Home Evaluation of the convolution sums ∑al+bm=n lσ(l) σ(m) with ab ≤ 9
Article Open Access

Evaluation of the convolution sums ∑al+bm=n lσ(l) σ(m) with ab ≤ 9

  • Yoon Kyung Park EMAIL logo
Published/Copyright: December 5, 2017

Abstract

The generating functions of divisor functions are quasimodular forms of weight 2 and their products belong to a space of quasimodular forms of higher weight. In this article, we evaluate the convolution sums

al+bm=nlσ(l)σ(m)

for all positive integers a, b and n with ab ≤ 9 and gcd(a, b) = 1.

MSC 2010: 11A25; 11F11; 11F20

1 Introduction

Let a and b be positive integers and let ν be a nonnegative integer. Define Wa,b(ν) (n) by the convolution sum

Wa,b(ν)(n):=l,m1al+bm=nlvσ(l)σ(m),

where σ(n) := σ1(n) and

σs(n):=d|nds

for any positive integers s and n. Denote Wa,b(n) = Wa,b(0) (n).

This is a specialized form of the convolution sum which Lahiri introduced in [1]:

S[(r1,,rt),(s1,,st),(a1,,at)](n)=m1,,mtZ>0a1m1++atmt=nm1r1mtrtσs1(m1)σst(mt)

and clearly,

Wa,b(ν)(n)=S[(ν,0),(1,1),(a,b)](n).

The convolution sum Wa,b(n) has been studied since the mid-nineteenth century. The following table contains references for it:

Mathematicians (year) cases
Besge(1862) [2], Glaisher(1885) [3], Ramanujan (1916) [4] ab = 1
Huard-Ou-Spearman-Williams (2002) [5] ab = 2, 3, 4
Lemire-Williams (2005) [6], Cooper-Toh (2009) [7] ab = 5, 7
Alaca-Williams (2007) [8] ab = 6
Williams (2008-9) [9, 10] ab = 8, 9
Royer (2007) [11] ab = 11, 13 and (a, b) = (1, 10), (1, 14)
Alaca-Alaca-Williams (2006-8) [12, 13, 14, 15] ab = 12, 16, 18, 24
Ramakrishnan-Sahu (2013) [16] ab = 15
Cooper-Ye (2014) [17] ab = 20 and (a, b) = (2, 5)
Chan-Cooper (2008) [18] ab = 23
Xia-Tian-Yao (2014) [19] ab = 25
Ntienjem (2015, 2017) [20, 21, 22] ab = 14, 22, 26, 28, 30, 33, 40, 44, 52, 56
Alaca-Kesicioglu (2016) [23] ab = 27, 32
Ye (2015) [24] ab = 36

Although it may be possible to evaluate Wa,b(n) by means of identities of elementary functions for small a and b, when ab grows, it is easier to use quasimodular forms because Wa,b(n) is a coefficient of a certain quasimodular form of level ab and weight 4 and the dimension of the space of quasimodular forms is known.

In this paper we focus on the convolution sum

Wa,b(1)(n)=al+bm=nlσ(l)σ(m)

for ab ≤ 9 with (a, b) = 1 since Wda,db(1)(n)=Wa,b(1)(n/d) for d | n. The convolution sum W1,1(1) (n) is

l+m=nlσ(l)σ(m)=n245σ3(n)+(16n)σ(n)

since one can obtain 2W1,1(1)(n)=nW1,1(0)(n) easily.

Before stating our main theorem we need the functions δN(q) and ΔN(q) defined on the region |q| < 1:

Definition 1.1

Δ3(q):=qE6(q)E6(q3)=n=1c3(n)qn,Δ4(q):=qE12(q2)=n=1c4(n)qn,δ5(q):=qE4(q)E4(q5)=n=1b5(n)qn,Δ5(q):=14δ5(q)5P(q5)P(q)=n=1c5(n)qn,δ6(q):=qE2(q)E2(q2)E2(q3)E2(q6)=n=1b6(n)qn,Δ6(q):=14δ6(q)6P(q6)3P(q3)+2P(q2)P(q)=n=1c6(n)qn,δ7(q):=qE16(q)E8(q7)+13qE12(q)E12(q7)+49q2E8(q)E16(q7)1/3=n=1b7(n)qn,Δ7,1(q):=qE10(q)E2(q7)=n=1c7,1(n)qn,Δ7,2(q):=q2E6(q)E6(q7)=n=1c7,2(n)qn,Δ7,3(q):=q3E2(q)E10(q7)=n=1c7,3(n)qn,δ8(q):=qE4(q2)E4(q4)=n=1b8(n)qn,Δ8(q):=δ8(q)(2P(q4)P(q2))=n=1c8(n)qn,δ9(q):=qE(q3)8=n=1b9(n)qn,Δ9(q):=18δ9(q)9P(q9)P(q)=n=1c9(n)qn,

where

E(q):=n=1(1qn),P(q):=124n=1σ(n)qn,Q(q):=1+240n=1σ3(n)qn,R(q):=1504n=1σ5(n)qn.

The following result is our main theorem.

Theorem 1.2

Let Wa,b(1) (n) be the modified convolution sum of divisor functions

Wa,b(1)(n):=al+bm=nlσ(l)σ(m).

Assume that a and b are positive integers with ab ≤ 9 and gcd(a, b) = 1. Then Wa,b(1) (n) can be explicitly expressed as a linear combination of σs(n/d), bd(n/d) and cd(n/d) for positive integers d, dwith dd′ | n for all positive integers n and s = 1, 3 or 5.

The explicit linear combinations for Wa,b(1) (n) are given in Theorems 3.1(a < b) and 3.2(a > b) of Section 3.

