Home The crystal structure of tris(carbonyl)-bis(carbonyl)-[μ-propane-1,2- dithiolato]-(benzyldiphenylphosphine)diiron (Fe—Fe), C27H23Fe2O5PS2
Article Open Access

The crystal structure of tris(carbonyl)-bis(carbonyl)-[μ-propane-1,2- dithiolato]-(benzyldiphenylphosphine)diiron (Fe—Fe), C27H23Fe2O5PS2

  • Ming-Gang Wu and Xu-Feng Liu ORCID logo EMAIL logo
Published/Copyright: December 14, 2022

Abstract

C27H23Fe2O5PS2, monoclinic, P21/c (no. 14), a = 11.3170(5) Å, b = 16.1774(8) Å, c = 15.2170(7) Å, β = 92.933(1)°, V = 2782.3(2) Å3, Z = 4, R gt (F) = 0.0537, wR ref(F 2) = 0.1636, T = 296(2) K.

CCDC no.: 2224195

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Red block
Size: 0.28 × 0.26 × 0.24 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.29 mm−1
Diffractometer, scan mode: Bruker D8 QUEST, ω
θ max, completeness: 25.1°, 99%
N(hkl)measured, N(hkl)unique, R int: 55006, 4918, 0.043
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 3952
N(param)refined: 335
Programs: Bruker [1], Olex2 [2], SHELX [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Fe1 0.48758 (6) 0.19616 (5) 0.81165 (5) 0.0596 (2)
Fe2 0.30929 (5) 0.18092 (4) 0.70930 (4) 0.0476 (2)
S1 0.31644 (11) 0.14035 (9) 0.84981 (8) 0.0617 (3)
S2 0.46509 (11) 0.09407 (9) 0.71136 (10) 0.0707 (4)
P1 0.16105 (10) 0.11101 (7) 0.64175 (7) 0.0491 (3)
O1 0.6462 (5) 0.1408 (4) 0.9564 (4) 0.1243 (19)
O2 0.6613 (5) 0.2688 (4) 0.7000 (4) 0.135 (2)
O3 0.4179 (5) 0.3563 (3) 0.8819 (3) 0.1078 (16)
O4 0.4108 (4) 0.2613 (4) 0.5605 (3) 0.1104 (17)
O5 0.1726 (4) 0.3239 (3) 0.7601 (3) 0.0965 (14)
C1 0.5868 (5) 0.1603 (4) 0.9000 (4) 0.0828 (17)
C2 0.5941 (5) 0.2409 (5) 0.7446 (4) 0.0854 (18)
C3 0.4463 (5) 0.2935 (4) 0.8558 (4) 0.0745 (15)
C4 0.3666 (5) 0.2292 (4) 0.6171 (3) 0.0714 (15)
C5 0.2245 (5) 0.2677 (3) 0.7377 (3) 0.0622 (12)
C6 0.3421 (7) 0.0276 (4) 0.8472 (5) 0.104 (2)
H6A 0.3777 0.0097 0.9033 0.125*
H6B 0.2670 −0.0008 0.8378 0.125*
C7 0.4225 (7) 0.0050 (4) 0.7746 (6) 0.108 (2)
H7 0.3782 −0.0323 0.7343 0.130*
C8 0.5182 (10) −0.0450 (7) 0.8212 (7) 0.157 (3)
H8A 0.5748 −0.0085 0.8501 0.236*
H8B 0.5571 −0.0784 0.7793 0.236*
H8C 0.4841 −0.0800 0.8641 0.236*
C9 0.0958 (5) 0.1602 (3) 0.5416 (3) 0.0617 (12)
H9A 0.1549 0.1618 0.4976 0.074*
H9B 0.0307 0.1263 0.5185 0.074*
C10 0.0507 (4) 0.2472 (3) 0.5556 (3) 0.0576 (11)
C11 −0.0546 (4) 0.2612 (3) 0.5949 (3) 0.0631 (13)
H11 −0.1013 0.2168 0.6104 0.076*
C12 −0.0911 (5) 0.3408 (3) 0.6113 (4) 0.0743 (15)
H12 −0.1627 0.3492 0.6372 0.089*
C13 −0.0244 (5) 0.4069 (4) 0.5904 (4) 0.0801 (16)
H13 −0.0488 0.4602 0.6034 0.096*
C14 0.0800 (6) 0.3940 (4) 0.5497 (4) 0.0845 (18)
H14 0.1260 0.4388 0.5343 0.101*
C15 0.1160 (5) 0.3152 (4) 0.5320 (4) 0.0704 (15)
H15 0.1858 0.3072 0.5034 0.085*
C16 0.2047 (4) 0.0104 (3) 0.5995 (3) 0.0589 (12)
C17 0.1654 (5) −0.0640 (3) 0.6293 (4) 0.0746 (15)
H17 0.1105 −0.0649 0.6727 0.090*
C18 0.2060 (7) −0.1379 (4) 0.5960 (5) 0.096 (2)
H18 0.1794 −0.1881 0.6174 0.115*
C19 0.2862 (8) −0.1362 (5) 0.5308 (6) 0.112 (3)
H19 0.3113 −0.1855 0.5063 0.134*
C20 0.3281 (6) −0.0644 (5) 0.5025 (4) 0.096 (2)
H20 0.3842 −0.0644 0.4600 0.116*
C21 0.2891 (5) 0.0102 (4) 0.5355 (4) 0.0766 (16)
H21 0.3190 0.0598 0.5152 0.092*
C22 0.0277 (4) 0.0902 (3) 0.7011 (3) 0.0527 (11)
C23 −0.0656 (5) 0.0447 (3) 0.6618 (4) 0.0695 (14)
H23 −0.0588 0.0229 0.6058 0.083*
C24 −0.1673 (5) 0.0317 (4) 0.7054 (4) 0.0798 (17)
H24 −0.2283 0.0005 0.6790 0.096*
C25 −0.1794 (5) 0.0640 (4) 0.7861 (4) 0.0796 (16)
H25 −0.2489 0.0555 0.8148 0.095*
C26 −0.0893 (4) 0.1095 (4) 0.8260 (4) 0.0722 (14)
H26 −0.0979 0.1317 0.8817 0.087*
C27 0.0135 (4) 0.1220 (3) 0.7837 (3) 0.0569 (11)
H27 0.0745 0.1524 0.8114 0.068*

