Startseite Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(6-methylpyridin-2-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C44H45N5O2
Artikel Open Access

Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(6-methylpyridin-2-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C44H45N5O2

  • Kaihao Li , Jinping Wu , Hairong Lan , Junmin Wang EMAIL logo und Juan Yuan ORCID logo EMAIL logo
Veröffentlicht/Copyright: 25. November 2021

Abstract

C44H45N5O2, triclinic P 1 (no. 2), a = 11.2140(4) Å, b = 11.9932(5) Å, c = 14.2703(5) Å, α = 98.879(3)°, β = 102.025(3)°, γ = 91.122(3)°, Z = 2, V = 1851.98(12) Å3, R gt (F) = 0.0549, wR ref(F 2) = 0.1616, T = 293(2) K.

CCDC no.: 2119922

The asymmetric unit of the molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow block
Size: 0.13 × 0.1 × 0.08 mm
Wavelength: Cu Kα radiation (1.54184 Å)
μ: 0.59 mm−1
Diffractometer, scan mode: Xcalibur, ω-scans
θ max, completeness: 67.1°, >99%
N(hkl)measuredN(hkl)uniqueR int: 13,570, 6625, 0.026
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 5090
N(param)refined: 476
Programs: CrysAlisPRO [1], OLEX2 [2], SHELX [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Cl1 −0.32807 (8) −0.58567 (6) −0.37764 (7) 0.01860 (19)
S1 −0.08434 (7) −0.51774 (6) −0.83804 (6) 0.01273 (18)
O1 0.76362 (15) 0.76100 (12) 0.06274 (10) 0.0535 (4)
O2 0.85795 (16) 1.10183 (16) 0.46464 (11) 0.0687 (5)
N1 0.79305 (15) 0.98582 (14) 0.31579 (12) 0.0444 (4)
N2 0.68178 (15) 0.95996 (14) 0.33397 (12) 0.0441 (4)
N3 0.40401 (16) 0.80511 (15) 0.22073 (14) 0.0528 (4)
N4 0.44883 (18) 0.68512 (15) −0.35587 (13) 0.0563 (5)
N5 0.9405 (2) 0.46757 (17) 0.22652 (16) 0.0699 (6)
C1 0.92517 (19) 0.77190 (18) 0.31349 (15) 0.0489 (5)
H1 0.9508 0.8226 0.3709 0.059*
C2 0.9486 (2) 0.6599 (2) 0.31324 (16) 0.0545 (5)
H2 0.9880 0.6366 0.3705 0.065*
C3 0.9139 (2) 0.57940 (18) 0.22766 (16) 0.0503 (5)
C4 0.8517 (2) 0.61967 (17) 0.14512 (15) 0.0478 (5)
H4 0.8261 0.5697 0.0873 0.057*
C5 0.82739 (18) 0.73266 (16) 0.14808 (14) 0.0424 (4)
C6 0.86455 (17) 0.81227 (16) 0.23110 (13) 0.0410 (4)
C7 0.84398 (17) 0.93617 (16) 0.22998 (14) 0.0414 (4)
C8 0.76765 (18) 0.95574 (16) 0.13445 (14) 0.0425 (4)
C9 0.73562 (18) 0.87235 (16) 0.05851 (14) 0.0425 (4)
C10 0.66598 (19) 0.88652 (17) −0.03697 (14) 0.0444 (4)
C11a 0.6399 (3) 1.0058 (4) −0.0550 (3) 0.0500 (9)
H11Aa 0.5561 1.0202 −0.0512 0.060*
H11Ba 0.6489 1.0127 −0.1201 0.060*
C12a 0.7250 (3) 1.0940 (2) 0.0179 (2) 0.0592 (8)
H12Aa 0.6969 1.1688 0.0108 0.071*
H12Ba 0.8065 1.0904 0.0049 0.071*
C13a 0.7291 (3) 1.0738 (3) 0.1218 (3) 0.0506 (9)
H13Aa 0.7863 1.1288 0.1668 0.061*
H13Ba 0.6490 1.0838 0.1366 0.061*
C14 0.87521 (19) 1.05826 (18) 0.38669 (15) 0.0477 (5)
C15 0.98309 (19) 1.07136 (17) 0.34444 (15) 0.0469 (5)
C16 0.96482 (18) 1.00598 (16) 0.25407 (15) 0.0449 (4)
C17 1.0477 (2) 1.01039 (19) 0.19607 (17) 0.0549 (5)
H17 1.0349 0.9671 0.1345 0.066*
C18 1.1515 (2) 1.0818 (2) 0.2325 (2) 0.0648 (6)