This paper is organized as follows. We recall in Section 2 the theory of quasimodular forms and find a basis for the space of quasimodular forms which we need in Section 3. In Section 3, we find the identities between the quasimodular forms and the basis (Lemma 3.3) to prove our main theorems (Theorem 3.1 and 3.2) and write Wa,b(1) as the linear combination of divisor functions and the coefficients of certain cuspforms. We use the MAPLE program to find the identities between quasimodular forms.

2 Quasimodular forms

For a positive integer N the congruence subgroup Γ0(N) is defined as a subgroup of SL2(ℤ) by

Γ0(N):=abcdSL2(Z):c0(modN).

We use the theory of quasimodular forms to prove our main theorem. One can refer to [25] for more details. The space M~k(k/2) 0(N)) of quasimodular forms of weight k and depth ≤k/2 on Γ0(N) has the following structure relationship:

M~k(k/2)(Γ0(N))=j=0k/21DjMk2j(Γ0(N))<Dk/21P(q)>,

where D is the differential operator defined by D:=qddq and D(∑n≥0 cnqn) = ∑n≥0 ncnqn. Thus, the space M~6(3) 0 (N)) of quasimodular forms of level N of weight 6 and depth ≤ 3 is

M~6(3)(Γ0(N))=M6(Γ0(N))DM4(Γ0(N))D2M2(Γ0(N))<D2P(q)>

for any positive integer N. More explicitly, M~6(3) 0(N)) is spanned by the functions D2P(qd), DQ(qd), R(qd), d(qd) and Δd(qd) for positive divisors d and d′ of N with dd′ | N. Hence we get the following basis.

Lemma 2.1

For N = 2, …, 9, let 𝓑N be the set of quasimodular forms defined by

B2=D2P(q),D2P(q2),DQ(q),DQ(q2),R(q),R(q2),B3=D2P(q),D2P(q3),DQ(q),DQ(q3),R(q),R(q3),Δ3(q),B4=D2P(q),D2P(q2),D2P(q4),DQ(q),DQ(q2),DQ(q4),R(q),R(q2),R(q4),Δ4(q),B5=D2P(q),D2P(q5),DQ(q),DQ(q5),R(q),R(q5),Dδ5(q),Δ5(q),B6=D2P(q),D2P(q2),D2P(q3),D2P(q6),DQ(q),DQ(q2),DQ(q3),DQ(q6),R(q),R(q2),R(q3),R(q6),Dδ6(q),Δ3(q),Δ3(q2),Δ6(q),B7=D2P(q),D2P(q7),DQ(q),DQ(q7),R(q),R(q7),Dδ7(q),Δ7,1(q),Δ7,2(q),Δ7,3(q),B8=D2P(q),D2P(q2),D2P(q4),D2P(q8),DQ(q),DQ(q2),DQ(q4),DQ(q8),R(q),R(q2),R(q4),R(q8),Dδ8(q),Δ4(q),Δ4(q2),Δ8(q),B9=D2P(q),D2P(q3),D2P(q9),DQ(q),DQ(q3),DQ(q9),R(q),R(q3),R(q9),Dδ9(q),Δ3(q),Δ3(q3),Δ9(q).

Then, 𝓑N is a basis for the space M~6(3) 0(N)).

Proof

Note that the dimension of the space M~6(3) 0(N)) is

dimM~6(3)(Γ0(N))=1+j=02dimM62j(Γ0(N)).

By [26, Proposition 6.1], we have

N 2 3 4 5 6 7 8 9
dim M~6(3) 0(N)) 6 7 10 8 16 10 16 13

It is clear that P(qd) ∈ M~2(1) 0(N)), Q(qd) ∈ M40 (N)), R(qd) ∈ M60(N)) for a positive divisor d of N. Assume that N is an integer with 2 ≤ N ≤ 9. Let 0 (N)) be the subspace of M~6(3) 0 (N)) spanned by the set

BN(E):=R(qd),DQ(qd),D2P(qd):0<dN

of dimension 3 ⋅ (∑d|N 1) = 3 σ0 (N). When 0 < dd′ | N, the functions δd(qd) and Δd(qd) defined in Definition 1.1 are modular forms of weight 4 and 6 of Γ0(N), respectively. Moreover, the functions Δ7,j(q) are modular forms of weight 6 of Γ0 (7) for j = 1, 2, 3. In other words,

δd(qd)M~6(3)(Γ0(N)),Δd(qd)M6(Γ0(N)) and Δ7,j(q)M6(Γ0(7)),

where dd′ | N and j = 1, 2, 3. It is easily checked that the set 𝓑N is linearly independent for each N by the help of the q-expansions of the functions in Appendix.

Since

dimM~6(3)(Γ0(N))dimE~(Γ0(N))=0,1,1,2,4,4,4,4

for N = 2, 3, 4, 5, 6, 7, 8, 9, respectively, the set 𝓑N is a basis of the space M~6(3) 0 (N)).□

Remark 2.2

Let WN=(01N0). In the theory of modular forms, the functions δN(q) and ΔN(q) are newforms with δN | WN = δN and ΔN|WN = −ΔN when N = 2, 3, 4, 5, 6 and 8.

For N = 7, Δ7,1(q), Δ7,2(q) and Δ7,3(q) are echelon forms. Instead of them,

f7(q):=Δ7,1(q)49Δ7,3(q),f7,±(q):=Δ7,1(q)+29±572Δ7,2(q)+49Δ7,3(q)

are normalized newforms of level 7 with f7|W7 = f7 and (f7,±)|W7 = −f7,±. Furthermore, the modular form 13Δ3(q)9Δ3(q3)+43Δ9(q) is the normalized newform of Γ0(9) with eigenvalue −1 under the action of W9.

3 Proofs of main results

By using the theory of quasimodular forms we prove Theorem 3.1 and 3.2. These are the explicit linear combinations of Theorem 1.2.