Source of material

To a solution of complex [Fe2(CO)6{μ–SCH2CH(CH3)S}] (1 mmol) and benzyldiphenylphosphine (1 mmol) in CH2Cl2 (10 mL) was added a solution of Me3NO⋅2H2O (1 mmol) in CH3CN (10 mL). The solution was stirred for 1 h and the solvent was reduced by rotary evaporator. The title complex was obtained by TLC separation and the single crystals were collected from slow evaporation of CH2Cl2/isopropanol solution at 4°.

Experimental details

The structure was solved by Direct Methods with the SHELXS program. Hydrogen atoms were positioned geometrically (C–H = 0.93–0.98 Å). Their U iso values were set to 1.2U eq or 1.5U eq of the parent atoms.

Comment

Over the past two decades, diiron propane-1,3-dithiolate complexes have been received much attention [5], nevertheless, diiron propane-1,2-dithiolate complexes have been received little attention [6], [7], [8].

The asymmetric unit of the title complex contains a diiron core ligated by a bridging propane-1,2-dithiolate, five carbonyls and a benzyldiphenylphosphine ligands. The orientation of the phosphine ligand is in an apical position of the distorted octahedral geometry of the Fe2 atom, is analogous to phosphine-containing compounds [9], [10], [11], [12], [13]. The Fe1–Fe2 bond length [2.4972(9) Å] is shorter than that of the parent complex [Fe2(CO)6{μ–SCH2CH(CH3)S}] [2.5196(7) Å] [14], inconsistent with the fact that the phosphine coordination will lengthen the Fe–Fe bond due to the phosphine ligand having stronger electron-donor than CO [15, 16]. Furthermore, the Fe1–Fe2 bond length is similar to other all-carbonyl analogues [17], [18], [19], and a directly related structure [22], but much shorter than those in natural enzymed [20, 21].


