Startseite Crystal structure of undecacalcium decaarsenide, Ca11As10
Artikel Open Access

Crystal structure of undecacalcium decaarsenide, Ca11As10

  • Andrea V. Hoffmann , Viktor Hlukhyy ORCID logo EMAIL logo und Thomas F. Fässler
Veröffentlicht/Copyright: 11. Oktober 2022

Abstract

Ca11As10, tetragonal, I4/mmm (no. 139), a = 11.2532(1) Å, c = 16.2351(4) Å, and V = 2055.92(6) Å3, Z = 4, R gt (F) = 0.0347, wR ref (F 2) = 0.0931, T = 150 K.

CCDC no.: 2208501

The crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Plate, dark grey
Size: 0.2 × 0.12 × 0.03 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 18.75 mm−1
Diffractometer, scan mode: Xcalibur, φ and ω-scans
θ max, completeness: 27.5°, >99%
N(hkl)measured, N(hkl)unique, R int: 15,111, 722, 0.064
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 596
N(param)refined: 49
Programs: CrysAlisPRO [1], SHELX [2, 3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
As1 0.0000 0.0000 0.36542 (10) 0.0110 (4)
As2 0.0000 0.5000 0.2500 0.0083 (4)
As3 0.15420 (11) 0.5000 0.0000 0.0123 (3)
As4 0.20819 (6) 0.20819 (6) 0.18043 (6) 0.0178 (3)
As5Aa 0.1369 (7) 0.1369 (7) 0.0000 0.095 (3)
As5Bb 0.0948 (5) 0.0948 (5) 0.0000 0.067 (2)
Ca1 0.33766 (15) 0.0000 0.10361 (10) 0.0132 (4)
Ca2 0.25281 (15) 0.0000 0.31152 (10) 0.0121 (4)
Ca3 0.0000 0.0000 0.1657 (2) 0.0123 (7)
Ca4Aa 0.3592 (7) 0.3592 (7) 0.0000 0.0218 (19)
Ca4Bb 0.3077(9) 0.3077 (9) 0.0000 0.030 (2)
  1. Occupanies: a0.506(16), b0.494(16).

Crystal structure of Ca11As10 (Ca – light gray and As – magenta): a) and b) non-split atom model; c)–e) split atom model. Atoms are represented as atomic displacement ellipsoids with 90% probability level. The covalent As–As bonds are shown in black.

Source of material

The title compound Ca11As10 has been synthesized via high-temperature solid-state reaction. Sample preparation and manipulations were done under protective atmosphere in an argon-filled glove box (MBraun 20G, argon purity 99.998%). Starting materials were elements of high purity: ingots of calcium (Alfa Aesar, 99.5%) and arsenic pieces (ChemPur, 99.999%). The compound Ca11As10 was prepared by placing Ca and As (11:10) in a graphitized silica ampoule and heat-treated in a Muffel furnace. The sealed ampoule was heated to 1173 K in 6 h, held at this temperature for 48 h and then cooled to 973 K in 42 h. After 24 h at 973 K the ampoule was cooled to room-temperature with a rate of 4.5 K/min.

Experimental details

The ampoule was opened in the glove box and capillaries (XRD capillaries, Hilgenberg, 0.3 mm inner diameter) were prepared for powder X-ray diffraction analysis. The product was investigated by means of powder X-ray diffraction (Stoe StadiP with Ge (111) monochromized Cu-K α 1 radiation (1.54056 Å)). An external Si standard was used for data correction. Single crystal X-ray diffraction was performed with an Oxford Diffractions Xcalibur 3 with graphite monochromatized Mo-K α radiation (0.71071 Å) at 150 K. The sample is air and moisture sensitive. The powder X-ray diffraction pattern for the sample Ca–As (11:10) shows the binary phases Ca11As10 and CaAs. The tetragonal lattice parameters were obtained from least-square fits of the powder data using Rietveld refinement. Single crystal data for Ca11As10 were collected at 150 K under constant N2-flow. An empirical absorption correction was applied [1]. The starting atomic parameters for Ca11As10 were deduced from an automatic interpretation of Direct Methods with SHELXS-97 [2]. The structures were then refined using SHELXL-97 (full-matrix least-square on F O 2 ) [3] with anisotropic atomic displacement parameters for all atoms. The occupancy parameters for each atom were refined in separate least-squares cycles to check the correct composition of the title compound.

Discussion

So far, seven binary Ca–As compounds have been investigated: CaAs3, Ca2As3, CaAs, Ca16As11, Ca4As3, Ca5As3 and Ca2As [4], [5], [6], [7], [8], [9], [10]. All binary phases except Ca5As3 and Ca2As, which are intermetallic compounds, belong to the Zintl phases with polyanionic substructures. The dimensionality of the polyanionic substructure decreases with increasing Ca-content. In CaAs3 the As-substructure is made up by [As3]2− networks, in Ca2As3 the As forms [As6]8− chairs and in CaAs and Ca16As11 compounds the [As–As]4− dumbbells are present. In the structure of Zintl phase Ca4As3 both [As–As]4− dumbbells and isolated As3− are found as polyanions.

