Startseite Crystal structure of caffeinium triiodide – caffeine (1/1), C16H21I3N8O4
Artikel Open Access

Crystal structure of caffeinium triiodide – caffeine (1/1), C16H21I3N8O4

  • Johannes Merkelbach , Martha A. Majewski und Guido J. Reiss EMAIL logo
Veröffentlicht/Copyright: 18. Mai 2018

Abstract

C16H21I3N8O4, monoclinic, P21/n (no. 14), a = 14.7257(7) Å, b = 10.5712(5) Å, c = 16.7501(8) Å, β = 114.408(2)°, V = 2374.4(2) Å3, Z = 4, Rgt(F) = 0.0254, wRref(F2) = 0.0760, T = 290(2) K.

CCDC no.: 1832314

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details of the crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Orange-brown block
Size:0.37 × 0.22 × 0.09 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:3.99 mm−1
Diffractometer, scan mode:APEX-II with ImS 2.0, φ and ω-scans
θmax, completeness:28.5°, >99%
N(hkl)measured, N(hkl)unique, Rint:50390, 6007, 0.031
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 5051
N(param)refined:298
Programs:Bruker programs [1], SHELX [2], [3],
DIAMOND [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
O10.49960(15)0.7740(2)0.92598(12)0.0515(5)
N10.34313(15)0.8568(2)0.86300(13)0.0355(4)
C10.42266(19)0.7887(2)0.86069(16)0.0357(5)
O20.19363(14)0.9609(2)0.79700(13)0.0476(5)
N20.41061(14)0.73470(19)0.78165(13)0.0323(4)
C20.32494(16)0.7579(2)0.71023(15)0.0283(4)
O30.57340(16)0.1957(2)0.58374(15)0.0543(5)
N30.17760(14)0.83646(19)0.62699(13)0.0319(4)
C30.25052(16)0.8314(2)0.71241(15)0.0291(4)
O40.38498(16)0.54937(19)0.55667(13)0.0465(5)
N40.29786(15)0.7182(2)0.62603(14)0.0330(4)
H40.324(2)0.669(3)0.608(2)0.048(10)*
C40.25565(18)0.8905(2)0.79041(16)0.0330(5)
N50.47505(16)0.36861(19)0.56947(14)0.0345(4)
C50.20813(18)0.7681(2)0.57761(16)0.0355(5)
H50.1726610.7559040.5176350.043*
N60.45126(18)0.2348(2)0.44954(15)0.0405(5)
C60.3573(3)0.9101(3)0.94827(18)0.0546(8)
H6A0.3948430.9871840.9581370.082*
H6B0.3928360.8505830.9938040.082*
H6C0.2934620.9273620.9486320.082*
N70.27222(17)0.4727(2)0.36275(16)0.0460(5)
C70.49322(19)0.6655(3)0.77591(19)0.0432(6)
H7A0.4694320.6177800.7223670.065*
H7B0.5213180.6089040.8248980.065*
H7C0.5433520.7241140.7766760.065*
N80.3187(2)0.2992(3)0.31194(16)0.0532(6)
C80.0848(2)0.9092(3)0.5969(2)0.0469(7)
H8A0.1000030.9979700.6033140.070*
H8B0.0487810.8870130.6313350.070*
H8C0.0447410.8904540.5363560.070*
C90.5049(2)0.2611(2)0.53707(18)0.0375(5)
C100.3755(2)0.3121(3)0.39890(18)0.0396(6)
C110.34984(19)0.4176(2)0.43303(18)0.0365(5)
C120.40038(18)0.4536(2)0.52121(17)0.0330(5)
C130.2569(3)0.3978(3)0.2937(2)0.0569(8)
H130.2075970.4132540.2379820.068*
C140.5278(2)0.3913(3)0.66411(19)0.0472(7)
H14A0.5585520.4732900.6738830.071*
H14B0.5780800.3277270.6896710.071*
H14C0.4812120.3877810.6906600.071*
C150.4778(3)0.1235(3)0.4119(3)0.0656(10)
H15A0.4629020.1391570.3512680.098*
H15B0.4400900.0519590.4164480.098*
H15C0.5476950.1064850.4431160.098*
C160.2194(3)0.5896(3)0.3628(3)0.0618(9)
H16A0.1884310.6224320.3042420.093*
H16B0.2657270.6505660.4002570.093*
H16C0.1691650.5724750.3840050.093*
I1Aa0.46702(3)1.10662(5)0.79487(3)0.05997(11)
I2Aa0.32749(2)1.09822(2)0.61021(2)0.04423(7)
I3Aa0.19370(2)1.07608(8)0.42627(3)0.07731(17)
I1Bb0.4784(10)1.0801(14)0.7790(9)0.05997(11)
I2Bb0.32749(2)1.09822(2)0.61021(2)0.04423(7)
I3Bb0.1870(8)1.137(2)0.4414(8)0.07731(17)
  1. a Occupancy: 0.967(2); b Occupancy: 0.033(2).

