Home The crystal structure of tetra(imidazole-κ1 N)zinc(II) μ2-oxido-hexaoxido-divanadium(VI) C12H16N8O6V2Zn
Article Open Access

The crystal structure of tetra(imidazole-κ1 N)zinc(II) μ2-oxido-hexaoxido-divanadium(VI) C12H16N8O6V2Zn

  • Yueyang Huo , Shiqi Fu , Yanqi Shi , Yingying Duan and Meiyu Zhang ORCID logo EMAIL logo
Published/Copyright: November 17, 2022

Abstract

C12H16N8O6V2Zn, triclinic, P 1 (no. 2), a = 9.5397(4) Å, b = 10.2457(4) Å, c = 11.0920(4) Å, α = 92.848(1)°, β = 110.314(1)°, γ = 94.421(1)°, V = 1010.29(7) Å3, Z = 2, Rgt (F) = 0.0358, wRref (F 2) = 0.0932, T = 293 K.

CCDC no.: 2217906

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Orange block
Size: 0.21 × 0.20 × 0.18 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 2.13 mm−1
Diffractometer, scan mode: φ and ω
θ max, completeness: 25.0°, >99%
N(hkl)measured, N(hkl)unique, R int: 9817, 3572, 0.019
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 3067
N(param)refined: 268
Programs: Bruker [1], Shelx [2]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Zn1 0.48010 (5) 0.84813 (4) 0.76262 (4) 0.04556 (14)
V1 0.91210 (6) 0.58299 (5) 0.86362 (5) 0.03335 (15)
V2 1.06962 (6) 0.46842 (5) 0.65741 (5) 0.03392 (15)
N1 0.4929 (3) 0.7516 (3) 0.6080 (3) 0.0419 (7)
N2 0.4362 (4) 0.6306 (3) 0.4275 (3) 0.0495 (8)
H2 0.384382 0.581912 0.358547 0.059*
N3 0.2878 (4) 0.9350 (3) 0.7158 (3) 0.0543 (8)
N4 0.1374 (5) 1.0892 (4) 0.6948 (5) 0.0814 (13)
H4 0.107018 1.166142 0.693676 0.098*
N5 0.4901 (3) 0.7493 (3) 0.9132 (3) 0.0438 (7)
N6 0.5687 (4) 0.6412 (3) 1.0853 (3) 0.0554 (8)
H6 0.627180 0.603630 1.148555 0.066*
N7 0.6497 (3) 0.9927 (3) 0.8100 (3) 0.0455 (7)
N8 0.8536 (4) 1.1216 (3) 0.9108 (4) 0.0550 (9)
H8 0.934249 1.155582 0.971217 0.066*
O1 1.000000 0.500000 1.000000 0.1030 (18)
O2 0.7409 (3) 0.5159 (3) 0.7918 (3) 0.0688 (9)
O3 0.9048 (3) 0.7365 (3) 0.9077 (3) 0.0619 (8)
O4 1.0136 (3) 0.5810 (3) 0.7559 (3) 0.0554 (7)
O5 1.2476 (4) 0.4875 (6) 0.7011 (4) 0.1244 (18)
O6 1.0218 (7) 0.3230 (3) 0.6759 (7) 0.166 (3)
O7a 0.9534 (6) 0.4587 (5) 0.4966 (5) 0.0547 (13)
C1 0.3836 (4) 0.6822 (4) 0.5133 (3) 0.0479 (9)
H1 0.283811 0.671083 0.507696 0.057*
C2 0.5858 (5) 0.6679 (4) 0.4673 (4) 0.0529 (10)
H2A 0.651107 0.646329 0.425407 0.063*
C3 0.6209 (4) 0.7418 (4) 0.5786 (4) 0.0487 (9)
H3 0.716451 0.780393 0.628210 0.058*
C4 0.2778 (6) 1.0624 (4) 0.7221 (5) 0.0683 (13)
H4A 0.359562 1.125741 0.743231 0.082*
C5 0.0510 (6) 0.9745 (5) 0.6690 (7) 0.0916 (18)
H5 −0.052855 0.963278 0.646560 0.110*
C6 0.1423 (5) 0.8793 (4) 0.6816 (6) 0.0758 (15)
H6A 0.112086 0.789665 0.669284 0.091*
C7 0.6083 (4) 0.7016 (4) 0.9971 (4) 0.0502 (9)
H7 0.704855 0.709595 0.994268 0.060*
C8 0.4195 (4) 0.6492 (4) 1.0581 (4) 0.0469 (9)
H8A 0.361504 0.615157 1.103732 0.056*
C9 0.3721 (4) 0.7158 (4) 0.9527 (4) 0.0506 (9)
H9 0.274206 0.736123 0.912586 0.061*
C10 0.7612 (4) 1.0218 (4) 0.9202 (4) 0.0528 (10)
H10 0.773735 0.978660 0.994485 0.063*
C11 0.7994 (5) 1.1603 (4) 0.7907 (5) 0.0597 (11)
H11 0.840753 1.228679 0.757536 0.072*
C12 0.6731 (5) 1.0803 (4) 0.7279 (4) 0.0526 (9)
H12 0.611684 1.083950 0.642412 0.063*
  1. aOccupancy: 0.5.

