Startseite The crystal structure of 3,3′-disulfanediyldi(1H-1,2,4-triazol-5-amine) monohydrate, C4H8N8OS2
Artikel Open Access

The crystal structure of 3,3′-disulfanediyldi(1H-1,2,4-triazol-5-amine) monohydrate, C4H8N8OS2

  • Giyosiddin Khayrullaev , Batirbay Torambetov , Shakhnoza Kadirova und Yevhenii Vaksler ORCID logo EMAIL logo
Veröffentlicht/Copyright: 14. Dezember 2022

Abstract

C4H8N8OS2, triclinic, P 1 (no. 2), a = 7.4377(5) Å, b = 7.5032(5) Å, c = 10.0964(6) Å, α = 91.481(5)°, β = 108.906(5)°, γ = 110.678(6)°, V = 492.41(6) Å3, Z = 2, Rgt (F) = 0.0653, wRref (F 2) = 0.1888, T = 293 (2) K.

CCDC no.: 2224194

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow block
Size: 0.21 × 0.08 × 0.04 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.53 mm−1
Diffractometer, scan mode: Xcalibur, ω
θ max, completeness: 34.6°, >99%
N(hkl)measured, N(hkl)unique, R int: 6011, 3756, 0.052
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 2735
N(param)refined: 161
Programs: CrysAlisPRO [1], SHELX [2, 3], OLEX2 [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
S1 0.29972 (7) 0.72566 (8) 0.30807 (5) 0.03682 (18)
S2 0.21071 (8) 0.47769 (7) 0.17452 (5) 0.03850 (18)
N1 0.8036 (3) 0.8474 (3) 0.61537 (17) 0.0377 (4)
H1 0.884 (4) 0.904 (4) 0.708 (3) 0.045*
N2 0.6040 (3) 0.8373 (3) 0.55991 (17) 0.0383 (4)
N3 0.6859 (3) 0.7014 (3) 0.39612 (17) 0.0377 (4)
N4 0.2515 (3) 0.4228 (2) −0.07112 (17) 0.0359 (4)
N5 0.3103 (3) 0.5301 (2) −0.16967 (17) 0.0348 (4)
H5 0.327 (4) 0.475 (4) −0.243 (3) 0.042*
N6 0.3530 (2) 0.7430 (2) 0.00397 (16) 0.0324 (3)
N7 1.0282 (3) 0.7444 (4) 0.5428 (3) 0.0545 (6)
H7A 1.049 (5) 0.698 (5) 0.483 (4) 0.065*
H7B 1.121 (5) 0.799 (5) 0.615 (4) 0.065*
N8 0.4374 (3) 0.8630 (3) −0.19473 (19) 0.0415 (4)
H8A 0.509 (4) 0.991 (4) −0.141 (3) 0.050*
H8B 0.470 (5) 0.828 (4) −0.263 (3) 0.050*
C1 0.5435 (3) 0.7507 (3) 0.42828 (18) 0.0317 (4)
C2 0.8473 (3) 0.7649 (3) 0.5182 (2) 0.0354 (4)
C3 0.2795 (3) 0.5580 (3) 0.02805 (18) 0.0311 (4)
C4 0.3735 (3) 0.7184 (3) −0.12133 (19) 0.0316 (4)
O1 0.9159 (3) 0.9844 (3) 0.1167 (2) 0.0601 (5)
H1A 0.857 (6) 0.860 (6) 0.107 (4) 0.090*
H1B 0.846 (6) 1.064 (6) 0.074 (4) 0.090*

Source of materials

The target compound 3,3′-disulfanediyldi(1H-1,2,4-triazole-5-amine) was prepared by the dropwise addition of hydrogen peroxide (30%, 5 mL) to a solution of 5-amino-3-mercapto-1,2,4-triazole (2.32 g, 0.02 mol) in ethanol (20 mL) and water (10 mL) at room temperature. The reaction mixture was stirred for 2 h. The obtained colourless clear solution was filtered and left for crystallization for three days. Yield: 95%.

