Home Physical Sciences Synthesis and crystal structure of trans-tetraqua-bis(2-(((7-hydroxy-3-(4-hydroxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl)methyl)ammonio)acetato-κO)cobalt(II) hexahydrate, C36H48CoN2O28S2
Article Open Access

Synthesis and crystal structure of trans-tetraqua-bis(2-(((7-hydroxy-3-(4-hydroxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl)methyl)ammonio)acetato-κO)cobalt(II) hexahydrate, C36H48CoN2O28S2

  • Hai-Lin Chen , Hong-Fang Lai EMAIL logo , Lian-Qiang Wei EMAIL logo , Li-Rong Jiang and Yan-Xiang Su
Published/Copyright: October 16, 2017

Abstract

C36H48CoN2O28S2, monoclinic, P21/c (no. 14), a = 18.2239(13) Å, b = 7.1282(6) Å, c = 17.8550(13) Å, β = 97.883(2)°, V = 2297.5(3) Å3, Z = 2, Rgt(F) = 0.0906, wRref(F2) = 0.1998, T = 293(2) K.

CCDC no.:: 1577246

The crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1

Data collection and handling.

Crystal:Red block
Size:0.30 × 0.28 × 0.15 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.56 mm−1
Diffractometer, scan mode:Bruker AXS, φ and ω-scans
2θmax, completeness:27.6°, >99%
N(hkl)measured, N(hkl)unique, Rint:35845, 5274, 0.163
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 2811
N(param)refined:313
Programs:Bruker programs [1], SHELX [2, 3] , DIAMOND [4]
Table 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Co1−0.5000−0.50000.00000.0275(3)
S10.25874(7)−0.39005(18)−0.20198(7)0.0255(3)
O1−0.27920(17)−0.2399(5)0.00580(18)0.0373(9)
H1B−0.2718−0.20360.05160.056*
O2−0.15556(16)−0.3760(5)−0.20032(17)0.0263(8)
O30.04170(18)−0.1889(6)−0.0903(2)0.0456(11)
O40.21838(17)−0.3221(5)−0.36571(18)0.0355(9)
H4A0.2018−0.2920−0.41090.053*
O50.25134(19)−0.4202(5)−0.12272(18)0.0388(10)
O60.28921(18)−0.5570(5)−0.23371(18)0.0319(9)
O70.29976(18)−0.2211(5)−0.2152(2)0.0382(9)
O8−0.45071(18)−0.3699(5)−0.08387(18)0.0334(9)
O9−0.52745(19)−0.4283(6)−0.19075(19)0.0449(10)
O10−0.40980(19)−0.4143(5)0.08001(19)0.0423(10)
H10A−0.4168−0.46080.12230.064*
H10B−0.3667−0.43320.06830.064*
O11−0.4435(2)−0.7398(6)−0.0231(2)0.0602(12)
H11W−0.4185−0.7629−0.05890.090*
H11C−0.4417−0.83100.00780.090*
N1−0.34356(19)−0.2345(6)−0.1521(2)0.0270(10)
H1A−0.3676−0.1859−0.10660.040*
H1C−0.3223−0.1360−0.16460.040*
C1−0.2140(3)−0.2488(7)−0.0217(3)0.0277(12)
C2−0.2169(2)−0.3164(6)−0.0953(3)0.0223(11)
C3−0.1516(3)−0.3153(7)−0.1266(3)0.0231(11)
C4−0.0844(2)−0.2549(7)−0.0876(3)0.0262(12)
C5−0.0848(3)−0.1916(7)−0.0140(3)0.0307(13)
H5B−0.0406−0.15120.01370.037*
C6−0.1473(3)−0.1872(8)0.0184(3)0.0352(13)
H6B−0.1460−0.14290.06750.042*
C7−0.0174(3)−0.2490(7)−0.1237(3)0.0283(12)
C8−0.0261(3)−0.3161(7)−0.2019(3)0.0263(11)
C9−0.0933(2)−0.3743(7)−0.2331(3)0.0253(11)
H9A−0.0974−0.4180−0.28250.030*
C100.0374(2)−0.3201(6)−0.2455(3)0.0231(11)
C110.1084(3)−0.3592(6)−0.2112(3)0.0238(11)
H11A0.1160−0.3870−0.15980.029*
C120.1682(2)−0.3582(6)−0.2507(3)0.0229(11)
C130.1584(3)−0.3220(7)−0.3281(3)0.0272(12)
C140.0869(3)−0.2850(7)−0.3634(3)0.0301(12)
H14A0.0788−0.2619−0.41520.036*
C150.0285(3)−0.2821(7)−0.3224(3)0.0304(12)
H15A−0.0186−0.2538−0.34700.037*
C16−0.2881(2)−0.3888(7)−0.1362(3)0.0267(11)
H16A−0.3078−0.4846−0.10590.032*
H16B−0.2792−0.4459−0.18350.032*
C17−0.4132(3)−0.2899(8)−0.2005(3)0.0333(13)
H17A−0.4019−0.3822−0.23720.040*
H17B−0.4344−0.1810−0.22790.040*
C18−0.4687(3)−0.3708(7)−0.1545(3)0.0271(12)
O1W−0.2605(2)−0.1193(6)0.1468(2)0.0550(12)
H1WA−0.2859−0.02450.15630.082*
H1WB−0.2626−0.20420.17990.082*
O2W0.1838(2)−0.2563(7)−0.0094(2)0.0707(14)
H2WB0.2140−0.2935−0.03860.106*
H2WA0.1413−0.2516−0.03590.106*
O3W−0.3944(2)0.1807(6)−0.1622(2)0.0569(12)
H3WA−0.42590.1622−0.20120.085*
H3WB−0.35880.2486−0.17240.085*