Source of materials

Imidazole (2 mmol), Zn(OAc)2 (0.25 mmol), V2O5 (0.3 mmol) and Et4NOH (0.3 mmol) were successively added to 10 mL water in a 25 mL flask, the mixture was ground together for 24 h. After the reaction was finished, the mixture was filtered and the filtrate was slowly evaporated at room temperature. The orange crystals were obtained, yield: 47%.

Experimental details

In the title compound, all non-hydrogen atoms were refined anisotropically. All hydrogen atomic positions were taken from a difference Fourier map. They were refined with variable isotropic displacement parameters. Their U iso values were set to 1.2U eq (C, N of imidazole ring) of the parent atoms, respectively. All the H atoms were refined as riding on their parent atom.

Comment

At present, transition metal zinc complexes have gained widespread attention in many fields due to their excellent thermodynamic stability, abundance, low-cost and non-toxic nature [3], [4], [5], [6]. Various ligands are used to synthesize zinc complexes with varying coordination numbers and geometries [7], [8], [9]. Particularly, the research and development of imidazole derivatives have continuously expanded in the last decades [10], [11], [12]. For instance, the related study reported the synthesis of a series of polyoxometalate complexes with imidazole derivatives as organic ligands and further investigated their electrocatalytic and photocatalytic activities [10]. However, there are only few reports available involving the study of imidazole-zinc polyoxovandates [13].

Single crystal X-ray diffraction analysis shows that the title compound contains one tetra-imidazole-zinc cation, and two crystallographically distinct V atoms. In the crystal structure, the Zn(II) atom is coordinated by four nitrogen atoms from four imidazole ligands, and the bond lengths of Zn–N are 1.974(3) Å, 1.982(3) Å, 2.013(3) Å and 2.016(3) Å, respectively. Additionally, the bond angles of N(5)–Zn(1)–N(1), N(5)–Zn(1)–N(7), N(1)–Zn(1)–N(7), N(5)–Zn(1)–N(3), N(1)–Zn(1)–N(3) and N(7)–Zn(1)–N(3) are 118.25(12)°, 110.71(13)°, 104.02(12)°, 106.24(13)°, 110.23(13)° and 106.94(13)°, respectively, which confirmed that the Zn center forms a tetrahedral coordination geometry. Clearly, the bond lengths and angles are normal and correspond to those discussed in Zn(C18H37-im)2Cl2 (im = imidazole) [14] and Zn(sac)2(im)2 (sac = saccharinate anion) [15]. It can be speculated that the tetrahedral Zn complex exhibits weak intermolecular core interactions due to steric effects of imidazole ligands. The bond lengths of V–O range from 1.569(4) Å to 1.848(5) Å and the O–V–O angles range from 92.1(3)° to 127.2(3)°, which are consistent with previously reported vanadates [16]. The V(1)O4 and V(2)O4 tetrahedra and their crystallographic partners formed the 1D chain by sharing the corners, alternately.

Additionally, the three dimensional supramolecular network of title compound was constructed by intermolecular weak C–H⋯O and N–H⋯O hydrogen-bonding interaction between the adjacent molecules.


Corresponding author: Meiyu Zhang, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, Shandong, China, E-mail:

Acknowledgements

We gratefully acknowledge support by the Entrepreneurship Training Program for College Students of Liaocheng University (CXCY2022039).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Entrepreneurship Training Program for College Students of Liaocheng University (CXCY2022039).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. Apex2, Saint and Sadabs; Bruker AXS Inc.: Madison, Wisconsin, USA, 2004.Search in Google Scholar

2. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

3. Gusev, A. N., Kiskin, M. A., Braga, E. V., Chapran, M., Wiosna-Salyga, G., Baryshnikov, G. V., Minaeva, V. A., Minaev, B. F., Ivaniuk, K., Stakhira, P., Agren, H., Linert, W. Novel Zinc complex with an ethylenediamine Schiff base for high-luminance blue fluorescent OLED applications. J. Phys. Chem. C 2019, 123, 11850–11859; https://doi.org/10.1021/acs.jpcc.9b02171.Search in Google Scholar