Source of material

The title compound caffeinium triiodide – caffeine (1/1) [systematic name: 1,3,7-trimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-9-ium triiodide – 1,3,7-trimethyl-3,7-dihydro-1H-purine-2,6-dione (1/1)] was obtained from a mixing solution of ethanol and equimolar amounts of caffeinium triiodide hydrate and caffeine. The crystals show an orange colour and are easily distinguishable from the dark caffeinium triiodide hydrate crystals.

Experimental details

The crystal used for the study was harvested directly from the mother liquor. Data collection followed the standard procedures of the Bruker APEX2 software [1]. Absorption corection was applied using the SADABS program implemented in the APEX2 program system [1]. Structure solution with the SHELXT [2] yielded all non-hydrogen atoms. During the latter stages of the refinement [3] a slight disorder of the triiodide anion was taken into account (not shown in the figure). The largest difference electron density peaks and holes are 0.99 and −0.88 e Å−3, respectively. The largest difference electron peaks (down to 0.51 e Å−3) are less than 0.84 Å away from iodine positions. Coordinates and Uiso of the H4 hydrogen atom (cf. the figure) were refined freely. All other hydrogen atoms were included using the standard riding models of the SHELX System (AFIX 43; 137) [3].

Comment

A report on the first triiodide (strychninium triiodide) dates back to the beginning of the 19th century [5]. A reinvestigation by combustion analysis in 1865 verified these findings [6]. In the course of the aforementioned study caffeinium triiodide monohydrate (caffHI3 ⋅ H2O) was identified. Further investigations in the 19th century on the caffeine/HI system followed with a view to analytical aspects [7], [8]. A preliminary structure determination of caffHI3 ⋅ H2O has been reported [9] and a reconsideration of this compound is in progress [10]. As part of a study on polyiodides trapped in hydrogen bonded surroundings [11], [12], [13], we have reinvestigated the system caffeine/HI/H2O/I2. In the course of this study, the new compound caffHI3 ⋅ caff was obtained. The appearance of this compound was expected, as we have already shown that depending on the pH value organic aminium halogenides co-crystals containing the organic aminium cation, the counter anion and one additional equivalent of the neutral organic amine can be easily obtained [11], [14], [15]. Even though caffeine has been known for many decades, studies on the medical and biological properties are still in progress [16]. Despite this interest in caffeine, we were surprised that structures of the N-protonated caffeine are still rare.

The asymmetric unit of the title crystal structure contains one N-protonated caffeinium cation, one triiodide counter anion and one caffeine molecule (cf. the figure). Bond lengths and angles in the title crystal structure are in the expected ranges. Caffeine is a weak base, a property which is expressed by its structural chemistry. Protonation at the 9-position of the purine moiety (in the title structure at N4) only takes place on reaction with strong acids [17], [18], [19], [20], [21]. Weak organic acids form co-crystals without any transfer of the proton from the organic acid to the caffeine molecule [22], [23]. In the title structure the protonated N atom of the caffeinium cation donates one hydrogen bond to the adjacent neutral caffeine molecule (cf. the figure; N—H = 0.78(3) Å; N⋯O = 2.722(3) Å). The caffeinium cation as well as the caffeine molecule are almost planar [rms deviation of fitted atoms (N1—N4; C1—C5) = 0.022 Å; rms deviation of fitted atoms (N5—N8; C9—C13) = 0.010 Å]. The dihedral angle is 21.37(9)°. In the packing scheme of the title crystal structure there is one triiodide anion above and another one below each caffeinium cation, which rules out any kind of π-π interactions. This feature of packing has been reported earlier [24]. The neutral caffeine molecules are pairwise arranged with an interplanar distance of 3.319(6) Å. The I—I distances in the triiodide anion are in the typical range for triiodide anions not involved in strong secondary interactions [11], [12], [13]. A detailed discussion of the geometric parameters of the anion based on the crystal structure is ruled out by its disorder. Furthermore, there are no intermolecular I⋯I halogen bonds as the shortest I⋯I distances are >4.3 Å.