Experimental details

Coordinates of hydrogen atoms were determined from the difference density maps and refined freely. Their Uiso values were set to 1.5Ueq of the parent atom for the water molecule and 1.2Ueq for other hydrogen atoms.

Comment

During the latest decades, 1,2,4-triazoles became an important class of heterocyclic organic compounds because of their broad spectrum of biological activity [5]. Scientists identified numerous potentially useful properties of 1,2,4-triazole derivatives, such as analgesic [6], anti-inflammatory [7], antimicrobial [8], antitubercular [9], antitumor [10], herbicidal [11] and fungicidal [12] activities. Additionally, the N-heterocyclic thiones, and so 3,3′-disulfanediyldi(1H-1,2,4-triazole-5-amine) can be used as multidentate ligands. They have both sulphur and nitrogen donors. It helps them to form complex compounds with metal cations [13]. However, properties of such complexes remain strongly affected by the presence of the 1,2,4-triazole cycles [14]. Thereby, triazole-based ligands are perfect to create new coordination complexes advantageous for various fields, especially antitumor drugs [15].

Disulfanyl triazole derivatives are relatively widespread and characterized structurally. However, the derivatives with bulky substituents such as phenyl [16], [17], [18], [19], [20], [21], [22] or pyridine [23] rings, etc. [18, 21, 24, 25] are more common. They are known for complexibility with transition metals [16, 23, 24, 26, 27]. One structure containing 3,3′-disulfanediyldi(1H-1,2,4-triazol-5-amine) is known [28], is a co-crystal with bipyridine.

The asymmetric unit of the title structure contains one 3,3′-disulfanediyldi(1H-1,2,4-triazol-5-amine) and one water molecule (left part of the figure: displacement ellipsoids are shown at the 50% probability level). The bond lengths and angles within these moieties are in the expected ranges. The bond length S1–S2 is 2.0347(8) Å. It is slightly elongated with respect to the mean value for 3,3′-disulfanediylbis(1H-1,2,4-triazole) derivatives appearing in the Cambridge Crystallographic database [29] (1.945(31) Å) and similar to the one mentioned in [28] (2.039(1) Å). The bond angles S1–C1–N3 and S2–C3–N6 seem enlarged slightly (125.9(2)° and 127.6(2)°) with respect to the normal value of 120°.

The triazole rings are rotated with respect to each other. The torsion angle C1–S1–S2–C3 equals to −96.7(1)° and the mean planes of the rings are close to orthogonal (the dihedral angle between them is 88.6°). The torsion angle C1–S1–S2–C3 for the title structure is larger than for the similar one (−83.6(2)°) in [28]. The amino group at the atom C2 is planar, while the amino group at the atom C4 is slightly pyramidal where the sum of bond angles centered at the atom N8 equals to 351(7)°. The reason is that the atom N7 is involved in hydrogen bonding solely as a donor, while the atom N8 participates in the intermolecular hydrogen bond N7–H7B⋯N8 (H⋯A = 2.38 (3) Å, D–H⋯A = 157(3)°, x + 1, y, z + 1) as an acceptor.