Corresponding author: Xu-Feng Liu, School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, Zhejiang 315211, China; and Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China, E-mail:

Award Identifier / Grant number: LY19B020002

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant LY19B020002.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. BRUKER. SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

5. Tard, C., Pickett, C. J. Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem. Rev. 2009, 109, 2245–2274; https://doi.org/10.1021/cr800542q.Search in Google Scholar PubMed

6. Lin, H. M., Li, J. R., Mu, C., Li, A., Liu, X. F., Zhao, P. H., Li, Y. L., Jiang, Z. Q., Wu, H. K. Synthesis, characterization, and electrochemistry of monophosphine-containing diiron propane-1,2-dithiolate complexes related to the active site of [FeFe]-hydrogenases. Appl. Organomet. Chem. 2019, 33, e5196; https://doi.org/10.1002/aoc.5196.Search in Google Scholar

7. Yan, L., Yang, J., Lü, S., Liu, X. F., Li, Y. L., Liu, X. H., Jiang, Z. Q. Phosphine-containing diiron propane-1,2-dithiolate derivatives: synthesis, spectroscopy, X-ray crystal structures, and electrochemistry. Catal. Lett. 2021, 151, 1857–1867; https://doi.org/10.1007/s10562-020-03450-2.Search in Google Scholar

8. Yan, L., Wang, L. H., Yang, J., Liu, X. F., Li, Y. L., Liu, X. H., Jiang, Z. Q. Diiron propane-1,2-dithiolate complexes with monosubstituted tris(3-chlorophenyl)phosphine or tris(4-trifluoromethylphenyl)phosphine: synthesis, characterization, crystal structures, and electrochemistry. Inorg. Nano-Metal Chem. 2020, 50, 1137–1143; https://doi.org/10.1080/24701556.2020.1735431.Search in Google Scholar

9. Chen, F. Y., He, J., Yu, X. Y., Wang, Z., Mu, C., Liu, X. F., Li, Y. L., Jiang, Z. Q., Wu, H. K. Electrocatalytic properties of diiron ethanedithiolate complexes containing benzoate ester. Appl. Organomet. Chem. 2018, 32, e4549; https://doi.org/10.1002/aoc.4549.Search in Google Scholar

10. Yan, L., Hu, K., Liu, X. F., Li, Y. L., Liu, X. H., Jiang, Z. Q. Diiron ethane-1,2-dithiolate complexes with 1,2,3-thiadiazole moiety: synthesis, X-ray crystal structures, electrochemistry, and fungicidal activity. Appl. Organomet. Chem. 2021, 35, e6084; https://doi.org/10.1002/aoc.6084.Search in Google Scholar

11. Liu, X. F., Li, Y. L., Liu, X. H. Heterocyclic pyrazole-containing diiron dithiolato analogues: synthesis, characterization, electrochemistry, and fungicidal activity. Appl. Organomet. Chem. 2022, 36, e6884; https://doi.org/10.1002/aoc.6884.Search in Google Scholar

12. Yan, L., Yang, J., Liu, X. F., Li, Y. L., Liu, X. H., Jiang, Z. Q. Diiron toluene-3,4-dithiolate complexes with tris(3-fluorophenyl) phosphine or tris(4-trifluoromethylphenyl)phosphine: synthesis, spectroscopy, X-Ray crystal structures, and electrochemical properties. J. Chem. Crystallogr. 2021, 51, 183–190; https://doi.org/10.1007/s10870-020-00844-3.Search in Google Scholar