To obtain more information about the geometry of the triiodide anion in the title structure a Raman spectrum was recorded (MultiRAM, Bruker Optics, range: 4000–50 cm−1). A strong Raman signal at ∼110 cm−1 was detected, which features a shoulder towards higher wavenumbers, and a weak signal at 216 cm−1. Both signals are in perfect accord with a roughly symmetrical I3 anion [25], [26], [27]. A significant asymmetry, which may be introduced by halogen [28], [29], [30] or hydrogen bonds [12] shifts the strongest Raman signals into the 150–165 cm−1 range.

This contribution forms part of the general interest on stacking properties of caffeine [31], [32], [33].

Acknowledgements

We gratefully acknowledge support by the Ministry of Innovation, Science and Research of North-Rhine Westphalia and the German Research Foundation (DFG) for financial support (Bruker diffractometer, APEX2-Dual Source; INST 208/589-1, project no. 208167569).

References

BRUKER. SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, WI, USA (2009).Suche in Google Scholar

Sheldrick, G. M.: SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. A71 (2015) 3–8.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central

Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.10.1107/S2053229614024218Suche in Google Scholar PubMed PubMed Central

Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Ver. 4.5.1. Crystal Impact, Bonn, Germany, 2018.Suche in Google Scholar

Pelletier, P.-J.; Caventou, J. B.: Sur un nouvel alcali végétal (la strychine) trouvé dans la fève de Saint-Ignace, la noix vomique, etc. Ann. Chim. Phys. 10 (1819) 142–177.Suche in Google Scholar

Tilden, W. A.: On the periodides of some of the organic bases. J. Chem. Soc. 18 (1865) 99–105.10.1039/JS8651800099Suche in Google Scholar

Gomberg, M.: On the action of Wagner’s reagent upon caffeine and a new method for the estimation of caffeine. J. Am. Chem. Soc. 18 (1896) 331–342.10.1021/ja02090a002Suche in Google Scholar

Gomberg, M.: Perhalides of caffeine. J. Am. Chem. Soc. 18 (1896) 347–377.10.1021/ja02090a004Suche in Google Scholar

Herbstein, F.; Kaftory, M.; Kapon, M.; Saenger, W.: Structures of three crystals containing approximately – linear chains of triiodide ions. Z. Kristallogr. 154 (1981) 11–30.10.1524/zkri.1981.154.1-2.11Suche in Google Scholar

Reiss, G. J.; Majewski, M. A.; Merkelbach, J.: Higher symmetry at lower temperatur: reinvestigation of the historic compound caffeinium triiodide monohydrate. 26th Annual Conference of the German Crystallographic Society, 2018, Essen, Germany. Z. Kristallogr. Suppl. 38 (2018) 93–94.Suche in Google Scholar

Reiss, G. J.: Two iodine-rich (dimethylphosphoryl)methanaminium iodides. Z. Kristallogr. CM 232 (2017) 789–795.10.1515/zkri-2017-2071Suche in Google Scholar

van Megen, M.; Reiss, G. J.: I62− anion composed of two asymmetric triiodide moieties: a competition between halogen and hydrogen bond. Inorganics 1 (2013) 3–13.10.3390/inorganics1010003Suche in Google Scholar

Reiss, G. J.; Leske, P. B.: The twinned crystal structure of bis((4-aminopyridin-1-ium) iodide triiodide, C20H28I8N8. Z. Kristallogr. NCS 229 (2014) 452–454.10.1515/ncrs-2014-0193Suche in Google Scholar

Reiss, G. J.: Constructor graphs as useful tools for the classification of hydrogen bonded solids: the case ctudy of the cationic (dimethylphosphoryl)methanaminium (dpmaH+) tecton. Crystals 6 (2016) 6.10.3390/cryst6010006Suche in Google Scholar