4. Kundu, B. K., Mobin, P. S. M. M., Mukhopadhyay, S. Studies on the influence of the nuclearity of zinc(II) hemi-salen complexes on some pivotal biological applications. Dalton Trans. 2020, 49, 15481–15503; https://doi.org/10.1039/d0dt02941f.Search in Google Scholar PubMed

5. Liu, Z., Pulletikurthi, G., Lahiri, A., Cui, T., Endres, F. Suppressing the dendritic growth of zinc in an ionic liquid containing cationic and anionic zinc complexes for battery applications. Dalton Trans. 2016, 45, 8089–8098; https://doi.org/10.1039/c6dt00969g.Search in Google Scholar PubMed

6. Sinha, A. K., Vigalok, A., Rawat, V. Catalytic application of zinc complex of oxygen depleted 1,3-bis(pyrazole)-p-tert-butylcalix[4]arene. Tetrahedron Lett. 2019, 60, 796–799; https://doi.org/10.1016/j.tetlet.2019.02.017.Search in Google Scholar

7. Asadi, M., Asadi, Z., Torabi, S., Lotfi, N. Synthesis, characterization and thermodynamics of complex formation of some new Schiff base ligands with some transition metal ions and the adduct formation of zinc Schiff base complexes with some organotin chlorides. Spectrochim. Acta Part A 2012, 94, 372–377; https://doi.org/10.1016/j.saa.2012.03.061.Search in Google Scholar PubMed

8. Keypour, H., Shooshtari, A., Rezaeivala, M., Mohsenzadeh, F., Rudbari, H. A. Synthesis and characterization of transition metal complexes of a hexadentate N4O2 donor Schiff base ligand: X-ray crystal structures of the copper(II) and zinc(II) complexes and their antibacterial properties. Transition Met. Chem. 2015, 40, 715–722; https://doi.org/10.1007/s11243-015-9966-6.Search in Google Scholar

9. Kendur, U., Chimmalagi, G. H., Patil, S. M., Gudasi, K. B., Frampton, C. S. Synthesis, structural characterization and biological evaluation of mononuclear transition metal complexes of zwitterionic dehydroacetic acid N-aroylhydrazone ligand. Appl. Organomet. Chem. 2018, 32, e4278; https://doi.org/10.1002/aoc.4278.Search in Google Scholar

10. Huang, X., Gu, X., Zhang, H., Shen, G., Gong, S., Yang, B., Wang, Y., Chen, Y. Decavanadate-based clusters as bifunctional catalysts for efficient treatment of carbon dioxide and simulant sulfur mustard. J. CO2 Util. 2021, 45, 101419; https://doi.org/10.1016/j.jcou.2020.101419.Search in Google Scholar

11. Huang, X., Gu, X., Qi, Y., Zhang, Y., Shen, G., Yang, B., Duan, W., Gong, S., Xue, Z., Chen, Y. Decavanadate-based transition metal hybrids as bifunctional catalysts for sulfide oxidation and C–C bond construction. Chin. J. Chem. 2021, 39, 2495–2503; https://doi.org/10.1002/cjoc.202100145.Search in Google Scholar

12. Huang, X., Gui, Y., Zhou, J., Zhang, Y., Shen, G., Yao, Q., Li, J., Xue, Z., Yang, G. Self-assembly of three Ag-polyoxovanadates frameworks for their efficient construction of C–N bond and detoxification of simulant sulfur mustard. Chin. Chem. Lett. 2022, 33, 2605–2610; https://doi.org/10.1016/j.cclet.2021.09.042.Search in Google Scholar

13. Wang, H., Yang, X. Y., Ma, Y. Q., Cui, W. B., Li, Y. H., Tian, W. G., Yao, S., Gao, Y., Dang, S., Zhu, W. Imidazole-based zinc(II) complexes: highly selective fluorescent probes for acetone detection. Inorg. Chim. Acta 2014, 416, 63–68; https://doi.org/10.1016/j.ica.2014.03.017.Search in Google Scholar

14. Lee, C. K., Ling, M. J., Lin, I. J. B. Organic-inorganic hybrids of imidazole complexes of palladium(II), copper(II) and zinc(II). Crystals and liquid crystals. Dalton Trans. 2003, 24, 4731–4737; https://doi.org/10.1039/b308648h.Search in Google Scholar