Source of material

The educt sodium 5-(8-(((carboxymethyl)amino)methyl)-7-hydroxy-4-oxo-4H-chromen-3-yl)-2-hydroxybenzenesulfonate was synthesized via a Mannich reaction. Formaldehyde solution (10 mL, 37%) and sodium 2-hydroxy-5-(7-hydroxy-4-oxo-4H-chromen-3-yl)benzenesulfonate (3.56 g, 0.01 mol) were added to ethanol (200 mL, 95%) and stirred for 0.5 h at 338 K. Then, the saturated solution of glycine (1.12 g, 0.015 mol) was added to the reaction mixture. Then, water was added until a transparent solution was obtained. After 11 h reaction time, the mixture was filtered, and the residue was collected. Then the residue was dried at 383 K. Sodium 5-(8-(((carboxymethyl)amino)methyl)-7-hydroxy-4-oxo-4H-chromen-3-yl)-2-hydroxybenzenesulfonate (2.262 g, 0.005 mol) was obtained. NMR spectra were recorded on a Bruker AV400 NMR instrument. 1H-NMR (400 MHz, DMSO-d6) δ: 10.59 (s, 1H, H4A), 8.34 (s, 1H, H9A), 7.98 (d, J = 8.9 Hz, 1H, H5B), 7.71 (d, J = 2.3 Hz, 1H, H11A), 7.39 (dd, J = 8.4, 2.3 Hz, 1H, H15A), 7.08 (d, J = 8.9 Hz, 1H, H6B), 6.85 (d, J = 8.5 Hz, 1H, H14A), 4.30 (s, 2H, H16A, H16B), 3.39 (s, 2H, H17A, H17B); 13C-NMR (100 MHz, DMSO-d6) δ: 174.62 (C7), 168.87 (C18), 163.16 (C1), 155.87 (C3), 153.25 (C13), 152.73 (C9), 131.48 (C15), 130.64 (C12), 127.74 (C5), 127.20 (C11), 123.02 (C10), 122.25 (C8), 116.29 (C4), 115.85 (C14), 115.12 (C6), 106.64 (C2), 48.87 (C17), 39.73 (C16). IR spectra (potassium bromide pellet) Nicolet 6700. IR (v/cm−1): 3493, 3041, 2876, 1633, 1505, 1448, 1396, 1360, 1323, 1277, 1207, 1178, 1065, 1052, 1205, 899, 844, 820, 797, 729, 678, 623, 543, 491. ESI-MS: m/z 420.17 [M–Na]. The saturated solution of CoCl2⋅H2O (0.238 g, 0.001 mol) was added to the saturated solution of sodium salt described before (0.443 g, 0.001 mol). The mixture was stirred for 30 min at 343 K and a pink solution was obtained. After cooling to room temperature, red block-shaped crystals of the title compound were obtained. IR spectra (potassium bromide pellet) Nicolet 6700. IR (v/cm−1): 3448, 1629, 1529, 1458, 1432, 1414, 1334, 1285, 1210, 1175, 1100, 1028, 910, 826, 741, 629, 517, 487.