Regarding the van der Waals radii proposed in [30] for all the atoms except hydrogen [31], the analysis of intermolecular interactions revealed three types of hydrogen bonds: N–H⋯N, N–H⋯O and O–H⋯N. These hydrogen bonds form two types of dimers with symmetric equivalents −x + 1, −y + 1, −z and −x + 1, −y + 2, −z. The hydrogen bonds N5–H5⋯N3 (H⋯A = 1.97(3) Å, D–H⋯A = 166(3)°) are involved in the formation of the first one as well as the π–π stacking of the triazole rings (plane to plane centroid distance, D pp , is 3.12(1) Å, plane to plane shift, S pp , is 1.487(3) Å). The second type of dimers is formed exclusively by the hydrogen bonds N8–H8A⋯N6 (H⋯A = 2.11(3) Å, D–H⋯A = 172(3)°). These dimers form the chains along the main crystallographic direction b (right part of the figure: hydrogen bonds in cyan, short contacts between the triazole rings are in magenta). In addition to that two paired Lp–π interactions (C3⋯S2: distance to plane, D ap , is −3.44(1) Å and centroid to projection point distance, D cp , is 0.741 Å; N1⋯S2: D ap  = 3.03(1) Å and D cp  = 2.334 Å) occur with the symmetric equivalents −x, −y + 1, −z and −x + 1, −y + 1, −z + 1. The single hydrogen bond N8–H8B⋯N2 (H⋯A = 2.30(3) Å, D–H⋯A = 162(3)°, x, y, z − 1) connects the molecules in the crystallographic direction c. Due to the numerous hydrogen bonds, the title compound molecules form a crystal structure with solvent accessible voids (the void volume is 46.7 Å3/9.5% of the cell volume with the probe radius 1.2 Å). The water molecules fill the empty spaces completely and stabilize the structure with the three additional hydrogen bonds: N1–H1⋯O1 (H⋯A = 1.84(3) Å, D–H⋯A = 169(3)°, −x + 2, −y + 2, −z + 1), O1–H1A⋯N4 (H⋯A = 1.96(4) Å, D–H⋯A = 172(4)°, −x + 1, −y + 1, −z) and O1–H1B⋯N6 (H⋯A = 2.39(4) Å, D–H⋯A = 171(4)°, −x + 1, −y + 2, −z). At that, the bond N1–H1⋯O1 is potentially the strongest in the structure considering the extreme shortening of the distance between the hydrogen and oxygen atoms in comparison to the sum of their van der Waals radii (shortening equals to 0.77 Å). While two residual hydrogen bonds create an additional linkage in the chains of dimers in the crystallographic direction b shown in the figure.


Corresponding author: Yevhenii Vaksler, SSI Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave, Kharkiv, 61001, Ukraine, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku Oxford Diffraction. CrysAlisPRO; Yarnton: England, 2018.Suche in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

5. Kumari, M., Tahlan, S., Narasimhan, B., Ramasamy, K., Lim, S. M., Shah, S. A. A., Mani, V., Kakkar, S. Synthesis and biological evaluation of heterocyclic 1,2,4-triazole scaffolds as promising pharmacological agents. BMC Chem. 2021, 15, 1–16; https://doi.org/10.1186/s13065-020-00717-y.Suche in Google Scholar PubMed PubMed Central

6. Tozkoparan, B., Küpeli, E., Yeşilada, E., Ertan, M. Preparation of 5-aryl-3-alkylthio-l,2,4-triazoles and corresponding sulfones with anti-inflammatory-analgesic activity. Bioorg. Med. Chem. 2007, 15, 1808–1814; https://doi.org/10.1016/j.bmc.2006.11.029.Suche in Google Scholar PubMed

7. Labanauskas, L., Udrenaite, E., Gaidelis, P., Brukštus, A. Synthesis of 5-(2-3- and 4-methoxyphenyl)-4H-1,2,4-triazole-3-thiol derivatives exhibiting anti-inflammatory activity. Il Farmaco 2004, 59, 255–259; https://doi.org/10.1016/j.farmac.2003.11.002.Suche in Google Scholar PubMed

8. Insuasty, D., Castillo, J., Becerra, D., Rojas, H., Abonia, R. Synthesis of biologically active molecules through multicomponent reactions. Molecules 2020, 25, 505; https://doi.org/10.3390/molecules25030505.Suche in Google Scholar PubMed PubMed Central

9. Patil, P. S., Kasare, S. L., Haval, N. B., Khedkar, V. M., Dixit, P. P., Madhu Rekha, E., Sriram, D., Haval, K. P. Novel isoniazid embedded triazole derivatives: synthesis, antitubercular and antimicrobial activity evaluation. Bioorg. Med. Chem. Lett. 2020, 30, 127434; https://doi.org/10.1016/j.bmcl.2020.127434.Suche in Google Scholar PubMed

10. Pitucha, M., Janeczko, M., Klimek, K., Fornal, E., Wos, M., Pachuta-Stec, A., Ginalska, G., Kaczor, A. A. 1,2,4-Triazolin-5-thione derivatives with anticancer activity as CK1γ kinase inhibitors. Bioorg. Chem. 2020, 99, 103806; https://doi.org/10.1016/j.bioorg.2020.103806.Suche in Google Scholar PubMed