Buhl, D.; Gün, H.; Jablonka, A.; Reiss, G. J.: Synthesis, structure and spectroscopy of two structurally related hydrogen bonded compounds in the dpma/HClO4 system; dpma = (dimethylphosphoryl)methanamine. Crystals 3 (2013) 350–362.10.3390/cryst3020350Suche in Google Scholar

McLellan, T. M.; Caldwell, J. A.; Lieberman, H. R.: A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 71 (2016) 294–312.10.1016/j.neubiorev.2016.09.001Suche in Google Scholar

Mercer, A.; Trotter, J.: Crystal and molecular structure of 1,3,7-trimethyl-2,6-purinedione hydrochloride dihydrate (caffeninium hydrochloride dehydrate). Acta Crystallogr. B34 (1978) 450–453.10.1107/S0567740878003337Suche in Google Scholar

García-Raso, A.; Fiol, J. J.; Tasada, A.; Prieto, M. J.; Moreno, V.; Mata, I.; Molins, E.; Bunič, T.; Golobič, A.; Turel, I.: Ruthenium complexes with purine derivatives: Syntheses, structural characterization and preliminary studies with plasmidic DNA. Inorg. Chem. Commun. 8 (2005) 800–804.10.1016/j.inoche.2005.05.023Suche in Google Scholar

Chandramohan, A.; Gayathri, D.; Velmurugan, D.; Ravikumar, K.; Kandhaswamy, M. A.: 1,3,7-Trimethylxanthenium 2,4,6-trinitrophenolate. Acta Crystallogr. E63 (2007) o2495–o2496.10.1107/S1600536807017825Suche in Google Scholar

Jerin, C. V.; Athimoolam, S.: Caffeinium bisulfate monohydrate. Acta Crystallogr. E67 (2011) o2290.10.1107/S1600536811031540Suche in Google Scholar

Gurau, G.; Kelley, S. P.; Di Bona, K. R.; Smiglak, M.; Rogers, R. D.: Anhydrous caffeine hydrochloride and its hydration. Cryst. Growth Des. 12 (2012) 4658–4662.10.1021/cg300878jSuche in Google Scholar

Bucar, D.-K.; Day, G. M.; Halasz, I.; Zhang, G. G. Z.; Sander, J. R. G.; Reid, D. G.; MacGillivray, L. R.; Duer, M. J.; Jones, W.: The curious case of (caffeine)⋅(benzoic acid): how heteronuclear seeding allowed the formation of an elusive cocrystal. Chem. Sci. 4 (2013) 4417–4425.10.1039/c3sc51419fSuche in Google Scholar

Vangala, V. R.; Chow, P. S.; Schreyer, M.; Lau, G.; Tan, R. B. H.: Thermal and in situ X-ray diffraction analysis of a dimorphic co-crystal, 1:1 caffeine–glutaric acid. Cryst. Growth Des. 16 (2016) 578–586.10.1021/acs.cgd.5b00798Suche in Google Scholar

Cingi, M. B.; Lanfredi, A. M. M.; Tiripicchio, A.; Bandoli, G.; Clemente, D. A.: Crystal structure of 2:1 molecular complexes of caffeine with hexaaquamagnesium(II) bromide and hexaaquamanganese(II) triiodide iodide. Inorg. Chim. Acta 52 (1981) 237–243.10.1016/S0020-1693(00)88603-XSuche in Google Scholar

Batalov, V. I.; Dikhtiarenko, A.; Yushina, I. D.; Bartashevich, E. V.; Kim, D. G.; García-Granda, S.: Crystal structure of (E)-3-(1-iodoethylidene)-2,3-dihydro-[1, 4]thiazino-[2,3,4-ij]quinolin-4-ium triiodide, C13H11I4NS. Z. Kristallogr. NCS 229 (2014) 195–196.10.1515/ncrs-2014-0096Suche in Google Scholar

Marks, T. J.; Kalina, D. W.: Highly conductive halogenated low-dimensional materials. in Extended linear chain compounds; Miller, J. S., Ed.; Plenum Press, New York, USA, 1982; Vol. 1, pp. 197–331.10.1007/978-1-4613-3249-7_6Suche in Google Scholar

Otsuka, M.; Mori, H.; Kikuchi, H.; Takano, K.: Density functional theory calculations of iodine cluster anions: structures, chemical bonding nature, and vibrational spectra. Comput. Theor. Chem. 973 (2011) 69–75.10.1016/j.comptc.2011.07.002Suche in Google Scholar

