Home Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
Article
Licensed
Unlicensed Requires Authentication

Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys

  • F. Ernst , G. M. Michal , F. Oba , L. Liu , J. Blush and A. H. Heuer
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

A novel process, “nitridation under kinetic control of the nitrogen activity”, has been developed for diffusing substantial amounts (≍10at.%) of interstitially dissolved nitrogen into the surface of Ti alloys (Ti–6Al–4V). By operating with a gas phase providing a very small, controlled nitrogen activity, this process generates a homogeneous Ti–N solid solution, free of detrimental titanium nitride precipitates, in which the nitrogen concentration smoothly decreases from the surface towards the interior. The process is conformal (applicable to workpieces of arbitrary shape) and provides a substantial (about twofold) increase in surface hardness. The hardened surface layer appears to possess adequate ductility for many structural applications. The concept of “surface alloying under kinetic control” is very general and may also serve to generate well-controlled surface concentration profiles of carbon or oxygen in Ti-base and other structural alloys.


* Correspondence address: Prof. Frank Ernst, Dept. of Mater. Science and Engin., Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-7204, USA, Tel.: +12163680611, Fax: +12163688932. E-mail:

Dedicated to Professor Dr. Fritz Aldinger on the occasion of his 65th birthday


References

[1] G.Lütjering, J. C.Williams: Titanium, Springer, 2003.10.1007/978-3-540-71398-2Search in Google Scholar

[2] T.Bell, H.W.Bergmann, J.Lanagan, P.H.Morton, A. M.Staines: Surface Engineering2 (2) (1986) 133.10.1179/sur.1986.2.2.133Search in Google Scholar

[3] T.Sato, K.Akashi: J. Jap. Inst. Light Metals42 (11) (1992) 650.10.2464/jilm.42.650Search in Google Scholar

[4] H.J.Spies, U.Brusky, B.L.Mordike, C.Blawert, V.P.Hubner: Materialwissenschaft und Werkstofftechnik30 (8) (1999) 457.10.1002/(SICI)1521-4052(199908)30:8<457::AID-MAWE457>3.0.CO;2-HSearch in Google Scholar

[5] H.Dong, A.Bloyce, T.Bell, in: Surface Performance of Titanium, Proceedings of a Symposium, 1996 TMS Meeting, Sch. of Metall. & Mater., Birmingham Univ., UK, 1996, p.23.Search in Google Scholar

[6] T.A.Panaioti: Metallovedenie i Termicheskaya Obrabotka Metallov40 (9) (1998) 32.Search in Google Scholar

[7] Z.Okamoto, H.Hoshika, M.Yakushiji, in: Technology Reports of Kansai University, Kansai Univ, 2001, p. 167.Search in Google Scholar

[8] N.Yasumaru, K.Tsuchida, E.Saji, T.Ibe: Mater. Trans. JIM34 (8) (1993) 696.10.2320/matertrans1989.34.696Search in Google Scholar

[9] N.Yasumaru, K.Tsuchida, E.Saji, T.Ibe: J. Jap. Inst. of Metals56 (1) (1992) 104.10.2320/jinstmet1952.56.1_104Search in Google Scholar

[10] A.Bloyce: Proceedings of the Institution of Mechanical Engineers, Part J (Journal of Engineering Tribology) 212 (1998) 467.10.1243/1350650981542263Search in Google Scholar

[11] J.L.Viviente, A.Garcia, A.Loinaz, F.Alonso, J.I.Onate: Vacuum52(1–2) (1999) 141.10.1016/S0042-207X(98)00213-9Search in Google Scholar

[12] F.D.Lai, T.I.Wu, J.K.Wu: Surface and Coatings Techn.58 (1) (1993) 79.10.1016/0257-8972(93)90177-PSearch in Google Scholar

[13] T.I.Wu, J.K.Wu: Surface and Coatings Techn.90 (3) (1997) 258.10.1016/S0257-8972(96)03134-9Search in Google Scholar