Experimental details

Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C). The oxygen-bound and nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Discussion

In the last decade, much attention has been focused on flavonoids. The Mannich reaction has been considered as an effective method in introducing aminomethyl substituents into the desired flavonoid molecules to improve their biological activities [5], [6], [7], [8], [9], [10], [11]. The goal of our work is to synthesize amino-acid derivatives of daidzein to obtain substances which have a good water solubility. Increasing the solubility of daidzein derivatives expands the capability for studying their biological activity and increases their bioavailability. To extend this research, we used sodium 5-(8-(((carboxymethyl)amino)methyl)-7-hydroxy-4-oxo-4H-chromen-3-yl)-2-hydroxybenzenesulfonate to react with Co2+ ions and got a new complex. The studies on the bioactivity of the title compound are presently ongoing.

The asymmetric unit of the title structure consists of one half of a monomer complex (cf. the figure, the asymmetric unit is labeled) and three uncoordinated water molecules. The Co(II) atom lies on the inversion center and is six-coordinated by four O atoms from four coordinated water molecules and two O atoms from two monodentate coordinating ligands. The Co(II) atom adopts a slightly distorted octahedral geometry. The Co—O bond distances are in the range of 2.066(4) Å and 2.115(3) Å. The chromen moiety (C1/C6/C5/C4/C7/C8/C9/O2/C3/C2) is essentially planar, with a mean deviation of 0.0182 Å. The carboxylate groups adopt trans conformations, with the C18—C17—N1—C16 torsion angles to be −86.54°. The nitrogen atom N1 is protonated. There exist extensive H-bonding interactions between the ligands via the coordinated water molecules and uncoordinated water molecules to form a 3D supramolecular network. It is obvious that the hydrogen bonds play important roles in the self-assembly and enhance stability of the resultant structure.

Acknowledgement

This work was financially supported by the Education Department of Guangxi Zhuang Autonomous Region of China (No. KY2015ZD104), the Education Department of Guangxi Zhuang Autonomous Region of China (No. KY2016LX290) and the Natural Science Foundation of Guangxi Province (2014GXNSFBA118062).

References

Bruker: APEX2, SAINT and SADABS. Brucker AXS Inc., Madison, WI, USA (2009).Search in Google Scholar

Sheldrick, G. M.: SADABS 2.05. University Göttingen: Göttingen, Germany (2002).Search in Google Scholar

Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

Brandenburg, K.: DIAMOND. Visual crystal structure information system. Version 3.2i. Crystal Impact, Bonn, Germany (2012).Search in Google Scholar

Li, Y.; Qiang, X.; Luo, L.; Yang, X.; Xiao, G.; Zheng, Y.; Cao, Z.; Sang, Z.; Su, F.; Deng, Y.: Multitarget drug design strategy against alzheimers disease: Homoisoflavonoid Mannich base derivatives serve as acetylcholinesterase and monoamine oxidase B dual inhibitors with multifunctional properties. Bioorg. Med. Chem. 25 (2017) 714–726.10.1016/j.bmc.2016.11.048Search in Google Scholar PubMed

Frasinyuk, M. S.; Mrug, G. P.; Bondarenko, S. P.; Khilya, V. P.; Sviripa, V. M.; Syrotchuk, O. A.; Zhang, W.; Cai, X.; Fiandalo, M. V.; Mohler, J. L.: Antineoplastic isoflavonoids derived from intermediate ortho-quinone methides generated from mannich bases. ChemMedChem. 11 (2016) 600–611.10.1002/cmdc.201600008Search in Google Scholar PubMed PubMed Central