11. Yang, L., Sun, Y., Lu, Z., Liang, J., Wang, T., Juo, J. Synthesis and herbicidal activity of pyrimidyl-1,2,4-triazole derivatives containing aryl sulfonyl moiety. J. Heterocycl. Chem. 2022, 59, 704–719; https://doi.org/10.1002/jhet.4410.Suche in Google Scholar

12. Wu, W. N., Jiang, Y.-M., Fei, Q., Du, H.-T., Yang, M.-F. Synthesis and antifungal activity of novel 1,2,4-triazole derivatives containing an amide moiety. J. Heterocycl. Chem. 2020, 57, 1379–1386; https://doi.org/10.1002/jhet.3874.Suche in Google Scholar

13. Xiao, D., Yu, Y.-H., Wang, Z.-S., Yu, C.-H., Hou, G.-F., Chen, Y.-M., Gong, X.-F., Ma, D.-S., Gao, J.-S. Synthesis, structures, catalytic, and anticancer activities of some coordination compounds involving two new triazole derivatives. J. Coord. Chem. 2015, 68, 2225–2239; https://doi.org/10.1080/00958972.2015.1042375.Suche in Google Scholar

14. Kulabaş, N., Tatar, E., Bingöl Özakpınar, Ö., Özsavcı, D., Pannecouque, C., De Clercq, E., Küçükgüzel, İ. Synthesis and antiproliferative evaluation of novel 2-(4H-1,2,4-triazole-3-ylthio)acetamide derivatives as inducers of apoptosis in cancer cells. Eur. J. Med. Chem. 2016, 121, 58–70; https://doi.org/10.1016/j.ejmech.2016.05.017.Suche in Google Scholar PubMed

15. Abulhasanov, B., Yıldız, U., Akkoç, S., Coban, B. Synthesis, characterization, duplex–DNA interactions, and anticancer activities of novel octahedral [Ni(phen)2(dppz-idzo)]2+ and [Co(phen)2(dppz-idzo)]3+ complexes. Appl. Organomet. Chem. 2020, 34, e5866; https://doi.org/10.1002/aoc.5866.Suche in Google Scholar

16. Singh, A., Bharty, M. K., Kushawaha, S. K., Butcher, R. J., Singh, N. K. A seven membered chelate ring complex of Mn(II) derived from bis(5-phenyl-2H-1,2,4-triazole)-3-yl-disulfane and cleavage of the S–S bond in a Co(II) complex: synthesis, spectral and structural characterization. Polyhedron 2011, 30, 1927–1934; https://doi.org/10.1016/j.poly.2011.03.050.Suche in Google Scholar

17. Jiang, W.-Q., Liu, T.-B., Zou, J.-P., Zhang, Y., Huaxue, J. CCDC 635140: Experimental crystal structure determination, 2007, 26, 445.Suche in Google Scholar

18. Pan, F.-Y., Yang, J.-G., Chen, D.-B., Huang, L. Bis[4-phenyl-5-(1H-1,2,4-triazol-3-yl)-4H-1,2,4-triazol-3-yl] disulfide. Acta Crystallogr. 2005, E61, o866–o867; https://doi.org/10.1107/s1600536805006276.Suche in Google Scholar

19. Zhu, A.-X., Liu, J.-N., Li, Z., Wang, H.-C., Du, Y.-C. Bis(5-phenyl-1H-1,2,4-triazol-3-yl) disulfide dihydrate. Acta Crystallogr. 2011, E67, o1208; https://doi.org/10.1107/s1600536811014607.Suche in Google Scholar

20. Patni, M., Gupta, R., Kotikalapudi, R., Kumara Swamy, K. C., Bansal, R. K. Nitrenium ion induced tandem S–S coupling, 1, 2-prototropic shift and reduction. Tetrahedron Lett. 2013, 54, 2321–2324; https://doi.org/10.1016/j.tetlet.2013.02.035.Suche in Google Scholar

