515/ncrs-2020-0087 Received February 13, 2020; accepted March 10, 2020; available online April 9, 2020

Abstract

C₆H₆BrNO₃, triclinic, $P\bar{1}$ (no. 2), a = 7.0407(5) Å, b = 7.1597(6) Å, c = 8.3808(7) Å, $\alpha = 75.844(4)^{\circ}$, $\beta = 94.562(4)^{\circ}$, $\gamma = 76.306(4)^{\circ}$, V = 373.61(5) Å³, Z = 4, $R_{\rm gt}(F) = 0.0205$, $wR_{\rm ref}(F^2) = 0.0527$, T = 150(2) K.

CCDC no.: 1989348

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

All of the starting materials were used as received. 2.01 g (0.01 mol) 5-bromopicolinic acid was added to a solution mixed by 10 mL THF and 1 mL double-destilled water under room temperature. After stirring for 10 min, the solution was filtered and let evaporate automatically. Many colorless

Meng-En Zhu, Xin Bai, Yan-Ru Lin, Qian-Qian Guo and Yu-Ning Meng: School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466001, P.R. China

Table 1: Data collection and handling.

Crystal:	Colorless block
Size:	$0.26\times0.22\times0.10~\text{mm}$
Wavelength:	Mo Kα radiation (0.71073 Å)
μ:	5.46 mm ⁻¹
Diffractometer, scan mode:	Bruker APEX-II, $oldsymbol{arphi}$ and $oldsymbol{\omega}$
θ_{max} , completeness:	25.2°, >99%
$N(hkl)_{\text{measured}}$, $N(hkl)_{\text{unique}}$, R_{int} :	6538, 1352, 0.035
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs} > 2 \ \sigma(I_{\rm obs})$, 1226
N(param) _{refined} :	112
Programs:	Bruker [1], SHELX [2], Olex2 [3, 4]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2).

Atom	х	у	Z	$U_{iso}*/U_{eq}$
Br1	0.87131(4)	0.89027(4)	0.91538(3)	0.02585(11)
C1	0.7000(4)	0.8024(4)	0.8297(3)	0.0179(5)
C2	0.7346(4)	0.5969(4)	0.8438(3)	0.0230(5)
H2	0.845136	0.495181	0.896357	0.028*
C3	0.6028(4)	0.5432(4)	0.7787(3)	0.0210(5)
Н3	0.620305	0.403050	0.786730	0.025*
C4	0.4453(3)	0.6974(3)	0.7019(3)	0.0166(5)
C5	0.5386(3)	0.9485(4)	0.7523(3)	0.0182(5)
H5	0.516523	1.089667	0.744780	0.022*
C6	0.3008(3)	0.6445(3)	0.6290(3)	0.0177(5)
N1	0.4137(3)	0.8975(3)	0.6882(2)	0.0163(4)
01	0.1922(3)	0.7977(3)	0.5303(2)	0.0226(4)
02	0.2925(3)	0.4724(3)	0.6625(3)	0.0278(4)
01W	0.9172(3)	0.7506(3)	0.4137(3)	0.0291(5)
H1	0.114(5)	0.768(5)	0.499(4)	0.037(9)*
H1WA	0.834(5)	0.850(5)	0.394(4)	0.036(10)*
H1WB	0.873(5)	0.658(6)	0.405(5)	0.053(11)*

block crystals were harvested, which are suitable for single XRD measurement, yield 68.5% (based on 5-bromopicolinic acid).

Experimental details

The structure was solved by direct methods with the SHELXS-2018 program. All H-atoms from C atoms were positioned with idealized geometry and refined isotropically ($U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$) using a riding model with C—H=0.950 Å. The H-atom from O1 atom was positioned in accordance with a difference electron density peak and refined isotropic freely ($U_{\rm iso}({\rm H})=1.5U_{\rm eq}({\rm O})$, O—H=0.776 Å).