Frasinyuk, M. S.; Mrug, G. P.; Bondarenko, S. P.; Sviripa, V. M.; Zhang, W.; Cai, X.; Fiandalo, M. V.; Mohler, J. L.; Liu, C.; Watt, D. S.: Application of mannich bases to the synthesis of hydroxymethylated isoflavonoids as potential antineoplastic agents. Org. Biomol. Chem. 13 (2015) 11292–11301.10.1039/C5OB01828ESearch in Google Scholar

Frasinyuk, M. S.; Mrug, G. P.; Fedoryak, O. D.; Bondarenko, S. P.: Synthesis of amino-acid derivatives of formononetin and cladrin. Chem. Nat. Compd. 48 (2012) 570–573.10.1007/s10600-012-0313-2Search in Google Scholar

Frasinyuk, M. S.; Mrug, G. P.; Fedoryak, O. D.; Bondarenko, S. P.: Nitrogen-containing apigenin analogs: preparation and biological activity. Molecules 17 (2012) 14748–14764.10.3390/molecules171214748Search in Google Scholar PubMed PubMed Central

Frasinyuk, M. S.; Bondarenko, S. P.; Khilya, V. P.: Synthesis of analogs of natural 2′-methoxyisoflavones. Chem. Nat. Compd. 42 (2006) 142–147.10.1007/s10600-006-0063-0Search in Google Scholar

Aitmambetov, A.; Khilya, V. P.: Mannich bases and their salts in a series of synthetic isoflavone analogs. Chem. Nat. Compd. 30 (1994) 576–579.10.1007/BF00629866Search in Google Scholar

Received: 2017-6-2
Accepted: 2017-9-29
Published Online: 2017-10-16
Published in Print: 2017-11-27

©2017 Hai-Lin Chen et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Articles in the same Issue