The title compound Ca11As10 is the second (besides Eu11As10 [11]) As-representative of the Ho11Ge10 structure type [12]. The structure contains 8 [As2]4− dumbbells, 2 tetrameric [As4]4− units, 16 isolated As3− anions and 44 Ca2+ cations and thus corresponds to an electron-precise Zintl phase. The disorder on the 8h position of As5 with rather large anisotropic displacement parameters is similarly present in other Ho11Ge10 – type representatives [13], [14], [15], [16], and a reduction in symmetry to the orthorhombic Immm space group (as was applied for Ba11Sb10 [17]) does not solve the disorder problem. The crystal structure was therefore refined in the tetragonal I4/mmm space group but the 8h Wyckoff position of As5 and Ca4 were each split into two positions: As5A and As5B, Ca4A and Ca4B, respectively. The occupancy for Ca4A and Ca4B as well as for As5A and As5B was refined to 0.5 each. The distances between the As atoms in the dumbbell of 2.622(1) Å and in the [As4]4− unit of 2.650(10) Å are slightly longer as in other binary Ca–As compounds. The distances between As atoms and Ca atoms range from 2.718(13) Å to 3.538(11) Å within the first coordination sphere.


Corresponding author: Viktor Hlukhyy, Technische Universität München, Fakultät für Chemie, Anorganische Chemie mit Schwerpunkt Neue Materialien, Lichtenbergstr. 4 85747 Garching, Germany, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: VH thanks the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, Grant HL 62/3-1) for funding.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. CrysAlis RED Scale3/ABSPACK, Version 1.171.33.34d; Oxford Diffraction: Poland Sp. z o.o., 2009.Suche in Google Scholar

2. Sheldrick, G. M. SHELXS-2014, Program for the Determination of Crystal Structure; University of Goettingen: Goettingen, Germany, 2014.Suche in Google Scholar

3. Sheldrick, G. M. SHELXL-2014, Program for Crystal Structure Refinement; University of Goettingen: Goettingen, Germany, 2014.Suche in Google Scholar

4. Brice, J. F., Courtois, A., Protas, J., Aubry, J. Preparation et etude structurale d’un triarseniure de calcium: CaAs3. J. Solid State Chem. 1976, 17, 393–397; https://doi.org/10.1016/s0022-4596(76)80009-6.Suche in Google Scholar

5. Deller, K., Eisenmann, B. Die Kristallstruktur des Ca2As3. Z. Naturforsch. 1976, 31b, 1023–1027; https://doi.org/10.1515/znb-1976-0804.Suche in Google Scholar

6. Iandelli, A., Franceschi, E. On the crystal structure of the compounds CaP, SrP, CaAs, SrAs and EuAs. J. Less Common. Met. 1973, 30, 211–216; https://doi.org/10.1016/0022-5088(73)90107-0.Suche in Google Scholar

7. Leon-Escamilla, E. A., Hurng, W. M., Peterson, E. S., Corbett, J. D. Synthesis, structure, and properties of Ca16Sb11, a complex Zintl phase. Twelve other isotypic compounds formed by divalent metals and pnictogens. Inorg. Chem. 1996, 36, 703–710; https://doi.org/10.1021/ic961035w.Suche in Google Scholar

8. Hoffmann, A. V., Hlukhyy, V., Fassler, T. F. Ca4As3 – a new binary calcium arsenide. Acta Crystallogr. 2015, E71, 1548–1550; https://doi.org/10.1107/s2056989015022367.Suche in Google Scholar

9. Hütz, A., Nagorsen, G. Die Kristallstruktur der intermetallischen phase Ca5As3. Z. Metallkd. 1975, 66, 314; https://doi.org/10.1515/ijmr-1975-660515.Suche in Google Scholar

10. Hütz, A., Nagorsen, G. Die Kristallstruktur der intermetallischen Phase Ca2As. Z. Metallkd. 1974, 65, 618; https://doi.org/10.1515/ijmr-1974-650910.Suche in Google Scholar

11. Taylor, J. B., Calvert, L. D., Utsunomiya, Z., Wang, Y., Despault, J. G. Rare earth arsenides: the metal-rich Europium arsenides. J. Less Common Met. 1978, 57, 39–51; https://doi.org/10.1016/0022-5088(78)90161-3.Suche in Google Scholar

12. Smith, G. S., Johnson, Q., Tharp, A. G. The crystal structure of Ho11Ge10. Acta Crystallogr. 1967, 23, 640–644; https://doi.org/10.1107/s0365110x67003329.Suche in Google Scholar