13. Yan, L., Yang, J., Liu, X. F., Li, Y. L., Liu, X. H., Jiang, Z. Q. Di-1-adamantylphosphine-containing diiron propane-1,3-dithiolate pentacarbonyl complex: synthesis, structure, electrochemistry, and fungicidal activity. Phosphorus, Sulfur, Silicon Relat. Elem. 2022, 197, 62–66; https://doi.org/10.1080/10426507.2021.1989591.Search in Google Scholar

14. Zhang, Q. Q., Dicson, R. S., Fallon, G. D., Mayadunne, R. A comparison of the reactions of pentacarbonyliron with cyclic thioethers and related dialkyl sulfides. J. Organomet. Chem. 2001, 627, 201–205; https://doi.org/10.1016/s0022-328x(01)00733-1.Search in Google Scholar

15. Hu, M. Y., Zhao, P. H., Li, J. R., Gu, X. L., Jing, X. B., Liu, X. F. Synthesis, structures, and electrocatalytic properties of phosphine- monodentate, -chelate, and -bridge diiron 2,2-dimethylpropanedithiolate complexes related to [FeFe]-hydrogenases. Appl. Organomet. Chem. 2020, 34, e5523; https://doi.org/10.1002/aoc.5523.Search in Google Scholar

16. Zhao, P. H., Hu, M. Y., Li, J. R., Wang, Y. Z., Lu, B. P., Han, H. F., Liu, X. F. Impacts of coordination modes (chelate versus bridge) of PNP-diphosphine ligands on the redox and electrocatalytic properties of diiron oxadithiolate complexes for proton reduction. Electrochim. Acta 2020, 353, 136615; https://doi.org/10.1016/j.electacta.2020.136615.Search in Google Scholar

17. Lu, D. T., He, J., Yu, X. Y., Liu, X. F., Li, Y. L., Jiang, Z. Q. Diiron ethanedithiolate complexes with pendant ferrocene: synthesis, characterization and electrochemistry. Polyhedron 2018, 149, 1–6; https://doi.org/10.1016/j.poly.2018.04.015.Search in Google Scholar

18. Lian, M., He, J., Yu, X. Y., Mu, C., Liu, X. F., Li, Y. L., Jiang, Z. Q. Diiron ethanedithiolate complexes with acetate ester: synthesis, characterization and electrochemical properties. J. Organomet. Chem. 2018, 870, 90–96; https://doi.org/10.1016/j.jorganchem.2018.06.023.Search in Google Scholar

19. He, J., Gao, F., Li, Y. L., Liu, X. F., Wu, H., Jiang, Z. Q., Wu, H. K. Synthesis, characterization and electrochemistry of diiron 1,2-dithiolate complexes with a trans-cinnamate ester. J. Coord. Chem. 2019, 72, 452–467; https://doi.org/10.1080/00958972.2019.1569641.Search in Google Scholar

20. Peters, J. W., Lanzilotta, W. N., Lemon, B. J., Seefeldt, L. C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from clostridium pasteurianum to 1.8 angstrom resolution. Science 1998, 282, 1853–1857; https://doi.org/10.1126/science.282.5395.1853.Search in Google Scholar PubMed

21. Nicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E., Fontecilla-Camps, J. C. Desulfovibrio Desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 1999, 7, 13–23; https://doi.org/10.1016/s0969-2126(99)80005-7.Search in Google Scholar PubMed

22. Sheng, Y.-D., Yu, X.-Y., Liu, X.-F., Li, Y.-L. 2-(diphenylphosphino)benzaldehyde or isopropyldiphenylphosphine substituted diiron dithiolate complexes. Polyhedron 2017, 137, 134–139; https://doi.org/10.1016/j.poly.2017.08.029.Search in Google Scholar

Received: 2022-11-10
Accepted: 2022-12-03
Published Online: 2022-12-14
Published in Print: 2023-01-27