H18 1.2082 1.0875 0.1941 0.078*
C19 1.1722 (2) 1.1444 (2) 0.3245 (2) 0.0645 (6)
H19 1.2435 1.1899 0.3479 0.077*
C20 1.0885 (2) 1.1404 (2) 0.38217 (18) 0.0590 (6)
H20 1.1019 1.1825 0.4442 0.071*
C21 0.60486 (18) 0.89185 (16) 0.27227 (14) 0.0440 (4)
H21 0.6250 0.8557 0.2156 0.053*
C22 0.48291 (18) 0.87134 (16) 0.29230 (15) 0.0441 (4)
C23 0.4531 (2) 0.9201 (2) 0.37763 (17) 0.0550 (5)
H23 0.5105 0.9659 0.4251 0.066*
C24 0.3372 (2) 0.9001 (2) 0.39181 (19) 0.0654 (6)
H24 0.3149 0.9322 0.4488 0.078*
C25 0.2562 (2) 0.8323 (2) 0.3205 (2) 0.0681 (7)
H25 0.1777 0.8169 0.3288 0.082*
C26 0.2905 (2) 0.7865 (2) 0.2363 (2) 0.0605 (6)
C27 0.2009 (3) 0.7154 (3) 0.1537 (3) 0.0877 (9)
H27A 0.1378 0.7616 0.1269 0.132*
H27B 0.1652 0.6550 0.1775 0.132*
H27C 0.2428 0.6844 0.1042 0.132*
C28 0.62053 (19) 0.79443 (17) −0.10326 (15) 0.0467 (5)
H28 0.6341 0.7251 −0.0825 0.056*
C29 0.55418 (19) 0.78962 (17) −0.20126 (15) 0.0475 (5)
H29 0.5438 0.8568 −0.2262 0.057*
C30 0.50555 (19) 0.69196 (18) −0.25982 (15) 0.0468 (5)
C31 0.4975 (2) 0.57305 (19) −0.23282 (17) 0.0567 (6)
C32 0.4280 (2) 0.5057 (2) −0.32771 (18) 0.0601 (6)
C33 0.4040 (2) 0.57556 (19) −0.39718 (17) 0.0563 (6)
C34 0.3449 (2) 0.5340 (2) −0.49186 (19) 0.0703 (7)
H34 0.3297 0.5806 −0.5389 0.084*
C35 0.3091 (3) 0.4192 (3) −0.5136 (2) 0.0839 (9)
H35 0.2689 0.3889 −0.5765 0.101*
C36 0.3316 (3) 0.3502 (2) −0.4449 (3) 0.0910 (10)
H36 0.3068 0.2740 −0.4615 0.109*
C37 0.3913 (3) 0.3930 (2) −0.3506 (2) 0.0811 (9)
H37 0.4063 0.3463 −0.3036 0.097*
C38 0.4262 (3) 0.5702 (3) −0.1531 (2) 0.0877 (10)
H38A 0.4709 0.6139 −0.0937 0.132*
H38B 0.4144 0.4935 −0.1439 0.132*
H38C 0.3482 0.6014 −0.1717 0.132*
C39 0.6239 (3) 0.5242 (2) −0.2061 (2) 0.0848 (10)
H39A 0.6714 0.5377 −0.2523 0.127*
H39B 0.6140 0.4443 −0.2069 0.127*
H39C 0.6649 0.5601 −0.1423 0.127*
C40 0.4376 (3) 0.7785 (2) −0.40894 (19) 0.0762 (8)
H40A 0.3669 0.8186 −0.3990 0.114*
H40B 0.4294 0.7506 −0.4769 0.114*
H40C 0.5092 0.8285 −0.3863 0.114*
C41 1.0005 (3) 0.4261 (2) 0.3139 (2) 0.0766 (8)
H41A 1.0610 0.4831 0.3525 0.092*
H41B 1.0429 0.3591 0.2957 0.092*
C42 0.9129 (4) 0.3977 (3) 0.3746 (3) 0.1156 (14)
H42A 0.8570 0.3368 0.3387 0.173*
H42B 0.8682 0.4628 0.3907 0.173*
H42C 0.9576 0.3753 0.4332 0.173*
C43 0.9177 (3) 0.3855 (2) 0.1378 (2) 0.0679 (7)
H43A 0.8492 0.4081 0.0922 0.081*
H43B 0.8950 0.3127 0.1523 0.081*
C44 1.0243 (4) 0.3734 (4) 0.0915 (3) 0.1162 (14)
H44A 1.0063 0.3139 0.0365 0.174*
H44B 1.0938 0.3556 0.1374 0.174*
H44C 1.0418 0.4431 0.0704 0.174*
C12Ab 0.6581 (17) 1.0873 (12) 0.0434 (11) 0.0592 (8)
H12Cb 0.5822 1.0633 0.0585 0.071*
H12Db 0.6516 1.1647 0.0316 0.071*
C13Ab 0.763 (2) 1.0818 (15) 0.129 (2) 0.0506 (9)
H13Cb 0.8395 1.1111 0.1180 0.061*
H13Db 0.7476 1.1241 0.1887 0.061*
C11Ab 0.678 (2) 1.012 (2) −0.0473 (17) 0.0500 (9)
H11Cb 0.7590 1.0293 −0.0575 0.060*
H11Db 0.6187 1.0267 −0.1033 0.060*
  1. aOccupancy: 0.830(5), bOccupancy: 0.170(5).