13. Deller, K., Eisenmann, B. Zur Kenntnis von Ca11Sb10 und Ca11Bi10. Z. Naturforsch. 1976, 31b, 29–34; https://doi.org/10.1515/znb-1976-0105.Suche in Google Scholar

14. Schmelczer, R., Schwarzenbach, D., Hulliger, F. The crystal structure of Eu11Sb10. Z. Naturforsch. 1979, 34b, 1213–1217; https://doi.org/10.1515/znb-1979-0909.Suche in Google Scholar

15. Derrien, G., Tillard-Charbonnel, M., Manteghetti, A., Monconduit, L., Belin, C. Synthesis and crystal structure of M11X10 compounds (M–Sr, Ba; X–Bi, Sb). Electronic requirements and chemical bonding. J. Solid State Chem. 2002, 164, 169–175.10.1006/jssc.2001.9470Suche in Google Scholar

16. Clark, H. L., Simpson, H. D., Steinfink, H. Crystal structure of Yb11Sb10. Inorg. Chem. 1970, 9, 1962–1964; https://doi.org/10.1021/ic50090a049.Suche in Google Scholar

17. Emmerling, F., Längin, N., Pickhard, F., Wendorff, M., Röhr, C. Verbindungen mit Pentelid–Hanteln M2: A11M6 und A11M10. Z. Naturforsch. 2004, 59b, 7–16; https://doi.org/10.1515/znb-2004-0102..Suche in Google Scholar

Received: 2022-07-25
Accepted: 2022-09-21
Published Online: 2022-10-11
Published in Print: 2023-01-27