Theorem 3.1

Let n be a positive integer. Then

  1. l+2m=nlσ(l)σ(m)=n24σ3(n)+n6σ3(n2)+n2n224σ(n)n212σ(n2),
  2. l+3m=nlσ(l)σ(m)=n48σ3(n)+3n16σ3(n3)+3n4n272σ(n)n212σ(n3)1144c3(n),
  3. l+4m=nlσ(l)σ(m)=n96σ3(n)+n32σ3(n2)+n6σ3(n4)+nn224σ(n)n212σ(n4)196c4(n),
  4. l+5m=nlσ(l)σ(m)=5n624σ3(n)+125n624σ3(n5)+5n4n2120σ(n)n212σ(n5)n260b5(n)180c5(n),
  5. l+6m=nlσ(l)σ(m)=n240σ3(n)+n60σ3(n2)+3n80σ3(n3)+3n20σ3(n6)+3n2n272σ(n)n212σ(n6)n240b6(n)1144c3(n)118c3(n2)1144c6(n),
  6. 2l+3m=nlσ(l)σ(m)=n480σ3(n)+n120σ3(n2)+3n160σ3(n3)+3n40σ3(n6)+3n4n2144σ(n2)n248σ(n3)n480b6(n)1288c3(n)136c3(n2)+1288c6(n),
  7. l+7m=nlσ(l)σ(m)=n240σ3(n)+49n240σ3(n7)+7n4n2168σ(n)n212σ(n7)n140b7(n)5336c7,1(n)1784c7,2(n)3548c7,3(n),
  8. l+8m=nlσ(l)σ(m)=n384σ3(n)+n128σ3(n2)+n32σ3(n4)+(n6)σ3(n8)+2nn248σ(n)n212σ(n8)n128b8(n)1128c4(n)116c4(n2)1128c8(n),
  9. l+9m=nlσ(l)σ(m)=n432σ3(n)+n54σ3(n3)+3n16σ3(n9)+9n4n2216σ(n)n212σ(n9)n108b9(n)+1432c3(n)+116c3(n3)154c9(n).

For ν > 0, Wa,b(ν) is not symmetric on (a, b) and we obtain results for Wa,b(1) (a > b) in the following theorem.

Theorem 3.2

Let n be a positive integer. Then

  1. 2l+m=nlσ(l)σ(m)=n48σ3(n)+n12σ3(n2)n248σ(n)+n4n248σ(n2),
  2. 3l+m=nlσ(l)σ(m)=n144σ3(n)+n16σ3(n3)n2108σ(n)+n4n272σ(n3)+1432c3(n),
  3. 4l+m=nlσ(l)σ(m)=n384σ3(n)+n128σ3(n2)+n24σ3(n4)n2192σ(n)+n4n296σ(n4)+1384c4(n),
  4. 5l+m=nlσ(l)σ(m)=n624σ3(n)+25n624σ3(n5)n2300σ(n)+n4n2120σ(n5)n1300b5(n)+1400c5(n),
  5. 6l+m=nlσ(l)σ(m)=n1440σ3(n)+n360σ3(n2)+n160σ3(n3)+n40σ3(n6)n2432σ(n)+n4n2144σ(n6)n1440b6(n)+1864c3(n)+1108c3(n2)+1864c6(n),
  6. 3l+2m=nlσ(l)σ(m)=n720σ3(n)+n180σ3(n2)+n80σ3(n3)+n20σ3(n6)n2108σ(n2)+n2n272σ(n3)n720b6(n)+1432c3(n)+154c3(n2)1432c6(n),
  7. 7l+m=nlσ(l)σ(m)=n1680σ3(n)+7n240σ3(n7)n2588σ(n)+n4n2168σ(n7)n980b7(n)+52352c7,1(n)+17588c7,2(n)+548c7,3(n),
  8. 8l+m=nlσ(l)σ(m)=n3072σ3(n)+n1024σ3(n2)+n256σ3(n4)+n48σ3(n8)n2768σ(n)+n4n2192σ(n8)n1024b8(n)+11024c4(n)+1128c4(n2)+11024c8(n),
  9. 9l+m=nlσ(l)σ(m)=n3888σ3(n)+n486σ3(n3)+n48σ3(n9)n2972σ(n)+n4n2216σ(n9)n972b9(n)13888c3(n)1144c3(n3)+1486c9(n).

Lemma 3.3 gives nine identities involving the functions in Definition 1.1. Using it, Theorems 3.1 and 3.2 are obtained by equating coefficients of qn.

Lemma 3.3

Since DP(qa) P(qb) is an element of M~6(3) 0(ab)), we have the following identities:

  1. DP(q)P(q2)=2D2P(q)+8D2P(q2)+110DQ(q)+45DQ(q2),
  2. DP(q)P(q3)=43D2P(q)+18D2P(q3)+120DQ(q)+2720DQ(q3)4Δ3(q),
  3. DP(q)P(q4)=D2P(q)+32D2P(q4)+140DQ(q)+320DQ(q2)+85DQ(q4)6Δ4(q),
  4. DP(q)P(q5)=45D2P(q)+50D2P(q5)+152DQ(q)+12552DQ(q5)14465Dδ5(q)365Δ5(q),
  5. DP(q)P(q6)=23D2P(q)+72D2P(q6)+1100DQ(q)+225DQ(q2)+27100DQ(q3)+5425DQ(q6)125Dδ6(q)4Δ3(q)32Δ3(q2)4Δ6(q),
  6. DP(q2)P(q3)=83D2P(q2)+92D2P(q3)+1200DQ(q)+125DQ(q2)+27200DQ(q3)+2725DQ(q6)65Dδ6(q)2Δ3(q)16Δ3(q2)+2Δ6(q),
  7. DP(q)P(q7)=47D2P(q)+98D2P(q7)+1100DQ(q)+343100DQ(q7)14435Dδ7(q)607Δ7,1(q)8167Δ7,2(q)420Δ7,3(q),
  8. DP(q)P(q8)=12D2P(q)+128D2P(q8)+1160DQ(q)+380DQ(q2)+310DQ(q4)+165DQ(q8)92Δ4(q)36Δ4(q2)92Δ8(q),
  9. DP(q)P(q9)=49D2P(q)+162D2P(q9)+1180DQ(q)+215DQ(q3)+8120DQ(q9)163Dδ9(q)+43Δ3(q)+36Δ3(q3)323Δ9(q).