Source of materials

All reagents and starting materials were commercially available and used as received. The title compound was synthesized according to the literature method [5], [6], [7]. The title compound was obtained from cyclohexanone by a four-step reaction.

First step: Cyclohexanone (1.98 mL) was added dropwise to concentrated sulfuric acid (20.0 mL) under ice-bath condition. Then, 2-(4-diethylamino-hydroxybenzoyl) benzoic acid (3.00 g, 9.6 mmol) was added in portions under vigorous stirring. After the addition was completed, the reaction mixture was heated at 90 °C for 3 h, cooled down and poured onto ice (150.0 g). Perchloric acid (2.0 mL, 70%) was then added and the resulting precipitate was filtered, washed several times with cold water and dried in the air to give a red solid. Yield: ca. 94%.

Both the red solid (2.5 g, 6.65 mmol) obtained in the first step and equal number of moles of fisher aldehyde (1.34 g, 6.65 mmol) were dissolved directly in acetic anhydride (35.0 mL), refluxed for 0.5 h under stirring. After that, the resulting mixture was put into the refrigerator immediately to stop the reaction and then distilled under reduced pressure to obtain a dark-green solid. The dark-green solid was further purified by silica gel chromatography (CH2Cl2/CH3CH2OH = 200:1, 20:1 v/v) to give green microcrystalline, the intermediate of the second step. Yield: ca. 50%.

The green microcrystalline (1.2 g, 2.15 mmol), PyBOP (1.4 g, 2.68 mmol) and hydrazine hydrate (2.4 mL) were dispersed in CH2Cl2 (25 mL), and stirred at room temperature for 4 h. Then, the resulting mixture was distilled under reduced pressure to give a crude product, which was further purified by neutral alumina column chromatography (CH2Cl2/CH3CH2OH = 200:1, 50:1 v/v) to yield yellow powder, the intermediate of the third step. Yield: ca. 45%.

The ethanol solution of the yellow powder (0.5 g, 0.87 mmol) obtained from the above step and the ethanol solution of 6-methyl-2-pyridine carboxaldehyde (0.16 g, 1.31 mmol) were mixed and refluxed for 10 h. Then, the resulting mixture was concentrated by vacuum distillation to give the crude product of the title compound, which was further purified by neutral alumina column chromatography (CH2Cl2/CH3CH2OH = 200:1, 50:1 v/v) to give a yellow powder product, the title compound. Yield: ca. 20%.

Single crystals of the title compound were grown from a methanol solution by slow evaporation at room temperature. About one week later, light yellow block crystals were appeared. Yield: ca. 75%.

Experimental details

The H atoms were added using riding models. Their U iso values were set to 1.2 U eq of the parent atoms.

Comment

Rhodamine fluorescent dyes based on xanthene are widely used as fluorescent probes to track target molecules, because of the advantages of large molar extinction coefficient, high fluorescence quantum efficiency and good optical stability [8, 9]. At present, most of fluorescent probes based on xanthene are mainly concentrated in the visible region. Visible light imaging technology has some problems such as strong background fluorescence, photobleaching, phototoxicity and limited tissue penetration, which limits the application of fluorescent probes in chemical biology and clinical diagnostics. While near-infrared fluorescent probes have many advantages, such as long emission wavelength, little damage to cells, strong tissue penetration and low spontaneous emission background, which is widely used in detection, tracing and imaging of biomolecules in complex biological systems such as cells and tissues [1013]. In this work, a near-infrared rhodamine-derived compound was reported, which may be a potential near-infrared fluorescent probe for the good coordination ability to transition metal ions and rare-earth metal ions [14, 15].