  1. Cover and Frontmatter
  2. Crystal structure of potassium 1-methyl-1H-1,2,3,4-tetrazole-5-thiolate, C2H3N4SK
  3. Crystal structure of bis(3-(3-ethylureido)-N,N-dimethylpropan-1-aminium) bis (μ3-2-(hydroxymethyl)-2-(oxidomethyl)propane-1,3-bis(olato))-(μ6-oxo)-hexakis(μ2-oxo)-hexaoxo-hexavanadium(V) – dichloromethane (1/1), C27H60Cl2N6O23V6
  4. Crystal structure of bis(μ3-methanolato-κ3O:O:O)-bis(μ2-methanolato-κ2O:O)-dimethanol-bis{6,6′-(1,3-dihydroxyl-2-acetylpropane-1,3-diyl)bis(2-chloro-4-bromophenolato)}tetramanganese(III) C40H40Br4Cl4Mn4O16
  5. Synthesis and crystal structure of tetrakis(μ2-methanolato)-dimethanol-bis(μ2-2-acetyl-1,3-bis(3,5-dibromo-2-oxidophenyl)propane-1,3-bis(olato)-κ5O1,O2,O3:O3,O4,O5)tetramanganese(III), C40H40Br8Mn4O16
  6. Synthesis and crystal structure tetrakis(μ2-methanolato)-dimethanol-bis(μ2-2-acetyl-1,3-bis(3,5-dichloro-2-oxidophenyl)propane-1,3-bis(olato)-κ5O1,O2,O3:O3,O4,O5), tetramanganese(III), C40H40Cl8Mn4O16
  7. Crystal structure of bis{5-methoxy-2-((E)-((4-((E)-1-(methoxyimino)ethyl)phenyl)imino)methyl)phenolato-κ2N,O)}copper(II), C34H34CuN4O6
  8. Crystal structure of (E)-1-(2-hydroxy-3-{[2-hydroxybenzylidene]amino}phenyl)ethan-1-one, C15H13NO3
  9. Crystal structure of bis(μ2-acetato-κ2O:O′)-bis{μ2-4-chloro-2-(8-(4-(diethylamino)-2-oxidophenyl)-3,6-dioxa-2,7-diazaocta-1,7-dien-1-yl)phenolato-κ6O:O,N,N′,O′′:O′′}tricobalt(II), C44H49Cl2Co3N6O12
  10. Crystal structure of bis{μ2-2,4-dichloro-6-(8-(4-(diethylamino)-2-oxidophenyl)-3,6-dioxa-2,7-diazaocta-1,7-dien-1-yl)phenolato-κ5O:O,N,N′,O′}dicobalt(II) acetone solvate, C43H48Br4Co2N6O9
  11. Synthesis and crystal structure of bis(μ2-acetato-κ2O:O′)-bis{μ2-4-chloro-2-(8-(4-(diethylamino)-2-oxidophenyl)-3,6-dioxa-2,7-diazaocta-1,7-dien-1-yl)phenolato-κ6O:O,N,N′,O′:O′}trizinc(II), C44H49Cl2N6O12Zn3
  12. Crystal structure of bis{5-(N,N′-diethylamine)-5′-methoxy -2,2′-[ethylenediyldioxybis(nitrilomethylidyne)]diphenolato}-bis(μ2-acetato-κ2O:O′)trizinc(II), C46H56Zn3N6O14
  13. Crystal structure of tris(cyano-(hydrogen tris(3,5-dimethylpyrazolyl)borate))-iron(III) 4-methoxypyridinium monohydrate, C24H32BN10O2Fe
  14. Synthesis and crystal structure of bis{1-(((4-(1-(hydroxyimino)ethyl)phenyl)imino)methyl)naphthalen-2-olato-κ2O,N}copper(II), C38H30CuN4O4
  15. Crystal structure of (E)-1-(4-{[(E)-2-Hydroxy-1-naphthalenylmethylene] amino}phenyl)ethanone oxime, C19H16N2O2
  16. The pseudosymmetric crystal structure of 2-(2-naphthalenyl)-3-nitro-2H-1-benzopyran, C38H26N2O6
  17. Crystal structure of 2-benzoyl-3-(4-methoxyphenyl)cyclopropane-1,1-dicarbonitrile, C19H14N2O2
  18. N′-(5-ethoxycarbonyl-3,4-dimethyl-pyrrol-2-yl-methylidene)-4-hydroxybenzohydrazide monohydrate, C17H21N3O5
  19. The crystal structure of carbonyl-[4-(2,4-dichlorophenylamino)pent-3-en-2-onato-κ2N,O]-(triphenylphosphine-κP)rhodium(I), RhC30H25Cl2NO2P
  20. Crystal structure of (E)-5-(diethylamino)-2-(((1,1,2-trihydroxyethyl)iminio)methyl)phenolate, C15H24N2O4
  21. Crystal structure of poly[(μ2-1,4-bis((2-ethyl-1H-benzo[d]imidazol-1-yl)methyl)benzene-κ2N:N′)(μ2-isophthalato-κ4O,O′:O′′,O′′′)cadmium(II)], C34H30N4O4Cd