Proof

By comparing the coefficients of DP(qa)P(qb) with ones of the basis of M~6(3) 0(ab))((a, b) = (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (1, 7), (1, 8), (1, 9)) we gave in Lemma 2.1 we can complete our statement.□

Proof of Theorem 3.1

It is easy to see that

DP(qa)P(qb)=n=124naσ(na)+576Wa,b(1)(n)qn.

Since the right hand sides of (1)-(9) are written as a linear combination of the functions in Definition 1.1, our theorem is proved.□

Lemma 3.4

For any relatively prime positive integers a, b, let

S[(ν,μ),(1,1),(a,b)](n)=l,mZ>0al+bm=nlνmμσ(l)σ(m).

Then

S[(0,0),(1,1),(a,b)](n)=nνt=0ννtaνtbtS[(νt,t),(1,1),(a,b)](n).

In particular, we have

aWa,b(1)(n)+bWb,a(1)(n)=nWa,b(0)(n).

Proof

The proof is easy using the binomial theorem:

nνS[(0,0),(1,1),(a,b)](n)=l,mZ>0al+bm=n(al+bm)νσ(l)σ(m)=l,mZ>0al+bm=nt=0ννtaνtbtlνtmtσ(l)σ(m)=t=0ννtaνtbtS[(νt,t),(1,1),(a,b)](n).

If ν = 1, then we have that

aWa,b(1)(n)+bWb,a(1)(n)=nWa,b(0)(n).

Hence we need the evaluation of the convolution sums Wa,b(n) which already occur in the literature in order to deduce Theorem 3.2.

Lemma 3.5

  1. l+2m=nσ(l)σ(m)=112σ3(n)+13σ3(n2)+13n24σ(n)+16n24σ(n2),
  2. l+3m=nσ(l)σ(m)=124σ3(n)+38σ3(n3)+12n24σ(n)+16n24σ(n3),
  3. l+4m=nσ(l)σ(m)=148σ3(n)+116σ3(n2)+13σ3(n4)+23n48σ(n)+16n24σ(n4),
  4. l+5m=nσ(l)σ(m)=5312σ3(n)+125312σ3(n5)+56n120σ(n)+16n24σ(n5)1130b5(n),
  5. l+6m=nσ(l)σ(m)=1120σ3(n)+130σ3(n2)+340σ3(n3)+310σ3(n6)+1n24σ(n)+16n24σ(n6)1120b6(n),
  6. 2l+3m=nσ(l)σ(m)=1120σ3(n)+130σ3(n2)+340σ3(n3)+310σ3(n6)+12n24σ(n2)+13n24σ(n3)1120b6(n).
  7. l+7m=nσ(l)σ(m)=1120σ3(n)+49120σ3(n7)+76n168σ(n)+16n24σ(n7)170b7(n),
  8. l+8m=nσ(l)σ(m)=1192σ3(n)+164σ3(n2)+116σ3(n4)+13σ3(n8)+43n96σ(n)+16n24σ(n8)164b8(n),
  9. l+9m=nσ(l)σ(m)=1216σ3(n)+127σ3(n3)+38σ3(n9)+32n72σ(n)+16n24σ(n9)154b9(n).

Proof

The evaluations of Wa,b(n) = ∑al+bm=n σ(l) σ(m) are in the following references: (1)-(3) in [5], (4) in (4) is in [6, 7] and (5) and (6) are in [8].□

Proof of Theorem 3.2

All formulas are linear combinations for Wb,a(1) (n) satisfying a < b, (a, b) = 1 and ab ≤ 9.

Wa,b(0)(n) and Wa,b(1)(n) are obtained in Lemma 3.5 and Theorem 3.1, respectively. Additionally, by Lemma 3.4, that is,

Wb,a(1)(n)=nbWa,b(0)(n)abWa,b(1)(n)

we prove our theorem.□

Acknowledgement

The author is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2009-0093827) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03029519).

References

[1] Lahiri D. B., On Ramanujan’s function τ(n) and the divisor function σ(n), I, Bull. Calcutta Math. Soc. 38 (1946) 193-206.Search in Google Scholar

[2] Besge M., Extrait d’une lettre de M. Besge à M. Liouville, J. Math. Pures Appl., 7 (1862) 256.Search in Google Scholar

[3] Glaisher J. W. L., On the square of the series in which the coefficients are the sums of the divisors of the exponents, Mess. Math. 14 (1885) 156-163.Search in Google Scholar

[4] Ramanujan S., On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916) 159-184.Search in Google Scholar

[5] Huard J. G., Ou Z. M., Spearman B. K. and Williams K. S., Elementary evaluation of certain convolution sums involving divisor functions, in: Number Theory for the Millennium, II, A.K. Peters, Natick, MA. 2002, 229-274.Search in Google Scholar

[6] Lemire M. and Williams K. S., Evaluation of two convolution sums involving the sum of divisor functions, Bull. Aust. Math. Soc. 73 (2005) 107-115.10.1017/S0004972700038661Search in Google Scholar

[7] Cooper S. and Toh P.C., Quintic and septic Eisenstein series, Ramanujan J. 19 (2009) 163-181.10.1007/s11139-008-9123-3Search in Google Scholar