[14] T.I.Wu, J.K.Wu: Metall. Trans. A (Physical Metallurgy and Materials Science)24 (5) (1993) 1181.10.1007/BF02657249Search in Google Scholar

[15] T.I.Wu, J.K.Wu: Scripta Metall. et Mater.25 (10) (1991) 2335.10.1016/0956-716X(91)90025-VSearch in Google Scholar

[16] M.Okutomi, A.Obara, K.Tsukamoto, in: Proceedings of Elevated Temperature Coatings: Science and Technology III. TMS Annual Meeting, Optoelectron. Div., Electrotech. Lab., Tsukuba, Japan, 1999, p.341.Search in Google Scholar

[17] M.Okutomi, A.Obara, K.Tsukamoto, H.L.Shen, in: Proceedings of the SPIE – The International Society for Optical Engineering, Vol.3550, Div. of Optoelectron., Electrotech. Lab., Tsukuba, Japan, 1998, p. 229.10.1117/12.317946Search in Google Scholar

[18] A.Obara, M.Okutomi: Bull. Electrotechn. Lab.60 (10) (1996) 35.Search in Google Scholar

[19] C.Blawert, B.L.Mordike, A.Weisheit: Surface and Coatings Techn.93(2–3) (1997) 297.10.1016/S0257-8972(97)00064-9Search in Google Scholar

[20] B.L.Mordike: Key Engineering Mater.46–47 (1990) 13.10.4028/www.scientific.net/KEM.46-47.13Search in Google Scholar

[21] H.M.Flower, A.Walker, D.R.F.West: Scripta Metall.19 (8) (1985) 923.10.1016/0036-9748(85)90283-2Search in Google Scholar

[22] Y.Wei, W.Xiaoxiang: Rare Metal Mater. and Eng.34 (3) (2005) 471.Search in Google Scholar

[23] H.Guleryuz, H.Cimenoglu: Surface & Coatings Techn.192 (2–3) (2005) 164.10.1016/j.surfcoat.2004.05.018Search in Google Scholar

[24] W.Yan, X.X.Wang, in: 4th International Conference on Mechanochemistry and Mechanical Alloying (INCOME 2003), Vol.39, Mater. Sci. & Eng., Zhejiang Univ., Hangzhou, China, 2004, p.5583.Search in Google Scholar

[25] P.A.Dearnley, K.L.Dahm, H.Cimenoglu: Wear256 (5) (2004) 469.10.1016/S0043-1648(03)00557-XSearch in Google Scholar

[26] M.Hongyan, W.Maocai, Z.Song, X.Gongchun, W.Zheng: Trans. Nonferrous Metals Society of China13 (1) (2003) 73.Search in Google Scholar

[27] P.Y.Qi, X.Y.Li, H.Dong, T.Bell: Mater. Sci. & Eng. A (Structural Materials: Properties, Microstructure and Processing)A326 (2) (2002) 330.10.1016/S0921-5093(01)01701-4Search in Google Scholar

[28] H.Dong, T.Bell: Wear238 (2) (2000) 131.10.1016/S0043-1648(99)00359-2Search in Google Scholar

[29] A.Bloyce, P.Y.Qi, H.Dong, T.Bell: Surface and Coatings Techn.107(2–3) (1998) 125.10.1016/S0257-8972(98)00580-5Search in Google Scholar

[30] H.Dong, A.Bloyce, P.H.Morton, T.Bell: Surface Engineering13 (5) (1997) 402.10.1179/sur.1997.13.5.402Search in Google Scholar

[31] P.G.Oberson, S.Ankem: Phys. Rev. Lett.95 (16) (2005) 165501/1.10.1103/PhysRevLett.95.165501Search in Google Scholar PubMed

[32] M.von Mises: Z. Angew. Math. Mech. (8) (1928) 161.10.1002/zamm.19280080302Search in Google Scholar

[33] L.Liu, F.Ernst, G.M.Michal, A.H.Heuer: Metall. and Mater. Trans.36 (2005) 2429.10.1007/s11661-005-0115-2Search in Google Scholar