Reiss, G. J.: I5 polymers with a layered arrangement: synthesis, spectroscopy, and structure of a new polyiodide salt in the nicotine/HI/I2 system. Naturforsch. B70 (2015) 735–739.10.1515/znb-2015-0092Suche in Google Scholar

Bartashevich, E. V.; Batalov, V. I.; Yushina, I. D.; Stash, A. I.; Chen, Y. S.: Nontypical iodine-halogen bonds in the crystal structure of (3E)-8-chloro-3-iodomethylidene-2,3-dihydro-1,4-oxazino[2,3,4-ij]quinolin-4-ium triiodide. Acta Crystallogr. C72 (2016) 341–345.10.1107/S2053229616003934Suche in Google Scholar PubMed

Bartashevich, E. V.; Stash, A. I.; Batalov, V. I.; Yushina, I. D.; Drebushchak, T. N.; Boldyreva, E. V.; Tsirelson, V. G.: The staple role of hydrogen and halogen bonds in crystalline (E)-8-((2,3-diiodo-4-(quinolin-8-ylthio)but-2-en-1-yl)thio)quinolin-1-ium triiodide. Struct. Chem. 27 (2016) 1553–1560.10.1007/s11224-016-0785-ySuche in Google Scholar

Ulanowska, K.; Piosik, J.; Gwizdek-Wiśniewska, A.; Wegrzyn, G.: Formation of stacking complexes between caffeine (1,2,3-trimethylxanthine) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine may attenuate biological effects of this neurotoxin. Bioorg. Chem. 33 (2005) 402–413.10.1016/j.bioorg.2005.07.004Suche in Google Scholar PubMed

Tavagnacco, L.; Gerelli, Y.; Cesáro, A.; Brady, J. W.: Stacking and branching in self-aggregation of caffeine in aqueous aolution: from the supramolecular to atomic scale clustering. J. Phys. Chem. B120 (2016) 9987–9996.10.1021/acs.jpcb.6b06980Suche in Google Scholar PubMed

Johnson, N. O.; Light, T. P.; MacDonald, G.; Zhang, Y.: Anion–caffeine interactions studied by 13C and 1H NMR and ATR–FTIR spectroscopy. J. Phys. Chem. B121 (2017) 1649–1659.10.1021/acs.jpcb.6b12150Suche in Google Scholar PubMed

Received: 2018-03-27
Accepted: 2018-04-25
Published Online: 2018-05-18
Published in Print: 2018-08-28

©2018 Johannes Merkelbach et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Artikel in diesem Heft