[8] Alaca Ş. and Williams K. S., Evaluation of the convolution sums ∑l+6m=n σ(l) σ(m) and ∑2l+3m=n σ(l)σ(m), J. Number Theory 124 (2007) 491-510.10.1016/j.jnt.2006.10.004Search in Google Scholar

[9] Williams K. S., The convolution sum ∑m<n/9 σ(m) σ(n − 9m), Int. J. Number Theory 1 (2) (2005) 193-205.10.1142/S1793042105000091Search in Google Scholar

[10] Williams K. S., The convolution sum ∑m<n/8 σ(m) σ(n−8m), Pacific J. Math. 228 (2006) 387-396.10.2140/pjm.2006.228.387Search in Google Scholar

[11] Royer E., Evaluating the convolution sums of the divisor function by quasimodular forms, Int. J. Number Theory 3 (2) (2007) 231-261.10.1142/S1793042107000924Search in Google Scholar

[12] Alaca A., Alaca Ş. and Williams K. S., Evaluation of the convolution sums ∑l+12m=n σ(l) σ(m) and ∑3l+4m=n σ(l) σ(m), Adv. Theor. Appl. Math. 1 (2006) 27-48.Search in Google Scholar

[13] Alaca A., Alaca Ş. and Williams K. S., Evaluation of the convolution sums ∑l+18m=n σ(l) σ(m) and ∑2l+9m=n σ(l) σ(m), Int. Math. Forum 2 (2007) 45-68.10.12988/imf.2007.07003Search in Google Scholar

[14] Alaca A., Alaca Ş. and Williams K. S., Evaluation of the convolution sums ∑l+24m=n σ(l) σ(m) and ∑3l+8m=n σ(l) σ(m), Math. J. Okayama Univ. 49 (2007) 93-111.Search in Google Scholar

[15] Alaca A., Alaca Ş. and Williams K. S., The convolution sum ∑m<n/16 σ(m) σ (n−16m), Canad. Math. Bull. 51 (2008) 3-14.10.4153/CMB-2008-001-1Search in Google Scholar

[16] Ramakrishnan B. and Sahu B., Evaluation of the convolution sums ∑l+15m=n σ(l) σ(m) and ∑3l+5m=n σ(l) σ(m) and an application, Int. J. Number Theory 9 (3) (2013) 799-809.10.1142/S179304211250162XSearch in Google Scholar

[17] Cooper S. and Ye D., Evaluation of the convolution sums ∑l+20m=n σ(l) σ(m), ∑4l+5m=n σ(l) σ(m) and ∑2l+5m=n σ(l) σ(m), Int. J. Number Theory 10 (6) (2014) 1385-1394.10.1142/S1793042114500341Search in Google Scholar

[18] Chan H. H. and Cooper S., Powers of theta functions, Pacific J. Math. 235 (2008) 1-14.10.2140/pjm.2008.235.1Search in Google Scholar

[19] Xia E. X. W., Tian X. L. and Yao O. X. M., Evaluation of the convolution sums ∑i+25j=n σ(i)σ(j), Int. J. Number Theory 10 (6) (2014) 1421-1430.10.1142/S1793042114500365Search in Google Scholar

[20] Ntienjem E., Evaluation of the convolution sums ∑αl+βm=n σ(l) σ(m), where (α, β) is in {(1, 14), (2, 7), (1, 26), (2, 13), (1, 28), (4, 7), (1, 30), (5, 6)}, M. Sc. thesis, Carleton University, Ottawa, Ontario, Canada, 2015.Search in Google Scholar

[21] Ntienjem E., Evaluation of the convolution sum involving the sum of divisors function for 22, 44 and 52. Open Math. 15 (2017), 446-458.10.1515/math-2017-0041Search in Google Scholar

[22] Ntienjem E., Elementary evaluation of convolution sums involving the sum of divisors function for a class of positive integers, preprint.Search in Google Scholar

[23] Alaca Ş. and Kesicioğlu Y., Evaluation of the convolution sums ∑l+27m=nσ(l) σ(m) and ∑l+32m=n σ(l) σ(m), Int. J. Number Theory 12 (1) (2016) 1-13.10.1142/S1793042116500019Search in Google Scholar

[24] Ye D., Evaluation of the convolution sums ∑l+36m=n σ(l) σ(m), ∑4l+9m=n σ(l) σ(m), Int. J. Number Theory 11 (1) (2015) 171-183.10.1142/S1793042115500104Search in Google Scholar

[25] Kaneko M. and Zagier D., A generalized Jacobi theta function and quasimodular forms, in: The Moduli Spaces of Curves, vol. 129, Birkhäuser, Boston, MA, 1995, 165-172.10.1007/978-1-4612-4264-2_6Search in Google Scholar

[26] Stein W., Modular Forms: a Computational Approach, Graduate Studies in Mathematics, vol. 79, American Mathematical Society, 2007.10.1090/gsm/079Search in Google Scholar

Appendix. q-expansions of the function defined in Definition 1.1

We give the coefficients of the functions defined in Definition 1.1 up to q30:

