Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
-
Shaohua Chen
Abstract
We have recently developed a generalized JKR model for non-slipping adhesive contact between an elastic cylinder and a stretched substrate where both tangential and normal tractions are transmitted across the contact interface. Here we extend this model to a generalized Maugis–Dugdale model by adopting a Dugdale-type adhesive interaction law to eliminate the stress singularity near the edge of the contact zone. The non-slipping Maugis–Dugdale model is expected to have a broader range of validity in comparison with the non-slipping JKR model. The solution shares a number of common features with experimentally observed behaviors of cell reorientation on a cyclically stretched substrate.
References
[1] K.L.Johnson, K.Kendall, A.D.Roberts: Proc. Roy. Soc. Lond.A324 (1971) 301.Search in Google Scholar
[2] B.V.Derjaguin, V.M.Muller, Y.P.Toporov: J. Coll. Interface Sci.53 (1975) 314.10.1016/0021-9797(75)90018-1Search in Google Scholar
[3] D.Maugis: J. Coll. Interface Sci.150 (1992) 243.10.1016/0021-9797(92)90285-TSearch in Google Scholar
[4] D.S.Dugdale: J. Mech. Phys. Solids8 (1960) 100.10.1016/0022-5096(60)90013-2Search in Google Scholar
[5] D.Maugis, M.Barquins: J. Phys.D11 (1978) 1989.Search in Google Scholar
[6] V.M.Muller, V.S.Yushenko, B.V.Derjaguin: J. Colloid Interface Sci.77 (1980) 91.10.1016/0021-9797(80)90419-1Search in Google Scholar
[7] R.W.Carpick, N.Agrait, D.F.Ogletree, M.Salmeron: Langmuir12 (1996) 3334.10.1021/la9509007Search in Google Scholar
[8] J.A.Greenwood: Proc. Roy. Soc. Lond. A453 (1997) 1277.10.1098/rspa.1997.0070Search in Google Scholar
[9] K.L.Johnson, J.A.Greenwood: J. Coll. Interface Sci.192 (1997) 326.10.1006/jcis.1997.4984Search in Google Scholar PubMed
[10] J.M.Baney, C.Y.Hui: J. Adhesion Sci. Technol.11 (1997) 393.10.1163/156856197X00778Search in Google Scholar
[11] C.Y.Hui, J.M.Baney, E.J.Kramer: Langmuir14 (1998) 6570.10.1021/la980273wSearch in Google Scholar
[12] E.Barthel: J. Coll. Interface Sci.200 (1998) 7.10.1006/jcis.1997.5309Search in Google Scholar
[13] F.Robbe-Valloire, M.Barquins: Int. J. Adhesion and Adhesives18 (1998) 29.10.1016/S0143-7496(97)00064-XSearch in Google Scholar
[14] J.A.Greenwood, K.L.Johnson: J. Phys. D: Appl. Phys.31 (1998) 3279.10.1088/0022-3727/31/22/017Search in Google Scholar
[15] K.S.Kim, R.M.McMeeking, K.L.Johnson: J. Mech. Phys. Solids46 (1998) 243.10.1016/S0022-5096(97)00070-7Search in Google Scholar
[16] Y.Y.Lin, C.Y.Hui, J.M.Baney: J. Phys. D: Appl. Phys.32 (1999) 2250.10.1088/0022-3727/32/17/316Search in Google Scholar
[17] E.Barthel, G.Haiat: Langmuir18 (2002) 9362.10.1021/la025959+Search in Google Scholar
[18] C.Morrow, M.Lovell, X.Ning: J. Phys. D: Appl. Phys.36 (2003) 534.10.1088/0022-3727/36/5/317Search in Google Scholar
[19] U.D.Schwarz: J. Coll. Interface Sci.261 (2003) 99.10.1016/S0021-9797(03)00049-3Search in Google Scholar
[20] G.Haiat, M.C.P.Huy, E.Barthel: J. Mech. Phys. Solids51 (2003) 69.10.1016/S0022-5096(02)00059-5Search in Google Scholar
[21] H.Gao, X.Wang, H.Yao, S.Gorb, E.Arzt: Mech. Mater.37 (2005) 275.10.1016/j.mechmat.2004.03.008Search in Google Scholar
[22] H.Gao, H.Yao: Proc. Nat. Acad. Sci. USA101 (2004) 7851.10.1073/pnas.0400757101Search in Google Scholar PubMed PubMed Central
[23] N.J.Glassmaker, A.Jagota, C.Y.Hui, J.Kim: J. R. Soc. Interface1 (2004) 23.10.1098/rsif.2004.0004Search in Google Scholar
[24] C.Y.Hui, N.J.Glassmaker, T.Tang, A.Jagota: J. R. Soc. Interface1 (2004) 35.10.1098/rsif.2004.0005Search in Google Scholar
[25] S.Chen, H.Gao: Proc. Roy. Soc. Lond. A462 (2006) 211.10.1098/rspa.2005.1553Search in Google Scholar