The asymmetric unit of the title compound contains one molecule in a ring-closed form (see the figure). The amide C=O bond distance is 1.209(3) Å, indicative of the keto form of the amide. The bond length of C21–N2 is 1.273(3) Å, which shows the existence of the Schiff base C=N [16]. The dihedral angle between the aroylhydrozone plane and the pyridyl plane is 8.62°. While, the xanthene least-square plane and pyridylaroyl hydrozone group are almost perpendicular, the dihedral angle is 82.97°. All geometric parameters are in the expected ranges.


Corresponding authors: Junmin Wang and Juan Yuan, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China, E-mail: , (J. Yuan)

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 22101076

Award Identifier / Grant number: 21771115

Award Identifier / Grant number: 202300410261

Funding source: Henan University of Chinese Medicine

Award Identifier / Grant number: BSJJ2020-01

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Natural Science Foundation of China (Project Nos. 22101076 and 21771115), the Natural Science Foundation of Henan, China (Project No. 202300410261) and the Startup Foundation for Doctors of Henan University of Chinese Medicine (Project No. BSJJ2020-01).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. CrysAlisPro Software system. version 1. 171. 38. 43f; Rigaku Corporation: Oxford, UK, 2015.Suche in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Sheldrick, G. M. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar

5. Xu, Z., Wang, H., Chen, Z. Near-infrared fluorescent probe for selective detection of Cu2+ in living cells and in Vivo. Spectrochim. Acta Mol. Biomol. Spectrosc. 2019, 216, 404–410; https://doi.org/10.1016/j.saa.2019.03.062.Suche in Google Scholar

6. Xie, J.-Y., Li, C.-Y., Li, Y.-F. A near-infrared chemosensor for determination of trivalent aluminum ions in living cells and tissues. Dyes Pigments 2017, 136, 817–824; https://doi.org/10.1016/j.dyepig.2016.09.046.Suche in Google Scholar

7. Xie, J.-Y., Li, C.-Y., Li, Y.-F. A near-infrared fluorescent probe with high quantum yield and its application in the selective detection of glutathione in living cells and tissues. Anal. Chem. 2016, 19, 9746–9752; https://doi.org/10.1021/acs.analchem.6b02646.Suche in Google Scholar

8. Kim, H. N., Lee, M. H., Kim, H. J. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem. Soc. Rev. 2008, 19, 1465–1472; https://doi.org/10.1039/b802497a.Suche in Google Scholar

9. Chen, X.-Q., Pradhan, T., Wang, F. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem. Rev. 2012, 112, 1910–1956; https://doi.org/10.1021/cr200201z.Suche in Google Scholar

10. Zhang, W.-T., Yu, C.-W., Yang, M. Characterization of a Hg2+-selective fluorescent probe based on rhodamine B and its imaging in living cells. Molecules 2021, 11, 3385–3386; https://doi.org/10.3390/molecules26113385.Suche in Google Scholar

11. Gong, J., Liu, C., Jiao, X.-J. A novel near-infrared fluorescent probe with an improved Stokes shift for specific detection of Hg2+ in mitochondria. Org. Biomol. Chem. 2020, 27, 5238–5244; https://doi.org/10.1039/d0ob00507j.Suche in Google Scholar

12. Hilderbrand, S. A., Weissleder, R. Near-infrared fluorescence: application to in vivo molecular imaging. Curr. Opin. Chem. Biol. 2010, 14, 71–79; https://doi.org/10.1016/j.cbpa.2009.09.029.Suche in Google Scholar

13. Karaoglu, K., Kaya, K., Yilmaz, I. New chromenylium– cyanine based dual channel chemosensors for copper and hypochlorite sensing. Dyes Pigments 2020, 180, 108445; https://doi.org/10.1016/j.dyepig.2020.108445.Suche in Google Scholar

14. Huang, W., Wu, D., Guo, D., Zhu, X., He, C., Meng, Q., Duan, C. Efficient near-infrared emission of a Ytterbium(III) compound with a green light rhodamine donor. Dalton Trans. 2009, 2081–2084; https://doi.org/10.1039/b820131e.Suche in Google Scholar