^{*}Corresponding author: Bin Cai, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466001, P.R. China, e-mail: caib@actinide.org. https://orcid.org/0000-0002-3573-5651

[∂] Open Access. © 2020 Bin Cai et al., published by De Gruyter. © BY

Comment

5-Bromopicolinic acid, one of the derivatives of picolinic acid, attracted attention over a long period of time and acted as organic ligand to form metal-organic complexes [5–11]. One of the derivatives, the methyl-5-bromo-6-methylpicolinate, has been reported as single crystal structure elsewhere [12]. To the best of our knowledge, the single crystal structure of 5-bromopicolinic acid has not been published.

As shown in the figure, the asymmetric unit is made of one neutral 5-bromopicolinic acid molecule and one water molecule, given the molecule formula of C₆H₆BrNO₃. All of the atoms are nearly co-planar, except the carboxyl group. The two C-O bond lengths from carboxyl group are 1.217 and 1.299 Å, indicating that the H atom from the carboxyl group is not removed. Furthermore, the refinement resulted that the N atom from the pyridine is not protonated and acts as an acceptor of the intermolecular O−H··· N hydrogen bond. There is a dimer formed by two 5-bromopicolinic acid molecules which are bridged by two water molecules through two $0-H\cdots 0$ hydrogen bonds. These dimers are linked with O-H...N hydrogen bonds to generate a hydrogen bonded strand, which runs along the crystallographic b axis. All bond lengths and angles of 5-bromopicolinic acid are comparable with its analogues [5-11].

Acknowledgements: This work was supported by Key Scientific and Technological Research Projects in Henan Province (192102210028) and the National Natural Science Foundation of China (51602358).

References

- Bruker. SAINT v8.37A. Bruker AXS Inc., Madison, WI, USA (2015).
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.

- Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H.: The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment-Olex2 dissected. Acta Crystallogr. A71 (2015) 59–75.
- Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42 (2009) 339–341.
- Quan, L.; Yin, H.; Wang, D.: Bis(5-bromo-pyridine-2-carboxylato-O)triphenyl-antimony(V). Acta Crystallogr. E64 (2008) m1503.
- Hong, M.; Yin, D.-H.; Zhang, Y.-W.; Jiang, J.; Li, C.: Coordination geometry of monomeric, dimeric and polymeric organotin(IV) compounds constructed from 5-bromopyridine-2-carboxylic acid and mono-, di-ortri-organotin precursors. J. Mol. Struct. 1036 (2009) 244–251.
- Chai, J.; Liu, Y.; Liu, B.; Yang, B.: Effect of substituent groups
 (R = CH₃, Br and CF₃) on the structure, stability and redox property of [Cr(R-pic)₂(H₂O)₂]NO₃·H₂O complexes. J. Mol. Struct.
 1150 (2017) 307–315.
- Baroud, A. A.; Mihajlovic-Lalic, L. E.; Gligorijevic, N.; Arandelovic, S.; Stankovic, D.; Radulovic, S.; Hecke, K. Van; Grguric-Sipka, S.: Ruthenium(II) bipyridine complexes: from synthesis and crystal structures to electrochemical and cytotoxicity investigation. J. Coord. Chem. 70 (2017) 831–847.
- Chai, J.; Liu, Y.; Dong, J.; Liu, B.; Yang, B.: Synthesis, structure, chemical and bioactivity behavior of eight chromium(III) picolinate derivatives Cr(R-pic)₃. Inorg. Chim. Acta 466 (2017) 151–159.
- Davidson, R.; Hsu, Y.-T.; Bhagani, Yufit, D.; Beeby, A.: Exploring the chemistry and photophysics of substituted picolinates positional isomers in iridium(III) bisphenylpyridine complexes.
 Organometallics 36 (2017) 2727–2735.
- Poljarevic, J. M.; Gal, G. T.; May, N. V.; Spengler, V.; Domotor, O.; Savic, A. R.; Grguric-Sipka, S.; Enyedy, E. A.: Comparative solution equilibrium and structural studies of half-sandwich ruthenium(II)(η⁶-toluene) complexes of picolinate derivatives. J. Inorg. Biochem. 181 (2018) 74–85.
- 12. Wu, Y.-M.; Wu, C.-M.; Wang, Y.: Methyl 5-bromo-6-methyl-picolinate. Acta Crystallogr. **E65** (2009) o134.