15. Williams, P. A. M., Ferrer, E. G., Correa, M. J., Baran, E. J., Castellano, E. E., Piro, O. E. Characterization of two new zinc(II) complexes with saccharinate and imidazole or benzimidazole as ligands. J. Chem. Crystallogr. 2004, 34, 285–290; https://doi.org/10.1023/b:jocc.0000022430.80438.63.10.1023/B:JOCC.0000022430.80438.63Search in Google Scholar

16. Huang, X., Qi, Y., Gu, X., Gong, S., Shen, G., Li, Q., Li, J. Imidazole- directed fabrication of three polyoxovanadate-based copper frameworks as efficient catalysts for constructing C–N bonds. Dalton Trans. 2020, 49, 10970–10976; https://doi.org/10.1039/d0dt02162h.Search in Google Scholar PubMed

Received: 2022-09-27
Accepted: 2022-11-07
Published Online: 2022-11-17
Published in Print: 2023-01-27

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of undecacalcium decaarsenide, Ca11As10
  4. Crystal structure of catena-poly[diiodido-(μ2-1,5-dimethyl-2-phenyl-4-((pyridin-4- ylmethylene)amino)-1,2-dihydro-3H -pyrazol-3-one-κ2 N: O)zinc(II)], C17H16I2N4OZn
  5. The crystal structure of 5,10,15,20-tetrakis(4-(tert-butyl)phenyl)porphyrin-21,23-diido-κ4 N 4-naphthalocyanido-κ4 N 4-neodymium(IV) - chloroform (1/6) C114H90N12Cl18Nd
  6. The crystal structure of 1-(4-bromophenyl)-3-(2-chlorobenzyl)urea, C14H12BrClN2O
  7. Crystal structure of bis[benzyl(methyl)carbamodithioato-κ 2 S,S′]-di-n-butyltin(IV), C26H38N2S4Sn
  8. Crystal structure of (E)-3-(2-(4-(diethylamino)-2-hydroxystyryl)-3,3-dimethyl-3H-indol-1-ium-1-yl)propane-1-sulfonate – methanol (1/2), C25H32N2O4S⋅2CH3OH
  9. Synthesis and crystal structure of {(N′,N″-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))-bis(methaneylylidene))bis(2-hydroxybenzohydrazonato)-κ6 N 2 O 4}copper(II), C30H24CuN4O6
  10. The crystal structure of ((E)-2,4-dibromo-6-(((5-(nitro)-2-oxidophenyl)imino)methyl)phenolato-κ 3 N,O,O′)tris(pyridine-κN)manganese(II), C28H21Br2MnN5O4
  11. Synthesis and crystal structure of 1-((3R,10S,13R,17S)-10,13-dimethyl-3-(p-tolylamino)hexadecahydro-1H-cyclopenta-[a]phenanthren-17-yl)ethan-1-one, C28H41NO
  12. The crystal structure of 3-nitrobenzene-1,2-dicarboxylic acid—pyrazine-2-carboxamide(1/1), C13H10N4O7
  13. Crystal structure of poly[tetrakis(μ3-2-aminonicotinato-κ3N,O,O′)-(μ2-oxalato-κ4 O,O′:O″,O′″)-(μ4-oxalato-κ6 N:N′:O,O′:O″,O′″)dicopper(I)-disamarium(III)], [SmCu(C6N2H5O2)2(C2O4)] n
  14. The crystal structure of 2,3,4-trihydroxybenzoic- acid—pyrazine-2-carboxamide—water (1/1/1), C12H13N3O7
  15. Crystal structure of N-ethyl-4-[3-(trifluoromethyl)-phenyl]piperazine-1-carbothioamide, C14H18F3N3S
  16. The crystal structure of 3-anilino-1,4-diphenyl-4H-1,2,4-triazol-1-ium iodide, C20H17N4I
  17. The crystal structure of (tris(2-benzimidazolylmethyl)amine)-benzoato-copper(II) perchlorate monohydrate, CuC31H28N7O7Cl
  18. Crystal structure of [2-hydroxy-3-methyl-benzoato-k1 O-triphenyltin(IV)], C26H22O3Sn
  19. Crystal structure of diaqua-bis(4-(hydroxymethyl)-benzoato-k1 O)zinc(II), C16H18O8Zn
  20. The crystal structure of dicarbonyl-(N-nitroso-N-oxido-phenylamine-κ 2 O,O)-rhodium(I), C8H5N2O4Rh
  21. The crystal structure of oxalic acid – 2-ethoxybenzamide (2/1), C20H24N2O8