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of undecacalcium decaarsenide, Ca11As10
  4. Crystal structure of catena-poly[diiodido-(μ2-1,5-dimethyl-2-phenyl-4-((pyridin-4- ylmethylene)amino)-1,2-dihydro-3H -pyrazol-3-one-κ2 N: O)zinc(II)], C17H16I2N4OZn
  5. The crystal structure of 5,10,15,20-tetrakis(4-(tert-butyl)phenyl)porphyrin-21,23-diido-κ4 N 4-naphthalocyanido-κ4 N 4-neodymium(IV) - chloroform (1/6) C114H90N12Cl18Nd
  6. The crystal structure of 1-(4-bromophenyl)-3-(2-chlorobenzyl)urea, C14H12BrClN2O
  7. Crystal structure of bis[benzyl(methyl)carbamodithioato-κ 2 S,S′]-di-n-butyltin(IV), C26H38N2S4Sn
  8. Crystal structure of (E)-3-(2-(4-(diethylamino)-2-hydroxystyryl)-3,3-dimethyl-3H-indol-1-ium-1-yl)propane-1-sulfonate – methanol (1/2), C25H32N2O4S⋅2CH3OH
  9. Synthesis and crystal structure of {(N′,N″-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))-bis(methaneylylidene))bis(2-hydroxybenzohydrazonato)-κ6 N 2 O 4}copper(II), C30H24CuN4O6
  10. The crystal structure of ((E)-2,4-dibromo-6-(((5-(nitro)-2-oxidophenyl)imino)methyl)phenolato-κ 3 N,O,O′)tris(pyridine-κN)manganese(II), C28H21Br2MnN5O4
  11. Synthesis and crystal structure of 1-((3R,10S,13R,17S)-10,13-dimethyl-3-(p-tolylamino)hexadecahydro-1H-cyclopenta-[a]phenanthren-17-yl)ethan-1-one, C28H41NO
  12. The crystal structure of 3-nitrobenzene-1,2-dicarboxylic acid—pyrazine-2-carboxamide(1/1), C13H10N4O7
  13. Crystal structure of poly[tetrakis(μ3-2-aminonicotinato-κ3N,O,O′)-(μ2-oxalato-κ4 O,O′:O″,O′″)-(μ4-oxalato-κ6 N:N′:O,O′:O″,O′″)dicopper(I)-disamarium(III)], [SmCu(C6N2H5O2)2(C2O4)] n
  14. The crystal structure of 2,3,4-trihydroxybenzoic- acid—pyrazine-2-carboxamide—water (1/1/1), C12H13N3O7
  15. Crystal structure of N-ethyl-4-[3-(trifluoromethyl)-phenyl]piperazine-1-carbothioamide, C14H18F3N3S
  16. The crystal structure of 3-anilino-1,4-diphenyl-4H-1,2,4-triazol-1-ium iodide, C20H17N4I
  17. The crystal structure of (tris(2-benzimidazolylmethyl)amine)-benzoato-copper(II) perchlorate monohydrate, CuC31H28N7O7Cl
  18. Crystal structure of [2-hydroxy-3-methyl-benzoato-k1 O-triphenyltin(IV)], C26H22O3Sn
  19. Crystal structure of diaqua-bis(4-(hydroxymethyl)-benzoato-k1 O)zinc(II), C16H18O8Zn
  20. The crystal structure of dicarbonyl-(N-nitroso-N-oxido-phenylamine-κ 2 O,O)-rhodium(I), C8H5N2O4Rh
  21. The crystal structure of oxalic acid – 2-ethoxybenzamide (2/1), C20H24N2O8
  22. The crystal structure of ethyl 7-ethyl-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate, C10H15N5O2
  23. Crystal structure of poly[(N,N-dimethylacetamide-κO) (μ4-2-nitroisophthalato-κ 4 O:O′:O″:O′″)manganese(II)], C11H10N2O7Mn
  24. Crystal structure of 14-O-acetyldelcosine, C26H41NO8
  25. The crystal structure of poly[(1,10-phenanthroline-κ2 N,N′)-(μ 4-2-chlorobenzene-1,3-dicarboxylato-κ5 O:O′:O″:O‴) cadmium(II)] monohydrate, C20H13CdClN2O5
  26. Crystal structure of propane-1,3-diylbis(diphenylphosphine sulfide) ethanol solvate, C27H26P2S2
  27. Crystal structure of bis{[(4-diethylamino-2-hydroxy-benzylidene)-hydrazinocarbonylmethyl]-trimethylammonium} tetrabromozincate, C32H54N8O4ZnBr4
  28. Synthesis and crystal structure of dimethyl 2,2′-(2,5-bis(4-hydroxyphenyl)-2,5-dihydrofuran-3,4-diyl)dibenzoate, C34H30O7
  29. Synthesis and crystal structure of 2-(2-oxo-2-phenylethyl)-4H-chromen-4-one, C17H12O3
  30. The crystal structure of tetra(imidazole-κ1 N)zinc(II) μ2-oxido-hexaoxido-divanadium(VI) C12H16N8O6V2Zn
  31. Crystal structure of S-2-(1-(5-methylpyridin-2-ylamino)octyl)-3-hydroxynaphthalene-1,4-dione, C24H28N2O3
  32. Crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxido-2-oxo-2-phenylethylidene)-benzohydrazonato-κ5 N,O,O′:N′,O′′)-oktakis(pyridine-κ1 N)trinickel(II) – methanol – pyridine (1/1/1) C76H65N13Cl2Ni3O9
  33. The crystal structure of methyl 3,5-diaminobenzoate, C8H10N2O2
  34. Crystal structure of 10-(9H-carbazol-9-yl)-5H-dibenzo[a,d][7]annelen-5-one, C27H17NO
  35. Crystal structure of ethyl 1-(2-hydroxyethyl)-4-((4-methoxyphenyl)amino)-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate, C16H20N2O5
  36. The crystal structure of 1-(4-bromophenyl)-3-cycloheptylurea, C14H19BrN2O
  37. The crystal structure of 1,4-bis(1,2,3,4,5-pentamethylcyclopenta-2,4-dien-1-yl)-3,6-bis ((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)-1,4-dialuminacyclohexane – benzene (1/2), C50H72Al2B2O4
  38. Crystal structure of bis(μ 3-diphenylphosphinato)-tetrakis(μ 2-diphenylphosphinato)-bis(diphenylphosphinato)-bis(μ 2-hydroxo)dicopper(II)-ditin(IV), C104H100O18P8Cu2Sn2
  39. Crystal structure of 3-((3,4-dichloroisothiazol-5-yl)methoxy)benzo[d] isothiazole 1,1-dioxide, C11H6Cl2N2O3S2
  40. Synthesis and crystal structure of 2-(2-(2-fluorophenyl)-2-oxoethyl)-4H-chromen-4-one, C17H11FO3
  41. The crystal structure of tris(carbonyl)-bis(carbonyl)-[μ-propane-1,2- dithiolato]-(benzyldiphenylphosphine)diiron (Fe—Fe), C27H23Fe2O5PS2
  42. Crystal structure of 1-(2-(4-chlorophenethyl)-2-hydroxy-3,3-dimethylbutyl)-1H-1,2,4-triazol-4-ium nitrate, C16H23N4O4Cl
  43. The crystal structure of 3,3′-disulfanediyldi(1H-1,2,4-triazol-5-amine) monohydrate, C4H8N8OS2
  44. The crystal structure of trans-[bis(4-methylpyridine-κN)bis(quinoline-2-carboxylato- κ 2 N,O)cadmium(II)], C32H26CdN4O4
  45. The crystal structure of ethyl 2′-hydroxy-4′,6′-dimethoxy-3-(4-methoxynaphthalen-1-yl)-5-oxo-2,3,4,5-tetrahydro-[1,1′-biphenyl]-4-carboxylate, C28H28O7
Heruntergeladen am 15.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0380/html
Button zum nach oben scrollen