  22. Crystal structure of 5,6-Dihydro-9,10-dimethoxybenzo[g]-1,3-benzodioxolo[5,6-a]chinolizinium 3-(4-hydroxyphenyl)-4-oxo-4H-chromen-7-olate - methanol - water (1/1/1), C36H33NO10
  23. A single crystal study on 2-(methylcarbamoyl)benzoic acid, C9H9NO3
  24. Crystal structure of the salt 1,1′-(ethane-1,2-diyl)bis(1,4-diazabicyclo[2.2.2]octan-1-ium) diperchlorate, C14H28N4(ClO4)2
  25. Crystal structure of 2,5-bis((E)-2-(trifluoromethyl)benzylidene)cyclopentan-1-one, C21H14F6O
  26. Crystal structure of catena-poly[(μ2-benzene-1,4-dicarboxylato-κ2O:O′)-(1-ethyl-6-fluoro-7-(4-methylpiperazin-1-ium-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylato-κ2O,O′)zinc(II)] 1.25 hydrate, C25H26.5N3O8.25FZn
  27. Crystal structure of 1-methyl-1,4-diazabicyclo[2.2.2]octan-1-ium poly[aqua-bis(μ2-perchlorato-κ3O,O′:O′′)sodium], C7H17Cl2N2NaO9
  28. Crystal structure of trimethyammonium 2,6-dicarboxyisonicotinate monohydrate, C11H16N2O7
  29. Crystal structure of dodecaguanidinium bis(tetrapropylammonium) heptacarbonate, C43H128N38O21
  30. Crystal structure of poly[tetraaqua-bis(μ6-benzene-1,2,4,5-tetracarboxylato)nickel(II)diyttrium(III)]dihydrate, C20H16NiO22Y2
  31. Halogen bonds and π–π interactions in the crystal structure of 1,3,5-trifluoro-2,4,6-triiodobenzene–N,N-dimethylformamide (1/1), C9H7F3I3NO
  32. Crystal structure of guanidinium tetraethylammonium carbonate dihydrate, C10H30N4O5
  33. The crystal structure of oxonium chlorido-ethylenediaminetetraactetotin(IV) hydrate, C10H17ClN2O10Sn
  34. Crystal structure of 8-((E)-((4-((E)-1-((benzyloxy)imino)ethyl)phenyl)imino)methyl)-7-hydroxy-4-methyl-2H-chromen-2-one, C26H22N2O4
  35. Crystal structure of bis{5-(diethylamino)-2-(((2-oxo-2H-chromen-6-yl)imino)methyl)phenolato-κ2O,N}copper(II), C40H38CuN4O6
  36. Crystal structure of fac-(acetylacetonato-κ2O,O′)tricarbonyl(tri(p-tolyl)phosphine-κP)rhenium(I), C29H28O5PRe
  37. Crystal structure of fac-(acetylacetonato-κ2O,O′)tricarbonyl(benzyldiphenylphosphine-κP)rhenium(I), C27H24O5PRe
  38. Crystal structure of triethylammonium bis{3-(((3-oxidonaphthalen-1-yl)methylene)amino)-2-oxo-2H-chromen-4-olato-κ3O,N,O′}manganese(III), C46H38MnN3O8
  39. Crystal structure of bis(N,N,N-ethyldimethylethanaminium) bis(heptaselenido-κ2Se1,Se7)palladate(II), C12H32N2PdSe14
  40. Crystal structure of bis(4-(1H-pyrazol-5-yl)pyridine-κ2N:N′)-bis(2-(2-((2,6-difluorophenyl)amino)phenyl)acetate-κO)cadmium(II), C44H34N8CdCl4O4
  41. Crystal structure of 4,4′-(1,4-phenylene)bis(pyridin-1-ium) catena-poly[diaqua-bis(μ2-3′,5′-dicarboxy-[1,1′-biphenyl]-2,5-dicarboxylato-κ2O:O′] dihydrate, C48H42O22N2Ca
  42. The crystal structure of (S)-2-benzylsuccinic acid, C11H12O4
  43. Crystal structure of poly[aqua-(μ3-4-(pyridin-4-yl)isophthalato-κ4O,O′:O′′:O′′′)-(μ2-5-carboxy-2-(pyridin-4-yl)benzoato-κ2O:O′)yttrium(III)], C26H17N2O9Y
  44. Crystal structure of ethyl 1-(3,4-dimethylphenyl)-5-methyl-1H-1,2,3-triazole-4-carboxylate, C14H17N3O2
  45. Crystal structure of tetrakis(methanol-κO)-bis{μ2-3-((4-methoxy-2-oxidobenzylidene)amino)-2-oxo-2H-chromen-4-olate-κ4O,N;O′:O′}dizinc(II), C38H38Zn2N2O14