21. Ramazani, A., Morsali, A., Jalilian, A. R., Jamali, F., Gouranlou, F. Crystal structure of 4-methyl-5-(5-{[5-(4-methyl-2-phenyl-1, 3-thiazol-5-yl)-4-phenyl-4H-1,2,4-triazol-3-yl}disulfanyl]-4-phenyl-4H-1,2,4-triazol-3-yl)-2-phenyl-1,3-thiazol acetonitrile, (C36H26N8S4XC2H3N). Z. Kristallogr. N. Cryst. Struct. 2002, 217, 395–397; https://doi.org/10.1524/ncrs.2002.217.jg.395.Suche in Google Scholar

22. Dani, R. K., Bharty, M. K., Paswan, S., Singh, S., Singh, N. K. Mononuclear Ni(II) and dinuclear Cd(II) complexes of 4-phenyl-2H-1,2,4-triazole-3-thione and Mn(II) catalyzed disulphide bond formation in 3,3′-dithiobis(4-phenyl-1,2,4-triazole): syntheses, structural characterization, thermal analysis and DFT calculation. Inorg. Chim. Acta 2014, 421, 519–530; https://doi.org/10.1016/j.ica.2014.06.037.Suche in Google Scholar

23. Chen, X.-D., Wu, H.-F., Du, M. Controllable preparation of ZnII coordination polymers: unusual solvothermal formation of a LiGe-type framework directed by in situ S–S coupling of 5-(4-pyridyl)-1H-1,2,4-triazole-3-thiol. Chem. Commun. 2008, 11, 1296–1298; https://doi.org/10.1039/b716461k.Suche in Google Scholar PubMed

24. Ma, C., Han, Y., Zhang, R. Self-assembly syntheses and crystal structure of a new organotin(IV) Schiff base complex containing a novel Sn5O5 hydrolysis ladder. J. Inorg. Organomet. Polym. 2007, 17, 541–546; https://doi.org/10.1007/s10904-007-9146-z.Suche in Google Scholar

25. Amandurdyeva, A. D., Saraev, V. V., Polyakova, I. N., Golod, E. L. Adamantylazoles: X. Reactions of 1,2,4-triazole-3-thione with 1-adamantanol in acid solutions. Russ. J. Gen. Chem. 2005, 75, 1475–1479; https://doi.org/10.1007/s11176-005-0449-x.Suche in Google Scholar

26. Gai, Y., Chen, X., Yang, H., Wang, Y., Bu, X., Feng, P. A new strategy for constructing a disulfide-functionalized ZIF-8 analogue using structure-directing ligand–ligand covalent interaction. Chem. Commun. 2018, 54, 12109–12112; https://doi.org/10.1039/c8cc07064d.Suche in Google Scholar PubMed

27. Wang, Y.-L., Zhang, N., Liu, Q.-Y., Shan, Z.-M., Cao, R., Wang, M.-S., Luo, J.-J., Yang, E.-L. Diversity of architecture of copper(I) coordination polymers constructed of copper(I) halides and 4-methyl-1,2,4-triazole-3-thiol (Hmptrz) ligand: syntheses, structures, and luminescent properties. Cryst. Growth Des. 2011, 11, 130–138; https://doi.org/10.1021/cg101018b.Suche in Google Scholar

28. Yang, W., Qiu, Q.-M., Jin, Q.-H., Zhang, C.-L. 4,4′-Bipyridine-3,3′-disulfanediylbis(1H-1,2,4-triazole-5-amine) (1/1). Acta Crystallogr. 2012, E68, o3194; https://doi.org/10.1107/s1600536812042742.Suche in Google Scholar

29. Groom, C. R., Bruno, I. J., Lightfoot, M. P., Ward, S. C. The Cambridge structural Database. Acta Crystallogr. 2016, B72, 171–179; https://doi.org/10.1107/s2052520616003954.Suche in Google Scholar

30. Bondi, A. van der Waals volumes and radii. J. Phys. Chem. 1964, 68, 441–451; https://doi.org/10.1021/j100785a001.Suche in Google Scholar

31. Rowland, R. S., Taylor, R. Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals radii. J. Phys. Chem. 1996, 100, 7384–7391; https://doi.org/10.1021/jp953141+.10.1021/jp953141+Suche in Google Scholar