[26] Y.-S.Chu, S.Dufour, J.P.Thiery, E.Perez, F.Pincet: Phys. Rev. Let.94 (2005) 028102–1.10.1103/PhysRevLett.94.028102Search in Google Scholar
[27] R.C.Buck: Exp. Cell. Res.127 (1980) 470.10.1016/0014-4827(80)90456-5Search in Google Scholar
[28] P.C.Dartsch, H.Hammerle: Eur. J. Cell Biol.41 (1986) 339.Search in Google Scholar
[29] V.P.Shirinsky, A.S.Antonov, K.Birukov, A.Sobolevsky, Y.Romanov, N.Kabaeva, G.Antonova, V.Smirnov: J. Cell. Biol.109 (1989) 331.10.1083/jcb.109.1.331Search in Google Scholar
[30] C.Neidlinger-Wilke, H.J.WilkeL.Claes: J. Orthop. Res.12 (1994) 70.10.1002/jor.1100120109Search in Google Scholar
[31] J.H.C.Wang: J. Theor. Biol.202 (2000) 33.10.1006/jtbi.1999.1035Search in Google Scholar
[32] A.D.Roberts, A.G.Thomas: Wear33 (1975) 45.10.1016/0043-1648(75)90223-9Search in Google Scholar
[33] M.Barquins: J. Adhesion26 (1988) 1.10.1080/00218468808071271Search in Google Scholar
[34] M.K.Chaudhury, T.Weaver, C.Y.Hui, E.J.Kramer: J. Appl. Phys80 (1996) 30.10.1063/1.362819Search in Google Scholar
[35] O.T.Sari, G.G.Adams, S.Muftu: J. Appl. Mech.72 (2005) 633.10.1115/1.1831291Search in Google Scholar
[36] K.L.Johnson: Contact Mechanics. Cambridge University Press (1985).10.1017/CBO9781139171731Search in Google Scholar
[37] J.Durdurs: Appl. Mech.36 (1969) 650.10.1115/1.3564739Search in Google Scholar
[38] Z.Suo: Proc. Roy. Soc. Lond. A427 (1990) 331.10.1098/rspa.1990.0016Search in Google Scholar
[39] G.F.Carrier, M.Krook, C.E.Pearson: Functions of a complex variable. Hod brooks, Ithaca, New York (1983).Search in Google Scholar
© 2006, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Three-dimensional printing of TiAl3/Al2O3 composites
- Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives
- Solid-State 17O NMR studies on Yttria-stabilized zirconia
- Twinning in ultrathin silicon nanowires
- Re-optimization of the Mg–Sb system under topological constraints
- Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry
- The In–Pt–Sb phase diagram
- Thermodynamic evaluation of the Al–Cr–C system
- Thermodynamic description of the Ni–Si–Ti ternary system
- Enthalpies of formation measurements and thermodynamic description of the Ag–Cu–Zn system
- Thermodynamic assessment of the Mn–Cr–O system for solid oxide fuel cell (SOFC) materials
- Subsolidus phase equilibria in the CeO2−x–SiO2–ZrO2 system: An experimental study
- Generalized Maugis–Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate
- Implications of linear relationships between local and macroscopic flow stresses in the composite model
- Applied
- Gas-phase surface alloying under “kinetic control”: A novel approach to improving the surface properties of titanium alloys
- Thin film formation by oriented attachment of polymer-capped nanocrystalline ZnO
- The sintering mechanism and microstructure evolution in SiC–AlN ceramics studiedby EFTEM
- Thermal evolution of free volumes and of crystallization in amorphous Si–B–C–N ceramics
- High-temperature deformation behavior of nanocrystalline precursor-derived Si–B–C–N ceramics in controlled atmosphere
- Nanopowder dispersion and spray-drying process: the case of Cr2O3
- Electroless deposition of brushite (CaHPO4 · 2H2O) crystals on Ti–6Al–4V at room temperature
- The role of chemisorbed anions in the aqueous processing of AlN powder
- The influence of porosity on the electrical properties of liquid-phase sintered silicon carbide
- Development of high-temperature thermoelectric materials based on SrTiO3-layered perovskites
- The influence of the preparation method on the microstructure and properties of Al2O3/TiN nanocomposites
- Infrared properties of sintered α-MnSe
- Quasi-equilibrium sintering of particle clusters containing Bernal holes
- Design of metal ceramic composites
- Notifications
- DGM News