Δ3(q)=q6q2+9q3+4q4+6q554q640q7+168q8+81q936q10564q11+36q12+638q13+240q14+54q151136q16+882q17486q18556q19+24q20360q21+3384q22840q23+1512q243089q253828q26+729q27160q28+4638q29324q30+O(q31),Δ4(q)=q12q3+54q588q799q9+540q11418q13648q15+594q17+836q19+1056q214104q23209q25+4104q27594q29+O(q31),δ5(q)=q4q2+2q3+8q45q58q6+6q723q9+20q10+32q11+16q1238q1324q1410q1564q16+26q17+92q18+100q1940q20+12q21128q2278q23+25q25+152q26100q27+48q2850q29+40q30+O(q31),Δ5(q)=q+2q24q328q4+25q58q6+192q7120q8227q9+50q10148q11+112q12+286q13+384q14100q15+656q161678q17454q18+1060q19700q20768q21296q22+2976q23+480q24+625q25+572q26+1880q275376q283410q29200q30+O(q31),δ6(q)=q2q23q3+4q4+6q5+6q616q78q8+9q912q10+12q1112q12+38q13+32q1418q15+16q16126q1718q18+20q19+24q20+48q2124q22+168q23+24q2489q2576q2627q2764q28+30q29+36q30+O(q31),Δ6(q)=q+4q29q3+16q466q536q6+176q7+64q8+81q9264q1060q11144q12658q13+704q14+594q15+256q16414q17+324q18+956q191056q201584q21240q22+600q23576q24+1231q252632q26729q27+2816q28+5574q29+2376q30+O(q31),δ7(q)=qq22q37q4+16q5+2q67q7+15q823q916q108q11+14q12+28q13+7q1432q15+41q16+54q17+23q18110q19112q20+14q21+8q22+48q2330q24+131q2528q26+100q27+49q28110q29+32q30+O(q31),Δ7,1(q)=q10q2+35q330q4105q5+238q6262q8145q9+70q10+1114q11560q121071q13196q15+2502q16+140q172078q18735q19868q20+2401q21+1012q222684q23+2100q24+501q251638q26+2786q274802q28+1556q29392q30+O(q31),Δ7,2(q)=q26q3+9q4+10q530q6+11q8+36q9+36q10124q1142q12+126q13+49q14+24q15243q1676q17+441q1818q1956q20294q21360q22+568q236q24180q25+392q26324q27+441q28+252q29720q30+O(q31),Δ7,3(q)=q32q4q5+2q6+q7+2q82q910q10+18q11+8q1219q1310q1420q15+22q16+38q1752q1813q19+60q20+35q21+68q2292q2360q24+10q2562q2626q2730q2838q29+152q30+O(q31),δ8(q)=q4q32q5+24q711q944q11+22q13+8q15+50q17+44q1996q2156q23121q25+152q27+198q29+O(q31),Δ8(q)=q+20q374q524q7+157q9+124q11+478q131480q151198q17+3044q19480q21+184q23+2351q251720q273282q29+O(q31),δ9(q)=q8q4+20q770q13+64q16+56q19125q25160q28+O(q31),Δ9(q)=q+3q2+9q3+4q43q554q640q784q8+81q936q10+282q11+36q12+638q13120q14+54q151136q16441q17486q18556q1912q20360q21+3384q22+420q23+1512q243089q25+1914q26+729q27160q282319q29324q30+O(q31).
Received: 2017-8-2
Accepted: 2017-10-5
Published Online: 2017-12-5