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of undecacalcium decaarsenide, Ca11As10
  4. Crystal structure of catena-poly[diiodido-(μ2-1,5-dimethyl-2-phenyl-4-((pyridin-4- ylmethylene)amino)-1,2-dihydro-3H -pyrazol-3-one-κ2 N: O)zinc(II)], C17H16I2N4OZn
  5. The crystal structure of 5,10,15,20-tetrakis(4-(tert-butyl)phenyl)porphyrin-21,23-diido-κ4 N 4-naphthalocyanido-κ4 N 4-neodymium(IV) - chloroform (1/6) C114H90N12Cl18Nd
  6. The crystal structure of 1-(4-bromophenyl)-3-(2-chlorobenzyl)urea, C14H12BrClN2O
  7. Crystal structure of bis[benzyl(methyl)carbamodithioato-κ 2 S,S′]-di-n-butyltin(IV), C26H38N2S4Sn
  8. Crystal structure of (E)-3-(2-(4-(diethylamino)-2-hydroxystyryl)-3,3-dimethyl-3H-indol-1-ium-1-yl)propane-1-sulfonate – methanol (1/2), C25H32N2O4S⋅2CH3OH
  9. Synthesis and crystal structure of {(N′,N″-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))-bis(methaneylylidene))bis(2-hydroxybenzohydrazonato)-κ6 N 2 O 4}copper(II), C30H24CuN4O6
  10. The crystal structure of ((E)-2,4-dibromo-6-(((5-(nitro)-2-oxidophenyl)imino)methyl)phenolato-κ 3 N,O,O′)tris(pyridine-κN)manganese(II), C28H21Br2MnN5O4
  11. Synthesis and crystal structure of 1-((3R,10S,13R,17S)-10,13-dimethyl-3-(p-tolylamino)hexadecahydro-1H-cyclopenta-[a]phenanthren-17-yl)ethan-1-one, C28H41NO
  12. The crystal structure of 3-nitrobenzene-1,2-dicarboxylic acid—pyrazine-2-carboxamide(1/1), C13H10N4O7
  13. Crystal structure of poly[tetrakis(μ3-2-aminonicotinato-κ3N,O,O′)-(μ2-oxalato-κ4 O,O′:O″,O′″)-(μ4-oxalato-κ6 N:N′:O,O′:O″,O′″)dicopper(I)-disamarium(III)], [SmCu(C6N2H5O2)2(C2O4)] n
  14. The crystal structure of 2,3,4-trihydroxybenzoic- acid—pyrazine-2-carboxamide—water (1/1/1), C12H13N3O7
  15. Crystal structure of N-ethyl-4-[3-(trifluoromethyl)-phenyl]piperazine-1-carbothioamide, C14H18F3N3S
  16. The crystal structure of 3-anilino-1,4-diphenyl-4H-1,2,4-triazol-1-ium iodide, C20H17N4I
  17. The crystal structure of (tris(2-benzimidazolylmethyl)amine)-benzoato-copper(II) perchlorate monohydrate, CuC31H28N7O7Cl
  18. Crystal structure of [2-hydroxy-3-methyl-benzoato-k1 O-triphenyltin(IV)], C26H22O3Sn
  19. Crystal structure of diaqua-bis(4-(hydroxymethyl)-benzoato-k1 O)zinc(II), C16H18O8Zn
  20. The crystal structure of dicarbonyl-(N-nitroso-N-oxido-phenylamine-κ 2 O,O)-rhodium(I), C8H5N2O4Rh
  21. The crystal structure of oxalic acid – 2-ethoxybenzamide (2/1), C20H24N2O8
  22. The crystal structure of ethyl 7-ethyl-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate, C10H15N5O2
  23. Crystal structure of poly[(N,N-dimethylacetamide-κO) (μ4-2-nitroisophthalato-κ 4 O:O′:O″:O′″)manganese(II)], C11H10N2O7Mn
  24. Crystal structure of 14-O-acetyldelcosine, C26H41NO8