  22. The crystal structure of ethyl 7-ethyl-5-methyl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate, C10H15N5O2
  23. Crystal structure of poly[(N,N-dimethylacetamide-κO) (μ4-2-nitroisophthalato-κ 4 O:O′:O″:O′″)manganese(II)], C11H10N2O7Mn
  24. Crystal structure of 14-O-acetyldelcosine, C26H41NO8
  25. The crystal structure of poly[(1,10-phenanthroline-κ2 N,N′)-(μ 4-2-chlorobenzene-1,3-dicarboxylato-κ5 O:O′:O″:O‴) cadmium(II)] monohydrate, C20H13CdClN2O5
  26. Crystal structure of propane-1,3-diylbis(diphenylphosphine sulfide) ethanol solvate, C27H26P2S2
  27. Crystal structure of bis{[(4-diethylamino-2-hydroxy-benzylidene)-hydrazinocarbonylmethyl]-trimethylammonium} tetrabromozincate, C32H54N8O4ZnBr4
  28. Synthesis and crystal structure of dimethyl 2,2′-(2,5-bis(4-hydroxyphenyl)-2,5-dihydrofuran-3,4-diyl)dibenzoate, C34H30O7
  29. Synthesis and crystal structure of 2-(2-oxo-2-phenylethyl)-4H-chromen-4-one, C17H12O3
  30. The crystal structure of tetra(imidazole-κ1 N)zinc(II) μ2-oxido-hexaoxido-divanadium(VI) C12H16N8O6V2Zn
  31. Crystal structure of S-2-(1-(5-methylpyridin-2-ylamino)octyl)-3-hydroxynaphthalene-1,4-dione, C24H28N2O3
  32. Crystal structure of bis(μ2-5-chloro-2-oxido-N-(1-oxido-2-oxo-2-phenylethylidene)-benzohydrazonato-κ5 N,O,O′:N′,O′′)-oktakis(pyridine-κ1 N)trinickel(II) – methanol – pyridine (1/1/1) C76H65N13Cl2Ni3O9
  33. The crystal structure of methyl 3,5-diaminobenzoate, C8H10N2O2
  34. Crystal structure of 10-(9H-carbazol-9-yl)-5H-dibenzo[a,d][7]annelen-5-one, C27H17NO
  35. Crystal structure of ethyl 1-(2-hydroxyethyl)-4-((4-methoxyphenyl)amino)-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate, C16H20N2O5
  36. The crystal structure of 1-(4-bromophenyl)-3-cycloheptylurea, C14H19BrN2O
  37. The crystal structure of 1,4-bis(1,2,3,4,5-pentamethylcyclopenta-2,4-dien-1-yl)-3,6-bis ((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)-1,4-dialuminacyclohexane – benzene (1/2), C50H72Al2B2O4
  38. Crystal structure of bis(μ 3-diphenylphosphinato)-tetrakis(μ 2-diphenylphosphinato)-bis(diphenylphosphinato)-bis(μ 2-hydroxo)dicopper(II)-ditin(IV), C104H100O18P8Cu2Sn2
  39. Crystal structure of 3-((3,4-dichloroisothiazol-5-yl)methoxy)benzo[d] isothiazole 1,1-dioxide, C11H6Cl2N2O3S2
  40. Synthesis and crystal structure of 2-(2-(2-fluorophenyl)-2-oxoethyl)-4H-chromen-4-one, C17H11FO3
  41. The crystal structure of tris(carbonyl)-bis(carbonyl)-[μ-propane-1,2- dithiolato]-(benzyldiphenylphosphine)diiron (Fe—Fe), C27H23Fe2O5PS2
  42. Crystal structure of 1-(2-(4-chlorophenethyl)-2-hydroxy-3,3-dimethylbutyl)-1H-1,2,4-triazol-4-ium nitrate, C16H23N4O4Cl
  43. The crystal structure of 3,3′-disulfanediyldi(1H-1,2,4-triazol-5-amine) monohydrate, C4H8N8OS2
  44. The crystal structure of trans-[bis(4-methylpyridine-κN)bis(quinoline-2-carboxylato- κ 2 N,O)cadmium(II)], C32H26CdN4O4
  45. The crystal structure of ethyl 2′-hydroxy-4′,6′-dimethoxy-3-(4-methoxynaphthalen-1-yl)-5-oxo-2,3,4,5-tetrahydro-[1,1′-biphenyl]-4-carboxylate, C28H28O7
Downloaded on 15.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0476/html
Scroll to top button