© 2017 Park

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Articles in the same Issue

  1. Regular Articles
  2. Integrals of Frullani type and the method of brackets
  3. Regular Articles
  4. Edge of chaos in reaction diffusion CNN model
  5. Regular Articles
  6. Calculus using proximities: a mathematical approach in which students can actually prove theorems
  7. Regular Articles
  8. An investigation on hyper S-posets over ordered semihypergroups
  9. Regular Articles
  10. The Leibniz algebras whose subalgebras are ideals
  11. Regular Articles
  12. Fixed point and multidimensional fixed point theorems with applications to nonlinear matrix equations in terms of weak altering distance functions
  13. Regular Articles
  14. Matrix rank and inertia formulas in the analysis of general linear models
  15. Regular Articles
  16. The hybrid power mean of quartic Gauss sums and Kloosterman sums
  17. Regular Articles
  18. Tauberian theorems for statistically (C,1,1) summable double sequences of fuzzy numbers
  19. Regular Articles
  20. Some properties of graded comultiplication modules
  21. Regular Articles
  22. The characterizations of upper approximation operators based on special coverings
  23. Regular Articles
  24. Bi-integrable and tri-integrable couplings of a soliton hierarchy associated with SO(4)
  25. Regular Articles
  26. Dynamics for a discrete competition and cooperation model of two enterprises with multiple delays and feedback controls
  27. Regular Articles
  28. A new view of relationship between atomic posets and complete (algebraic) lattices
  29. Regular Articles
  30. A class of extensions of Restricted (s, t)-Wythoff’s game
  31. Regular Articles
  32. New bounds for the minimum eigenvalue of 𝓜-tensors
  33. Regular Articles
  34. Shintani and Shimura lifts of cusp forms on certain arithmetic groups and their applications
  35. Regular Articles
  36. Empirical likelihood for quantile regression models with response data missing at random
  37. Regular Articles
  38. Convex combination of analytic functions
  39. Regular Articles
  40. On the Yang-Baxter-like matrix equation for rank-two matrices
  41. Regular Articles
  42. Uniform topology on EQ-algebras
  43. Regular Articles
  44. Integrations on rings
  45. Regular Articles
  46. The quasilinear parabolic kirchhoff equation
  47. Regular Articles
  48. Avoiding rainbow 2-connected subgraphs
  49. Regular Articles
  50. On non-Hopfian groups of fractions
  51. Regular Articles
  52. Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions
  53. Regular Articles
  54. Rings in which elements are the sum of a nilpotent and a root of a fixed polynomial that commute
  55. Regular Articles
  56. Superstability of functional equations related to spherical functions
  57. Regular Articles
  58. Evaluation of the convolution sum involving the sum of divisors function for 22, 44 and 52
  59. Regular Articles
  60. Weighted minimal translation surfaces in the Galilean space with density
  61. Regular Articles
  62. Complete convergence for weighted sums of pairwise independent random variables
  63. Regular Articles
  64. Binomials transformation formulae for scaled Fibonacci numbers
  65. Regular Articles
  66. Growth functions for some uniformly amenable groups
  67. Regular Articles
  68. Hopf bifurcations in a three-species food chain system with multiple delays
  69. Regular Articles
  70. Oscillation and nonoscillation of half-linear Euler type differential equations with different periodic coefficients
  71. Regular Articles
  72. Osculating curves in 4-dimensional semi-Euclidean space with index 2
  73. Regular Articles
  74. Some new facts about group 𝒢 generated by the family of convergent permutations
  75. Regular Articles
  76. lnfinitely many solutions for fractional Schrödinger equations with perturbation via variational methods
  77. Regular Articles
  78. Supersolvable orders and inductively free arrangements
  79. Regular Articles
  80. Asymptotically almost automorphic solutions of differential equations with piecewise constant argument
  81. Regular Articles
  82. Finite groups whose all second maximal subgroups are cyclic
  83. Regular Articles
  84. Semilinear systems with a multi-valued nonlinear term
  85. Regular Articles
  86. Positive solutions for Hadamard differential systems with fractional integral conditions on an unbounded domain
  87. Regular Articles
  88. Calibration and simulation of Heston model
  89. Regular Articles
  90. One kind sixth power mean of the three-term exponential sums
  91. Regular Articles
  92. Cyclic pairs and common best proximity points in uniformly convex Banach spaces
  93. Regular Articles
  94. The uniqueness of meromorphic functions in k-punctured complex plane
  95. Regular Articles
  96. Normalizers of intermediate congruence subgroups of the Hecke subgroups
  97. Regular Articles
  98. The hyperbolicity constant of infinite circulant graphs
  99. Regular Articles
  100. Scott convergence and fuzzy Scott topology on L-posets
  101. Regular Articles
  102. One sided strong laws for random variables with infinite mean
  103. Regular Articles
  104. The join of split graphs whose completely regular endomorphisms form a monoid
  105. Regular Articles
  106. A new branch and bound algorithm for minimax ratios problems
  107. Regular Articles
  108. Upper bound estimate of incomplete Cochrane sum
  109. Regular Articles
  110. Value distributions of solutions to complex linear differential equations in angular domains
  111. Regular Articles
  112. The nonlinear diffusion equation of the ideal barotropic gas through a porous medium
  113. Regular Articles
  114. The Sheffer stroke operation reducts of basic algebras
  115. Regular Articles
  116. Extensions and improvements of Sherman’s and related inequalities for n-convex functions
  117. Regular Articles
  118. Classification lattices are geometric for complete atomistic lattices
  119. Regular Articles
  120. Possible numbers of x’s in an {x, y}-matrix with a given rank
  121. Regular Articles
  122. New error bounds for linear complementarity problems of weakly chained diagonally dominant B-matrices
  123. Regular Articles
  124. Boundedness of vector-valued B-singular integral operators in Lebesgue spaces
  125. Regular Articles
  126. On the Golomb’s conjecture and Lehmer’s numbers
  127. Regular Articles
  128. Some applications of the Archimedean copulas in the proof of the almost sure central limit theorem for ordinary maxima
  129. Regular Articles
  130. Dual-stage adaptive finite-time modified function projective multi-lag combined synchronization for multiple uncertain chaotic systems
  131. Regular Articles
  132. Corrigendum to: Dual-stage adaptive finite-time modified function projective multi-lag combined synchronization for multiple uncertain chaotic systems
  133. Regular Articles
  134. Convergence and stability of generalized φ-weak contraction mapping in CAT(0) spaces
  135. Regular Articles
  136. Triple solutions for a Dirichlet boundary value problem involving a perturbed discrete p(k)-Laplacian operator
  137. Regular Articles
  138. OD-characterization of alternating groups Ap+d
  139. Regular Articles
  140. On Jordan mappings of inverse semirings
  141. Regular Articles
  142. On generalized Ehresmann semigroups
  143. Regular Articles
  144. On topological properties of spaces obtained by the double band matrix
  145. Regular Articles
  146. Representing derivatives of Chebyshev polynomials by Chebyshev polynomials and related questions
  147. Regular Articles
  148. Chain conditions on composite Hurwitz series rings
  149. Regular Articles
  150. Coloring subgraphs with restricted amounts of hues
  151. Regular Articles
  152. An extension of the method of brackets. Part 1
  153. Regular Articles
  154. Branch-delete-bound algorithm for globally solving quadratically constrained quadratic programs
  155. Regular Articles
  156. Strong edge geodetic problem in networks