  46. Crystal structure of bromido(4,4′-dimethoxy-2,2′-bipyridine-κ2N,N′)(isopropyl(diphenyl)phosphane-κP)copper(I), C27H29BrCuN2O2P
  47. Crystal structure of bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)-9,9-dioctylfluorene, C41H64B2O4
  48. Crystal structure of 11-oxo-2,3,6,7-tetrahydro-1H,5H,11H-pyrano[2,3-f]pyrido[3,2,1-ij]quinoline-10-carbaldehyde - a julolidine derivative, C16H15NO3
  49. Crystal structure of 1,3-dimethyl-5,5-dibenzylbarbituric acid, C20H20N2O3
  50. Crystal structure of bis(N,N,N-trimethylethanaminium) poly[bis(μ2-heptaselenido-κ2Se1,Se7)palladate(II)], C10H28N2PdSe14
  51. Crystal structure of 1-{4-[(5-Chloro-2-hydroxy-benzylidene)amino]phenyl} ethanone O-ethyl-oxime, C17H17ClN2O2
  52. The crystal structure of methyl N-(4-bromophenyl)carbamate, C8H8BrNO2
  53. Synthesis and crystal structure of 1-{4-[(2-hydroxy-benzylidene)amino]phenyl}ethanone oxime, C15H14N2O2
  54. Crystal structure of 1,1′-butanebis(3-methyl-1H-imidazol-3-ium)bis(hexafluorophosphate), C12H20F12N4P2
  55. (E)-N-benzylidene-3-(benzylthio)-5-p-tolyl-4H-1,2,4-triazol-4-amine, C23H20N4S
  56. Crystal structure of ethyl 5-methyl-1-(pyridin-3-yl)-1H-1,2,3-triazole-4-carboxylate, C11H12N4O2
  57. Crystal structure of 5,5-difluoro-10-(4-fluorophenyl)-1,3,7,9-tetramethyl-5H-4l4,5l4-dipyrrolo[1,2-c:2′,1′-f][1,3,2]diazaborinine - a Z′ = 3 structure, C19H18B2F3N2
  58. The crystal structure of the Matrine derivative: 12-(1H-indol-1-yl)dodecahydro-1H,5H,10H-dipyrido[2,1-f:3′,2′,1′-ij][1,6]naphthyridin-10-one hydrate, C23H29N3O
  59. The crystal structure of tris(μ2-1,3-bis(4,4,4-trifluoro-3-oxido-1-(oxo)but-2-en-1-yl)phenyl-κ4O,O′:O′′,O′′′)-bis(1,2-dimethoxyethane-κ2O,O′)dilutetium(III), C50H38F18Lu2O16
  60. The crystal structure of (Z)-2-(3-(2-(4-chlorobenzoyl)hydrazono)-2-oxoindolin-1-yl) acetic acid, C17H12ClN3O4
  61. Synthesis and crystal structure of trans-tetraqua-bis(2-(((7-hydroxy-3-(4-hydroxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl)methyl)ammonio)acetato-κO)cobalt(II) hexahydrate, C36H48CoN2O28S2
  62. The crystal structure of N,N-dimethyl-2,6-di-p-tolylpyrimidin-4-amine, C20H21N3
  63. The crystal structure (E)-4-methyl-N′-(2-nitrobenzylidene)benzenesulfonohydrazide, C14H13N3O4S
  64. Crystal structure of catena-poly[(μ2-1,3-bis(benzimidazol-1-yl)propane κ2N:N′)-(μ2-5-methoxyisophthalato-κ2O:O′)zinc(II)] hydrate, C26H24ZnN4O6
  65. The crystal structure of (E)-N′-(quinolin-2-ylmethylene)furan-2-carbohydrazide monohydrate, C15H13N3O3
  66. Crystal structure of 2,8-diphenyl-3,7,9-trioxa-1-azaspiro[4.5]dec-1-ene, C18H17N1O3
  67. Crystal structure of diethyl 2-(4-chlorophenyl)-1,3-dioxane-5,5-dicarboxylate, C16H19ClO6
  68. Crystal structure of 1-(carboxymethyl)-1H-benzo[d][1,2,3]triazole 3-oxide, C8H7N3O3
  69. Crystal structure of (acetylacetonato-κ2O,O′)-(2-amino-6-chlorobenzoato-κO)-oxido(1,10-phenanthroline-κ2N,N′)vanadium(IV) – trichloromethane (1/1)
  70. Crystal structure of (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one, C17H12Cl2O
  71. The crystal structure of trans-dibromido-bis(pyridine-κN)platinum(II), C10H10Br2N2Pt
Downloaded on 25.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2017-0153/html
Scroll to top button