  1. Cover and Frontmatter
  2. Crystal structure of 2-amino-4-(2,4-dinitrophenyl)-3-cyano-7,7-dimethyl-5-oxo-4H-5,6,7,8-tetrahydrobenzo-pyran, C18H16N4O6
  3. Crystal structure of catena-poly[(μ3-5-carboxy-2-(pyridin-4-yl)benzoato-κ5O,O′:O′′,O′′′:O′′′)(1,10-phenanthroline-κ2N,N′)cadmium(II)], C100H60N12O16Cd4
  4. Crystal structure of 2-amino-4-(3,4,5-trimethoxy-phenyl)-7-methyl-5-oxo-4H,5H-pyrano[4,3-b]pyran-3-carbonitrile, C19H18N2O6
  5. Crystal structure of 1-{4-[(2-hydroxy-5-methyl benzylidene)amino]phenyl}ethanone O-ethyl-oxime, C18H20N2O2
  6. Crystal structure of bis{4-methyl-2-((E)-((4-((E)-1-(ethoxyimino)ethyl)phenyl)imino)methyl)phenolato-κ2N,O)}copper(II), C36H38CuN4O4
  7. Crystal structure of bis{5-methoxy-2-((E)-((4-((E)-1-(methoxyimino)ethyl)phenyl)imino)methyl)phenolato-κ2N,O}nickel(II), C34H34N4NiO6
  8. Crystal structure of poly[μ8-3-carboxyphthalat-κ8-O:O1,O1,O1:O2:O3,O3:O4)silver(I)], C9H4Ag2O6
  9. Crystal structure of 2-((E)-((4-((E)-1-(hydroxyimino)ethyl)phenyl)iminio)methyl)-5-methoxyphenolate, C16H16N2O3
  10. Crystal structure of (E)-1-(4-(((E)-2-hydroxy-3-methoxybenzylidene)amino)phenyl)ethan-1-one oxime, C16H16N2O3
  11. The crystal structure of 2-(tert-butyl)-4-chloro-6-phenyl-1,3,5-triazine, C13H14Cl1N3
  12. Crystal structure of (6,6′-(((((2-aminoethyl)azanediyl)bis(ethane-2,1-diyl))bis(azanylylidene))bis(methanylylidene))bis(2,4-dichlorophenolato)-κ6N,N′,N′′,N′′′,O,O′)cadmium(II) – ethanol – water (1/1/1), C22H28CdCl4N4O4
  13. Crystal structure of 6-chloro-N-methylpyrimidin-4-amine, C5H6ClN3
  14. Synthesis and crystal structure of bis{((E)-((4-((E)-1-(methoxyimino)ethyl)phenyl)imino)methyl)-2-naphtholato-κ2N,O}nickel(II), C40H34N4NiO4
  15. Crystal structure of (E)-2-(4-bromophenyl)ethenesulfonyl fluoride (C8H6BrFO2S)
  16. Synthesis and crystal structure of 2,2′-ethylenedioxybis(benzimide)-2,2′-bis[O-(1-propyloxyamide)]oxime-4,4′,6,6′-tetrachlorodiphenol, C36H34Cl4N4O8
  17. Crystal structure of bis(N-(1-(pyrazin-2-yl)ethylidene)nicotinohydrazonato-κ3N,N′,O)cadmium(II) – methanol (1/1), C26H28N10O4Zn
  18. Crystal structure of diaqua-(N-(1-(pyrazin-2-yl)ethylidene)nicotinohydrazonato-κ3N,N′,O)-bis(nitrato-κ2O,O′)samarium(III), C12H14N7O9Sm
  19. Crystal structure of hexaaqua-{(E)-N′-(1-(pyrazin-2-yl)ethylidene)isonicotinohydrazide-κ3N,N′,O}praseodym(III) trichloride monohydrate, C12H25Cl3N5O8Pr
  20. Crystal structure of methyl 4-(3-cyanophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-quinoline-3-carboxylate, C21H22N2O3
  21. Crystal structure of ethyl 2-amino-4-(2-methoxyphenyl)-5-oxo-4H,5H-pyrano[3,2-c]chromene-3-carboxylate, C22H19NO6
  22. Crystal structure of 2,12-dibromo-5,15-dihexyl-5,15-dihydrobenzo [1,2-b:5,6-c′]dicarbazole, C38H38Br2N2
  23. Crystal structure of ethyl 2-amino-4-(3-hydroxy-4-methoxyphenyl)-5-oxo-4H,5H-pyrano[3,2-c]chromene-3-carboxylate, C22H19NO7
  24. Crystal structure of ethyl 2-amino-4-(3,4-dimethylphenyl)-5-oxo-4H,5H-pyrano[3,2-c] chromene-3-carboxylate, C23H21NO5
  25. Crystal structure of 2-hydroxy-N′-(pyrimidin-2-yl)benzohydrazide, C11H10N4O2
  26. Crystal structure of 2-(3,4-dimethylphenyl)-1,8-naphthyridine, C16H14N2
  27. Crystal structure of ethyl 4-(3,4-dimethylphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C23H29NO3
  28. Crystal structure of ethyl 4-(3-cyanophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C22H24N2O3