15. Huang, W., Xu, J., Wu, D., Huang, X., Jiang, J. Rhodamine-based field-induced single molecule magnets in Yb(III) and Dy(III) series. New J. Chem. 2015, 39, 8650–8657; https://doi.org/10.1039/c5nj01724f.Suche in Google Scholar

16. Yuan, J., Cheng, D. Crystal structure of (E)-3′,6′-bis(ethylamino)-2′,7′-dimethyl-2-((pyridin-2-ylmethylene)amino)spiro[isoindoline-1,9′-xanthen]-3-one, C32H31N5O2. Z. Kristallogr.NCS 2018, 234, 149–151; https://doi.org/10.1515/ncrs-2018-0239.Suche in Google Scholar

Received: 2021-09-17
Accepted: 2021-11-02
Published Online: 2021-11-25
Published in Print: 2022-02-23

© 2021 Kaihao Li et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-3-yl)methylene)-3, 4-dihydronaphthalen-1(2H)-one, C17H15NO3
  4. Crystal structure of (E)-7-methoxy-2-((2-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1 (2H)-one, C18H17NO3
  5. The crystal structure of N 6,N 6′-di(pyridin-2-yl)-[2,2′-bipyridine]-6,6′-diamine, C20H16N6
  6. The crystal structure of {N 1,N 2-bis[2,4-dimethyl-6-(4-(tert-butyl)phenyl)(phenyl)methyl]acenaphthylene-1,2-diimino-κ2 N, N′}-dibromido-nickel(II) – dichloromethane(1/2), C64H64Br2Cl4N2Ni
  7. Synthesis and crystal structure of nonacarbonyltris[(2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-κ1 P)-2,2-dioxide]triruthenium(0) – acetonitrile (7/6), C25.71H32.57N9.86O15P3S3Ru3
  8. A new polymorph of 1-(4-nitrophenyl)-1H-benzimidazole (C13H9N3O2)
  9. The crystal structure of 2,2′-((1E,1′E)-(naphthalene-2,3 diylbis(azanylylidene)) bis(methanylylidene))bis(4-methylphenol), C26H22N2O2
  10. The crystal structure of bis(μ2-iodido)-bis(η6-benzene)-bis(iodido)-diosmium(II), C12H12I4Os2
  11. Redetermination of the crystal structure of bis{hydridotris(3,5-dimethylpyrazol-1-yl-κN 3)borato}copper(II), C30H44B2CuN12
  12. Crystal structure of (E)-3-((4-(tert-butyl)phenyl)thio)-4-hydroxypent-3-en-2-one, C15H20O2S
  13. Crystal structure of 2,2′-(p-tolylazanediyl)bis(1-phenylethan-1-one), C23H21NO2
  14. Redetermination of the crystal structure of the crystal sponge the poly[tetrakis(μ3-2,4,6-tris(pyridin-4-yl)-1,3,5-triazine)-dodecaiodidohexazinc(II) nitrobenzene solvate], C72H48I12N24Zn6⋅10(C6H5NO2)
  15. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(6-methylpyridin-2-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C44H45N5O2
  16. Crystal structure of (E)-7-fluoro-2-(3-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C17H12F2O1
  17. Crystal structure of tetrabutylammonium sulfanilate – 1-(diaminomethylene)thiourea (1/2)
  18. Crystal structure of [2,2′-{azanediyl)bis[(propane-3,1-diyl)(azanylylidene)methylylidene]} bis(3,5-dichlorophenolato)-κ2O,O′]-isothiocyanato-κN-iron(III), C21H19Cl4FeN4O2S
  19. Crystal structure of (4-chlorophenyl)(4-hydroxyphenyl)methanone, C13H9ClO2
  20. Crystal structure of 6,6′-((pentane-1,3-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dibromolphenolato-κ4 N,N′,O,O′)copper(II),) C19H16Br4CuN2O2
  21. Chlorido-(2,2′-(ethane-bis(5-methoxyphenolato))-κ4 N,N,O,O′)manganese(III) monohydrate, C19H18Cl2CuN2O2
  22. Crystal structure of 2,6-di-tert-butyl-4-(4-methoxybenzylidene)cyclohexa-2,5-dien-1-one, C22H28O2
  23. Crystal structure of [6,6′-(((2,2-dimethylpropane-1,3-diyl)bis(azanylylidene))bis(methanylylidene))bis(2-chlorophenolato)-κ4N,N′,O,O′]copper(II)
  24. Crystal structure of 2-chloro-3-((thiophen-2-ylmethyl)amino)naphthalene-1,4-dione, C30H20O4N2Cl2S2