  157. Regular Articles
  158. Ricci solitons on almost Kenmotsu 3-manifolds
  159. Regular Articles
  160. Uniqueness of meromorphic functions sharing two finite sets
  161. Regular Articles
  162. On the fourth-order linear recurrence formula related to classical Gauss sums
  163. Regular Articles
  164. Dynamical behavior for a stochastic two-species competitive model
  165. Regular Articles
  166. Two new eigenvalue localization sets for tensors and theirs applications
  167. Regular Articles
  168. κ-strong sequences and the existence of generalized independent families
  169. Regular Articles
  170. Commutators of Littlewood-Paley gκ -functions on non-homogeneous metric measure spaces
  171. Regular Articles
  172. On decompositions of estimators under a general linear model with partial parameter restrictions
  173. Regular Articles
  174. Groups and monoids of Pythagorean triples connected to conics
  175. Regular Articles
  176. Hom-Lie superalgebra structures on exceptional simple Lie superalgebras of vector fields
  177. Regular Articles
  178. Numerical methods for the multiplicative partial differential equations
  179. Regular Articles
  180. Solvable Leibniz algebras with NFn Fm1 nilradical
  181. Regular Articles
  182. Evaluation of the convolution sums ∑al+bm=n lσ(l) σ(m) with ab ≤ 9
  183. Regular Articles
  184. A study on soft rough semigroups and corresponding decision making applications
  185. Regular Articles
  186. Some new inequalities of Hermite-Hadamard type for s-convex functions with applications
  187. Regular Articles
  188. Deficiency of forests
  189. Regular Articles
  190. Perfect codes in power graphs of finite groups
  191. Regular Articles
  192. A new compact finite difference quasilinearization method for nonlinear evolution partial differential equations
  193. Regular Articles
  194. Does any convex quadrilateral have circumscribed ellipses?
  195. Regular Articles
  196. The dynamic of a Lie group endomorphism
  197. Regular Articles
  198. On pairs of equations in unlike powers of primes and powers of 2
  199. Regular Articles
  200. Differential subordination and convexity criteria of integral operators
  201. Regular Articles
  202. Quantitative relations between short intervals and exceptional sets of cubic Waring-Goldbach problem
  203. Regular Articles
  204. On θ-commutators and the corresponding non-commuting graphs
  205. Regular Articles
  206. Quasi-maximum likelihood estimator of Laplace (1, 1) for GARCH models
  207. Regular Articles
  208. Multiple and sign-changing solutions for discrete Robin boundary value problem with parameter dependence
  209. Regular Articles
  210. Fundamental relation on m-idempotent hyperrings
  211. Regular Articles
  212. A novel recursive method to reconstruct multivariate functions on the unit cube
  213. Regular Articles
  214. Nabla inequalities and permanence for a logistic integrodifferential equation on time scales
  215. Regular Articles
  216. Enumeration of spanning trees in the sequence of Dürer graphs
  217. Regular Articles
  218. Quotient of information matrices in comparison of linear experiments for quadratic estimation
  219. Regular Articles
  220. Fourier series of functions involving higher-order ordered Bell polynomials
  221. Regular Articles
  222. Simple modules over Auslander regular rings
  223. Regular Articles
  224. Weighted multilinear p-adic Hardy operators and commutators
  225. Regular Articles
  226. Guaranteed cost finite-time control of positive switched nonlinear systems with D-perturbation
  227. Regular Articles
  228. A modified quasi-boundary value method for an abstract ill-posed biparabolic problem
  229. Regular Articles
  230. Extended Riemann-Liouville type fractional derivative operator with applications
  231. Topical Issue on Topological and Algebraic Genericity in Infinite Dimensional Spaces
  232. The algebraic size of the family of injective operators
  233. Topical Issue on Topological and Algebraic Genericity in Infinite Dimensional Spaces
  234. The history of a general criterium on spaceability
  235. Topical Issue on Topological and Algebraic Genericity in Infinite Dimensional Spaces
  236. On sequences not enjoying Schur’s property
  237. Topical Issue on Topological and Algebraic Genericity in Infinite Dimensional Spaces
  238. A hierarchy in the family of real surjective functions
  239. Topical Issue on Topological and Algebraic Genericity in Infinite Dimensional Spaces
  240. Dynamics of multivalued linear operators
  241. Topical Issue on Topological and Algebraic Genericity in Infinite Dimensional Spaces
  242. Linear dynamics of semigroups generated by differential operators
  243. Special Issue on Recent Developments in Differential Equations
  244. Isomorphism theorems for some parabolic initial-boundary value problems in Hörmander spaces
  245. Special Issue on Recent Developments in Differential Equations
  246. Determination of a diffusion coefficient in a quasilinear parabolic equation
  247. Special Issue on Recent Developments in Differential Equations
  248. Homogeneous two-point problem for PDE of the second order in time variable and infinite order in spatial variables
  249. Special Issue on Recent Developments in Differential Equations
  250. A nonlinear plate control without linearization
  251. Special Issue on Recent Developments in Differential Equations
  252. Reduction of a Schwartz-type boundary value problem for biharmonic monogenic functions to Fredholm integral equations
  253. Special Issue on Recent Developments in Differential Equations
  254. Inverse problem for a physiologically structured population model with variable-effort harvesting
  255. Special Issue on Recent Developments in Differential Equations
  256. Existence of solutions for delay evolution equations with nonlocal conditions
  257. Special Issue on Recent Developments in Differential Equations
  258. Comments on behaviour of solutions of elliptic quasi-linear problems in a neighbourhood of boundary singularities
  259. Special Issue on Recent Developments in Differential Equations
  260. Coupled fixed point theorems in complete metric spaces endowed with a directed graph and application
  261. Special Issue on Recent Developments in Differential Equations
  262. Existence of entropy solutions for nonlinear elliptic degenerate anisotropic equations
  263. Special Issue on Recent Developments in Differential Equations
  264. Integro-differential systems with variable exponents of nonlinearity
  265. Special Issue on Recent Developments in Differential Equations
  266. Elliptic operators on refined Sobolev scales on vector bundles
  267. Special Issue on Recent Developments in Differential Equations
  268. Multiplicity solutions of a class fractional Schrödinger equations
  269. Special Issue on Recent Developments in Differential Equations
  270. Determining of right-hand side of higher order ultraparabolic equation
  271. Special Issue on Recent Developments in Differential Equations
  272. Asymptotic approximation for the solution to a semi-linear elliptic problem in a thin aneurysm-type domain
  273. Topical Issue on Metaheuristics - Methods and Applications
  274. Learnheuristics: hybridizing metaheuristics with machine learning for optimization with dynamic inputs
  275. Topical Issue on Metaheuristics - Methods and Applications
  276. Nature–inspired metaheuristic algorithms to find near–OGR sequences for WDM channel allocation and their performance comparison
  277. Topical Issue on Cyber-security Mathematics
  278. Monomial codes seen as invariant subspaces
  279. Topical Issue on Cyber-security Mathematics
  280. Expert knowledge and data analysis for detecting advanced persistent threats
  281. Topical Issue on Cyber-security Mathematics
  282. Feedback equivalence of convolutional codes over finite rings
Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/math-2017-0116/html
Scroll to top button