  29. Crystal structure of 7β,9β-dihydroxy-15-oxo-ent-kauran-16-en-19,6β-olide, C20H26O5
  30. Crystal structure of Ent-7β,20-epoxy-kaur-16-en-1β,6α,7α,14α,15α-pentaol-20-one, C20H30O8
  31. Crystal structure of 1,4-bis(benzo[d][1,3]dioxol-5-ylmethyl)dihydro-1H,3H-furo[3,4-c]furan-3a(4H)-yl acetate, C22H20O8
  32. Crystal structure of methyl 2-((4-((2-nitrophenoxy)methyl)-1H-1,2,3-triazol-1-yl)methyl) benzoate, C18H16N4O5
  33. Crystal structure of diaqua-bis(5-carboxy-1-methyl-1H-imidazole-4-carboxylato-κ2N,O)zinc(II), C12H14N4O10Zn
  34. Hydrothemal synthesis and crystal structure of triaqua-bis(5-carboxy-1-methyl-1H-imidazole-4-carboxylato-κ2N,O1O)manganese(II), C12H16N4O11Mn
  35. Redetermination of methyl 4-(4-chlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydro-quinoline-3-carboxylate, C20H22ClNO3
  36. Crystal structure of bis{1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-methyl-imdazol)-κN}-dithiocyano-κN-zinc(II) C24H22N12S2Zn
  37. Crystal structure of (5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)methyl furan-2-carboxylate, C10H7FN2O5
  38. Crystal structure of bis(η6-cymene)-tri-μ2-chlorido-ruthenium(II) tetrafluoroborate, C20H28BCl3F4Ru2
  39. Crystal structure of 3,6-diphenyl-7H-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazine, C16H12N4S
  40. Synthesis and crystal structure of 1,3-bis[(3,4-dicyano)phenoxy]-4,6-dinitro-benzene, C22H8N6O6
  41. Crystal structure of ethyl 2-amino-4-(2,6-dichlorophenyl)-7-methyl-5-oxo-4H,5H-pyrano [4,3-b]pyran-3-carboxylate, C18H15Cl2NO5
  42. Crystal structure of poly[μ3-hydroxy-(μ5-(5-(2-carboxylatophenoxy)isophthalato-κ6O1:O2:O3:O4:O5,O6)-(μ2-1,4-di(1H-imidazol-1-yl)butane-κ2N:N′)dicobalt(II)] hemihydrate, C25H22Co2N4O8.5
  43. Crystal structure of methyl 4-(4-bromophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C20H22BrNO3
  44. Crystal structure of 9,10-dimethoxy-5,6-dihydro-[1,3]dioxolo[4,5-g]isoquinolino[3,2-a]isoquinolin-7-ium 5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-7-olate trihydrate, C35H33NO12
  45. Crystal structure of 2,5-bis(4-(10H-phenothiazin-10-yl)phenyl)-1,3,4-oxadiazole, C38H24N4OS2
  46. The crystal structure of (E)-2-(4-hydroxyphenyl)-5-(prop-1-en-1-yl)benzofuran-3-carbaldehyde, C18H14O3
  47. Crystal structure of bis{5H-dibenzo[c,f][1,5]oxabismocin-12(7H)-yl} carbonate, C29H24O5Bi2
  48. Crystal structure of ethyl-5-formyl-3,4-dimethylpyrrole-2-carboxylate — N-(5-ethoxycarbonyl-3,4-dimethylpyrrole)-2-methylene-5-nitrobenzene-1,2-diamine (1:1), C26H31N5O7
  49. Crystal structure of (E)-2-(1-((2-aminophenyl)imino)ethyl)-6-bromo-4-chlorophenol, C14H12BrClN2O
  50. Crystal structure of (Z)-2-(4-chlorophenyl)-4-(furan-2-yl(phenylamino)methylene)-5-methyl-2,4-dihydro-3H-pyrazol-3-one, C21H16ClN3O2
  51. Crystal structure of N2,N4-dibutyl-6-chloro-N2,N4-bis(1,2,2,6,6-pentamethylpiperidin-4-yl)-1,3,5-triazine-2,4-diamine, C31H58ClN7 – Important intermediate of Chimassorb 119 synthesis
  52. Crystal structure of 1-(5-bromo-2-(4-methoxyphenyl)-1H-indol-7-yl)ethanone oxime, C17H15BrN2O2
  53. Crystal structure of poly-{diaqua-bis[(μ2-3-nitrobenzenesulfonylglycine-κ3N:O:O′)(4,4′-bipyridine)manganese(II)]}-dimethylformamide (1/1), C39H35Mn2N9O15S2
  54. Crystal structure of 4-(dimethylamino)-1-(prop-2-yn-1-yl)pyridin-1-ium perchlorate, C10H13ClN2O4