  25. Crystal structure of bis{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl)borato-κN 3}manganese(II), C30H26B2F18MnN12
  26. Crystal structure of 1-(2-methylphenyl)-2-(2-methylbenzo[b]thienyl)-3,3,4,4,5,5-hexafluorocyclopent-ene, C21H14F6S
  27. Crystal structure of 2-(3-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  28. Crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium chloride – chloroform (1/1), C21H23Cl4I2N3
  29. Crystal structure of azido-k1 N-{6,6′-((((methylazanediyl)bis(propane-3,1-diyl))bis(azanylylidene))bis(methanylylidene))bis(2,4-dibromophenolato)k5 N,N′,N″,O,O′}cobalt(III)-methanol (1/1)), C21H23Br4CoN6O3
  30. The crystal structure of 2-(4-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  31. Crystal structure of 1,1′-(methane-1,1-diyl)bis(3-methyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C9H14F12N4P2
  32. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(pyren-1-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C54H48N4O2
  33. Crystal structure of poly[bis(μ2-2,6-bis(1-imidazoly)pyridine-κ2 N,N′)-bis(thiocyanato-κ1 N)copper(II)] dithiocyanate, C24H18CuN12S2
  34. Cones with a three-fold symmetry constructed from three hydrogen bonded theophyllinium cations that coat [FeCl4] anions in the crystal structure of tris(theophyllinium) bis(tetrachloridoferrate(III)) chloride trihydrate, C21H33Cl9Fe2N12O9
  35. Crystal structure of 14-O-[(4-(4-hydroxypiperidine-1-yl)-6-methylpyrimidine-2-yl)thioacetyl]-mutilin monohydrate, C32H49N3O6S
  36. The crystal structure of (E)-3-chloro-2-(2-(4-methylbenzylidene)hydrazinyl)pyridine, C13H12ClN3
  37. The crystal structure of 4-phenyl-4-[2-(pyridine-4-carbonyl)hydrazinylidene]butanoic acid, C16H15N3O3
  38. The crystal structure of 6-amino-5-carboxypyridin-1-ium pentaiodide monohydrate C6H9I5N2O3
  39. Crystal structure of bis(μ3-oxido)-bis(μ2-2-formylbenzoato-k2O:O′)-bis(2-(dimethoxymethyl)-benzoato-κO)-oktakismethyl-tetratin(IV)
  40. Crystal structure of 2-((E)-(((E)-2-hydroxy-4-methylbenzylidene) hydrazineylidene)methyl)-4-methylphenol, C16H16N2O2
  41. Crystal structure of (E)-amino(2-((5-methylfuran-2-yl)methylene)hydrazinyl) methaniminium nitrate monohydrate, C14H26N10O10
  42. The crystal structure of N′-(2-chloro-6-hydroxybenzylidene)thiophene-2-carbohydrazide monohydrate, C12H11ClN2O3S
  43. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)zinc(II)], C64H44Br4N8O8Zn2
  44. The crystal structure of catena-poly[(1-(4-carboxybenzyl)pyridin-1-ium-4-carboxylato-κ1O)-(μ2-oxalato-κ4 O:O′:O″:O‴)dioxidouranium(VI)], C16H11NO10U
  45. Crystal structure of 3-allyl-4-(2-bromoethyl)-5-(4-methoxyphenyl)-2-phenylfuran, C22H21BrO2
  46. Halogen bonds in the crystal structure of 4,3′:5′,4″-terpyridine — 1,3-diiodotetrafluorobenzene (1/1), C21H11F4I2N3
  47. Crystal structure of 2-(1H-indol-3-yl)ethan-1-aminium 2-(4-acetylphenoxy)acetate, C20H22N2O4
  48. Chalcogen bonds in the crystal structure of 4,7-dibromo-2,1,3-benzoselenadiazole, C6H2Br2N2Se
  49. The crystal structure of 1,4-bis((1H-benzimidazol-2-yl)methyl)-piperazine-2,5-dione dihydrate, C20H22N6O4
  50. The crystal structure of C19H20O8
  51. The crystal structure of KNa3Te8O18·5H2O exhibiting a 2[Te4O9]2− layer
  52. Erratum
  53. Erratum to: Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
Heruntergeladen am 9.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0363/html
Button zum nach oben scrollen