Received: 2022-11-09
Accepted: 2022-12-03
Published Online: 2022-12-14
Published in Print: 2023-01-27

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of undecacalcium decaarsenide, Ca11As10
  4. Crystal structure of catena-poly[diiodido-(μ2-1,5-dimethyl-2-phenyl-4-((pyridin-4- ylmethylene)amino)-1,2-dihydro-3H -pyrazol-3-one-κ2 N: O)zinc(II)], C17H16I2N4OZn
  5. The crystal structure of 5,10,15,20-tetrakis(4-(tert-butyl)phenyl)porphyrin-21,23-diido-κ4 N 4-naphthalocyanido-κ4 N 4-neodymium(IV) - chloroform (1/6) C114H90N12Cl18Nd
  6. The crystal structure of 1-(4-bromophenyl)-3-(2-chlorobenzyl)urea, C14H12BrClN2O
  7. Crystal structure of bis[benzyl(methyl)carbamodithioato-κ 2 S,S′]-di-n-butyltin(IV), C26H38N2S4Sn
  8. Crystal structure of (E)-3-(2-(4-(diethylamino)-2-hydroxystyryl)-3,3-dimethyl-3H-indol-1-ium-1-yl)propane-1-sulfonate – methanol (1/2), C25H32N2O4S⋅2CH3OH
  9. Synthesis and crystal structure of {(N′,N″-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))-bis(methaneylylidene))bis(2-hydroxybenzohydrazonato)-κ6 N 2 O 4}copper(II), C30H24CuN4O6
  10. The crystal structure of ((E)-2,4-dibromo-6-(((5-(nitro)-2-oxidophenyl)imino)methyl)phenolato-κ 3 N,O,O′)tris(pyridine-κN)manganese(II), C28H21Br2MnN5O4
  11. Synthesis and crystal structure of 1-((3R,10S,13R,17S)-10,13-dimethyl-3-(p-tolylamino)hexadecahydro-1H-cyclopenta-[a]phenanthren-17-yl)ethan-1-one, C28H41NO
  12. The crystal structure of 3-nitrobenzene-1,2-dicarboxylic acid—pyrazine-2-carboxamide(1/1), C13H10N4O7
  13. Crystal structure of poly[tetrakis(μ3-2-aminonicotinato-κ3N,O,O′)-(μ2-oxalato-κ4 O,O′:O″,O′″)-(μ4-oxalato-κ6 N:N′:O,O′:O″,O′″)dicopper(I)-disamarium(III)], [SmCu(C6N2H5O2)2(C2O4)] n
  14. The crystal structure of 2,3,4-trihydroxybenzoic- acid—pyrazine-2-carboxamide—water (1/1/1), C12H13N3O7
  15. Crystal structure of N-ethyl-4-[3-(trifluoromethyl)-phenyl]piperazine-1-carbothioamide, C14H18F3N3S
  16. The crystal structure of 3-anilino-1,4-diphenyl-4H-1,2,4-triazol-1-ium iodide, C20H17N4I
  17. The crystal structure of (tris(2-benzimidazolylmethyl)amine)-benzoato-copper(II) perchlorate monohydrate, CuC31H28N7O7Cl
  18. Crystal structure of [2-hydroxy-3-methyl-benzoato-k1 O-triphenyltin(IV)], C26H22O3Sn
  19. Crystal structure of diaqua-bis(4-(hydroxymethyl)-benzoato-k1 O)zinc(II), C16H18O8Zn
  20. The crystal structure of dicarbonyl-(N-nitroso-N-oxido-phenylamine-κ 2 O,O)-rhodium(I), C8H5N2O4Rh
  21. The crystal structure of oxalic acid – 2-ethoxybenzamide (2/1), C20H24N2O8
  22. The crystal structure of ethyl 7-ethyl-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate, C10H15N5O2
  23. Crystal structure of poly[(N,N-dimethylacetamide-κO) (μ4-2-nitroisophthalato-κ 4 O:O′:O″:O′″)manganese(II)], C11H10N2O7Mn
  24. Crystal structure of 14-O-acetyldelcosine, C26H41NO8