  55. Crystal structure of 2-amino-5-oxo-4-(4-chloro-phenyl)-4,5,6,7-tetrahydro-cyclopenta[b]pyran-3-carbonitrile, C15H11ClN2O2
  56. Crystal structure of triaqua-(pyridine-2,6-dicarboxylato-κ3O,N,O′)cobalt(II) – 6-phenyl-1,3,5-triazine-2,4-diamine (1/1), C16H18CoN6O7
  57. Crystal structure of ethyl 2-amino-4-(3-cyanophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, C21H22N2O4
  58. Crystal structure of 2-(4-chloro-2,6-dinitrophenyl)-1-(4-chloro-3-nitrophenyl)diazene 1-oxide, C12H5Cl2N5O7
  59. Crystal structure of 3,4-dimethyl-2,6-dinitrophenol, C8H8N2O5
  60. Crystal structure of 1,2-dimethyl-3,5-dinitrobenzene, C8H8N2O4
  61. Crystal structure of ethyl 4-(3-chlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C21H24ClNO3
  62. Crystal structure of N-(4-chlorophenyl)-2-(2,6-dichlorophenyl)acetamide, C14H10Cl3NO
  63. Crystal structure of 2-amino-4-(4-fluorophenyl)-3-cyano-5-oxo-4H,5H-pyrano[3,2c] chromene, C19H11FN2O3
  64. The crystal structure of (4-nitrophenyl) (5-ferrocenyl-3-(trifluoromethyl)-1H-pyrazol-1-yl) methanone, C21H12F3FeN3O3
  65. Crystal structure of 5,5′-((3-hydroxy-4-methoxyphenyl)methylene)bis(1,3-diethyl-6-hydroxy-2-thioxo-2,3-dihydropyrimidin-4(1H)-one), C24H30N4O6S2
  66. Crystal structure of (3aR,4R,5R,7R,8S,9R,9aS,12R)-7-ethyl-5-(1-hydroxy-2-((R)-3-hydroxypyrrolidin-1-yl)ethoxy)-4,7,9,12-tetramethyldecahydro-4,9a-propanocyclopenta[8]annulene-3,8-diol – a pleuromutilin derivative, C26H41NO5
  67. Crystal structure of bis(μ2-3-formyl-5-methoxy-2-oxidobenzoato-κ3O,O′:O′)-hexapyridine-dicadmium(II) – pyridine (1/1), C53H47Cd2N7O10
  68. Crystal structure of ethyl 2-amino-4-(3-methoxyphenyl)-5-oxo-4H,5H-pyrano[3,2-c]chromene-3-carboxylate, C22H19NO6
  69. Crystal structure of methyl 4-(3,5-ditrifluoromethylphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate — water (2/1), C22H21F6NO3
  70. Crystal structure of 2-(4-bromophenyl)-2,3-dihydro-1H-perimidine, C17H13BrN2
  71. Crystal structure of (5-ethyl-2-(4-methoxyphenyl)-1,3-dioxan-5-yl)methanol, C14H20O4
  72. Crystal structure of (E)-N-(4-bromo-2-(1-(hydroxyimino)ethyl)phenyl)benzamide, C15H13BrN2O2
  73. Crystal structure of caffeinium triiodide – caffeine (1/1), C16H21I3N8O4
  74. Crystal structure of methyl 2-methyl-4-(3-methoxyphenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C19H21NO4
  75. Crystal structure of (E)-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-1-phenylprop-2-en-1-one, C23H28O2
  76. Crystal structure of 1,4-bis(2-azidoethyl)piperazine-1,4-diium dichloride, C8H18N8Cl2
  77. The crystal structure of dichlorido-(1,3-bis(2,6-dimethylphenyl)-1H-imidazol-2(3H)-ylidene)-(morpholine-κ1N)palladium(II), C23H29Cl2N3OPd(II)
  78. The crystal structure of 1-((5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-yl)methyl)-1,3-diphenylurea, C24H21ClN4O
  79. Crystal structure of 6-(2-bromoacetamido)tetrahydro-2H-pyran-2,3,4,5-Tetrayl tetraacetate, C16H22BrNO10
  80. Crystal structure of 5-methylpyrazine-2-carbohydrazide, C6H8N4O
  81. Crystal structure of catena-poly[(μ2-5-(tert-butyl)isophthalato-κ4O,O′:O′′,O′′′)(-4′-(pyridin-4-yl)-2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)manganese(II)], C32H28N4O5Mn
Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2018-0125/html
Button zum nach oben scrollen