[34] J.Bars, D.David, E.Etchessahar, J.Debuigne: Metall. Trans.A14 (1983) 1537.Search in Google Scholar

[35] E.Metin, O.T.Inal: Metall. Trans. A (Physical Metallurgy and Materials Science)20 (1989) 1819.10.1007/BF02663213Search in Google Scholar

[36] L.Liu: Doctoral thesis, Case Western Reserve University (2004).Search in Google Scholar

[37] J.Blush: Masters thesis, Case Western Reserve University (2004).Search in Google Scholar

[38] J.Crank: The mathematics of diffusion, Clarendon Press, Oxford, 1956.Search in Google Scholar

[39] J.Blush: Surface Engineering20 (6) (2004) 411.10.1179/sur.2004.20.6.411Search in Google Scholar

[40] M.W.J.Chase: NIST-JANAF Thermochemical Tables, 4th Edition, American Chemical Society, 1998.Search in Google Scholar

[41] G.Welsch, W.Bunk: Metall. Trans. A (Physical Metallurgy and Materials Science)A13 (5) (1982) 889.10.1007/BF02642403Search in Google Scholar

[42] Z.Liu, G.Welsch: Metall. Trans.A19 (1988) 527.Search in Google Scholar

[43] Z.Miskovic, B.Dimcic, I.Bobic, S.Zec, M.T.Jovanovic: Mater. Sci. Forum494 (2005) 561.10.4028/www.scientific.net/MSF.494.561Search in Google Scholar

[44] M.Winter (2005). URL http://www.webelements.com/Search in Google Scholar

[45] F.Ernst, Y.Cao, G.Michal: Acta Mater.52 (2004) 1469.10.1016/j.actamat.2003.11.027Search in Google Scholar

[46] Y.Cao, F.Ernst, G.Michal: Acta Mater.51 (2003) 4171.10.1016/S1359-6454(03)00235-0Search in Google Scholar

[47] G.M.Michal, F.Ernst, H.Kahn, Y.Cao, F.Oba, N.Agarwal, A. H.Heuer: Acta Mater. (2005) in press.Search in Google Scholar

[48] G.M.Michal, F.Ernst, A.H.Heuer: Metall. and Mater. Trans. (2005) in press.Search in Google Scholar

[49] SGTE, SGTE phase diagram collection (2004).URL http://web.met.kth.se/dct/pd/element/N-Ti.htmlSearch in Google Scholar

[50] H.A.Wriedt, J.L.Murray: Bulletin of Alloy Phase Diagrams8 (4) (1987) 378.10.1007/BF02869274Search in Google Scholar

Received: 2005-11-24
Accepted: 2006-1-25
Published Online: 2013-05-31
Published in Print: 2006-05-01

© 2006, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial
  5. Basic
  6. Three-dimensional printing of TiAl3/Al2O3 composites
  7. Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
  8. Solid-State 17O NMR studies on Yttria-stabilized zirconia
  9. Twinning in ultrathin silicon nanowires
  10. Re-optimization of the Mg–Sb system under topological constraints
  11. Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
  12. The In–Pt–Sb phase diagram
  13. Thermodynamic evaluation of the Al–Cr–C system
  14. Thermodynamic description of the Ni–Si–Ti ternary system
  15. Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
  16. Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
  17. Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
  18. Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
  19. Implications of linear relationships between local and macroscopic flow stresses in the composite model
  20. Applied
  21. Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
  22. Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
  23. The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
  24. Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
  25. High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
  26. Nanopowder dispersion and spray-drying process: the case of Cr2O3
  27. Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
  28. The role of chemisorbed anions in the aqueous processing of AlN powder
  29. The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
  30. Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
  31. The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
  32. Infrared properties of sintered α-MnSe
  33. Quasi-equilibrium sintering of particle clusters containing Bernal holes
  34. Design of metal ceramic composites
  35. Notifications
  36. DGM News
Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101277/html?lang=en
Scroll to top button