  25. The crystal structure of poly[(1,10-phenanthroline-κ2 N,N′)-(μ 4-2-chlorobenzene-1,3-dicarboxylato-κ5 O:O′:O″:O‴) cadmium(II)] monohydrate, C20H13CdClN2O5
  26. Crystal structure of propane-1,3-diylbis(diphenylphosphine sulfide) ethanol solvate, C27H26P2S2
  27. Crystal structure of bis{[(4-diethylamino-2-hydroxy-benzylidene)-hydrazinocarbonylmethyl]-trimethylammonium} tetrabromozincate, C32H54N8O4ZnBr4
  28. Synthesis and crystal structure of dimethyl 2,2′-(2,5-bis(4-hydroxyphenyl)-2,5-dihydrofuran-3,4-diyl)dibenzoate, C34H30O7
  29. Synthesis and crystal structure of 2-(2-oxo-2-phenylethyl)-4H-chromen-4-one, C17H12O3
  30. The crystal structure of tetra(imidazole-κ1 N)zinc(II) μ2-oxido-hexaoxido-divanadium(VI) C12H16N8O6V2Zn
  31. Crystal structure of S-2-(1-(5-methylpyridin-2-ylamino)octyl)-3-hydroxynaphthalene-1,4-dione, C24H28N2O3
  32. Crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxido-2-oxo-2-phenylethylidene)-benzohydrazonato-κ5 N,O,O′:N′,O′′)-oktakis(pyridine-κ1 N)trinickel(II) – methanol – pyridine (1/1/1) C76H65N13Cl2Ni3O9
  33. The crystal structure of methyl 3,5-diaminobenzoate, C8H10N2O2
  34. Crystal structure of 10-(9H-carbazol-9-yl)-5H-dibenzo[a,d][7]annelen-5-one, C27H17NO
  35. Crystal structure of ethyl 1-(2-hydroxyethyl)-4-((4-methoxyphenyl)amino)-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate, C16H20N2O5
  36. The crystal structure of 1-(4-bromophenyl)-3-cycloheptylurea, C14H19BrN2O
  37. The crystal structure of 1,4-bis(1,2,3,4,5-pentamethylcyclopenta-2,4-dien-1-yl)-3,6-bis ((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)-1,4-dialuminacyclohexane – benzene (1/2), C50H72Al2B2O4
  38. Crystal structure of bis(μ 3-diphenylphosphinato)-tetrakis(μ 2-diphenylphosphinato)-bis(diphenylphosphinato)-bis(μ 2-hydroxo)dicopper(II)-ditin(IV), C104H100O18P8Cu2Sn2
  39. Crystal structure of 3-((3,4-dichloroisothiazol-5-yl)methoxy)benzo[d] isothiazole 1,1-dioxide, C11H6Cl2N2O3S2
  40. Synthesis and crystal structure of 2-(2-(2-fluorophenyl)-2-oxoethyl)-4H-chromen-4-one, C17H11FO3
  41. The crystal structure of tris(carbonyl)-bis(carbonyl)-[μ-propane-1,2- dithiolato]-(benzyldiphenylphosphine)diiron (Fe—Fe), C27H23Fe2O5PS2
  42. Crystal structure of 1-(2-(4-chlorophenethyl)-2-hydroxy-3,3-dimethylbutyl)-1H-1,2,4-triazol-4-ium nitrate, C16H23N4O4Cl
  43. The crystal structure of 3,3′-disulfanediyldi(1H-1,2,4-triazol-5-amine) monohydrate, C4H8N8OS2
  44. The crystal structure of trans-[bis(4-methylpyridine-κN)bis(quinoline-2-carboxylato- κ 2 N,O)cadmium(II)], C32H26CdN4O4
  45. The crystal structure of ethyl 2′-hydroxy-4′,6′-dimethoxy-3-(4-methoxynaphthalen-1-yl)-5-oxo-2,3,4,5-tetrahydro-[1,1′-biphenyl]-4-carboxylate, C28H28O7
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0519/html
Button zum nach oben scrollen