  25. The crystal structure of poly[(1,10-phenanthroline-κ2 N,N′)-(μ 4-2-chlorobenzene-1,3-dicarboxylato-κ5 O:O′:O″:O‴) cadmium(II)] monohydrate, C20H13CdClN2O5
  26. Crystal structure of propane-1,3-diylbis(diphenylphosphine sulfide) ethanol solvate, C27H26P2S2
  27. Crystal structure of bis{[(4-diethylamino-2-hydroxy-benzylidene)-hydrazinocarbonylmethyl]-trimethylammonium} tetrabromozincate, C32H54N8O4ZnBr4
  28. Synthesis and crystal structure of dimethyl 2,2′-(2,5-bis(4-hydroxyphenyl)-2,5-dihydrofuran-3,4-diyl)dibenzoate, C34H30O7
  29. Synthesis and crystal structure of 2-(2-oxo-2-phenylethyl)-4H-chromen-4-one, C17H12O3
  30. The crystal structure of tetra(imidazole-κ1 N)zinc(II) μ2-oxido-hexaoxido-divanadium(VI) C12H16N8O6V2Zn
  31. Crystal structure of S-2-(1-(5-methylpyridin-2-ylamino)octyl)-3-hydroxynaphthalene-1,4-dione, C24H28N2O3
  32. Crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxido-2-oxo-2-phenylethylidene)-benzohydrazonato-κ5 N,O,O′:N′,O′′)-oktakis(pyridine-κ1 N)trinickel(II) – methanol – pyridine (1/1/1) C76H65N13Cl2Ni3O9
  33. The crystal structure of methyl 3,5-diaminobenzoate, C8H10N2O2
  34. Crystal structure of 10-(9H-carbazol-9-yl)-5H-dibenzo[a,d][7]annelen-5-one, C27H17NO
  35. Crystal structure of ethyl 1-(2-hydroxyethyl)-4-((4-methoxyphenyl)amino)-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate, C16H20N2O5
  36. The crystal structure of 1-(4-bromophenyl)-3-cycloheptylurea, C14H19BrN2O
  37. The crystal structure of 1,4-bis(1,2,3,4,5-pentamethylcyclopenta-2,4-dien-1-yl)-3,6-bis ((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)-1,4-dialuminacyclohexane – benzene (1/2), C50H72Al2B2O4
  38. Crystal structure of bis(μ 3-diphenylphosphinato)-tetrakis(μ 2-diphenylphosphinato)-bis(diphenylphosphinato)-bis(μ 2-hydroxo)dicopper(II)-ditin(IV), C104H100O18P8Cu2Sn2
  39. Crystal structure of 3-((3,4-dichloroisothiazol-5-yl)methoxy)benzo[d] isothiazole 1,1-dioxide, C11H6Cl2N2O3S2
  40. Synthesis and crystal structure of 2-(2-(2-fluorophenyl)-2-oxoethyl)-4H-chromen-4-one, C17H11FO3
  41. The crystal structure of tris(carbonyl)-bis(carbonyl)-[μ-propane-1,2- dithiolato]-(benzyldiphenylphosphine)diiron (Fe—Fe), C27H23Fe2O5PS2
  42. Crystal structure of 1-(2-(4-chlorophenethyl)-2-hydroxy-3,3-dimethylbutyl)-1H-1,2,4-triazol-4-ium nitrate, C16H23N4O4Cl
  43. The crystal structure of 3,3′-disulfanediyldi(1H-1,2,4-triazol-5-amine) monohydrate, C4H8N8OS2
  44. The crystal structure of trans-[bis(4-methylpyridine-κN)bis(quinoline-2-carboxylato- κ 2 N,O)cadmium(II)], C32H26CdN4O4
  45. The crystal structure of ethyl 2′-hydroxy-4′,6′-dimethoxy-3-(4-methoxynaphthalen-1-yl)-5-oxo-2,3,4,5-tetrahydro-[1,1′-biphenyl]-4-carboxylate, C28H28O7
Downloaded on 30.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0520/html
Scroll to top button