Startseite Naturwissenschaften Crystal structure of hexacarbonyl-μ2-[phenylmethanedithiolato-κ4S:S,S′:S′]diiron (Fe–Fe) C13H6Fe2O6S2
Artikel Open Access

Crystal structure of hexacarbonyl-μ2-[phenylmethanedithiolato-κ4S:S,S′:S′]diiron (Fe–Fe) C13H6Fe2O6S2

  • Qing Lu ORCID logo EMAIL logo , Yanan Liu , Guifang Chen und Kai Liu
Veröffentlicht/Copyright: 8. Juli 2025

Abstract

C13H6Fe2O6S2, monoclinic, P21/c (no. 14), a = 10.0181(3) Å, b = 6.4719(2) Å, c = 24.3922(6) Å, β = 94.630(1)°, V = 1576.34(8) Å3, Z = 4, Rgt(F) = 0.0245, wRref(F2) = 0.0566, T = 150(2) K.

CCDC no.: 2450624

The molecular structure is shown in the figure. Table 1 contains the crystallographic data and the list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Red block
Size: 0.30 × 0.20 × 0.20 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 2.13 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω scans
θmax, completeness: 26.4°, 100 %
N(hkl)measured, N(hkl)unique, Rint: 28896, 3216, 0.042
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 2594
N(param)refined: 208
Programs: Bruker, 1 SHELX, 2 , 3 Olex2 4

1 Source of material

A mixture of 1-phenylmethanedithiol (0.156 g, 1.0 mmol) and triiron dodecacarbonyl (0.504 g, 1.0 mmol) was refluxed in THF (10 mL) under stirring for 2 h. After removal of the solvent under reduced pressure using a rotary evaporator, the residue was purified by preparative TLC with petroleum ether as the eluent. The main red band afforded the title complex as a red solid in 38 % yield. Single crystals were obtained by slow crystallization from a cold hexane solution.

2 Experimental details

The structure was solved by Direct Methods with the SHELXS program. Hydrogen atoms were positioned geometrically (C–H = 0.93–0.98 Å). Their Uiso values were set to 1.2Ueq or 1.5Ueq of the parent atoms.

3 Comment

The natural [FeFe]-hydrogenase exhibits exceptional catalytic efficiency in the reversible interconversion between protons and hydrogen gas, with turnover frequencies exceeding 10−4s−1, far surpassing most synthetic catalysts. 5 This remarkable capability establishes it as a paradigmatic model for investigating biological hydrogen production and hydrogen energy utilization mechanisms. Fe2(μ–ER)2(CO)6 complexes (E = S, Se, Te), which structurally mimic the [2Fe] H subcluster of the native enzyme active site, serve as pivotal synthetic platforms to decipher structure-function relationships in hydrogenase-inspired catalysis. 6 , 7 , 8 , 9 , 10 , 11 , 12 Given these considerations, the investigation of such model compounds represents a strategic entry point for simulating the enzymatic active center. Herein, we report a biomimetic compound C13H6Fe2O6S2 derived from 1-phenylmethanedithiol. The title complex features a butterfly-shaped [Fe2S2] cluster core coordinated with six terminal carbonyl ligands and a bridging phenylmethanedithiolate. The Fe1–Fe2 distance of 2.4881(4) Å is notably shorter than those reported for the natural [FeFe]-hydrogenases (2.55–2.60 Å). 13 The average Fe–C bond length (1.803 Å) and Fe–S bond distance (2.267 Å) fall within the normal range and align closely with values observed in analogous synthetic species. 14 , 15 , 16 , 17 , 18 , 19


Corresponding author: Qing Lu, Dongchang College, Liaocheng University, Liaocheng, 252059, P.R. China, E-mail:

  1. Conflict of interest: The authors declare no conflicts of interest regarding this article.

  2. Research funding: This research was supported by collaborative horizontal project between Dongchang College and Huainan Muqi Pharmaceutical Technology Co., Ltd under Grant 2025DCHX012, and Shandong Provincial Natural Science Foundation under Grant ZR2024QB181.

  3. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

References

1. BRUKER. Saint, Apex2 and Sadabs; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Suche in Google Scholar

2. Sheldrick, G. M. A Short History of Shelx. Acta Cryst. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed

3. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Cryst. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. Olex2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

5. Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E. Hydrogenases. Chem. Rev. 2014, 114, 4081–4148; https://doi.org/10.1021/cr4005814.Suche in Google Scholar PubMed

6. Li, Y. L.; Rauchfuss, T. B. Synthesis of Diiron(I) Dithiolato Carbonyl Complexes. Chem. Rev. 2016, 116, 7043–7077; https://doi.org/10.1021/acs.chemrev.5b00669.Suche in Google Scholar PubMed PubMed Central

7. Seyferth, D.; Womack, G. B.; Gallagher, M. K.; Cowie, M.; Hames, B. W.; Fackler, J. P.; Mazany, A. M. Novel Anionic Rearrangements in Hexacarbonyldiiron Complexes of Chelating Organosulfur Ligands. Organometallics 1987, 6, 283–294; https://doi.org/10.1021/om00145a009.Suche in Google Scholar

8. Lü, S.; Huang, H.-L.; Zhang, R.-F.; Ma, C.-L.; Li, Q.-L.; He, J.; Yang, J.; Li, T.; Li, Y.-L. Phosphine-Substituted Fe–Te Clusters Related to the Active Site of [FeFe]–H2ases. Inorg. Chem. Front. 2020, 7, 2352–2361; https://doi.org/10.1039/d0qi00276c.Suche in Google Scholar

9. Bai, S.-F.; Du, X.-M.; Tian, W.-J.; Xu, H.; Zhang, R.-F.; Ma, C.-L.; Wang, Y.-L.; Lü, S.; Li, Q.-L.; Li, Y.-L. Di-Tri-and Tetraphosphine-Substituted Fe/Se Carbonyls: Synthesis, Characterization and Electrochemical Properties. Dalton Trans. 2022, 51, 11125–11134; https://doi.org/10.1039/d2dt01376b.Suche in Google Scholar PubMed

10. Gao, X.-P.; Bai, S.-F.; Wang, Y.-L.; Lü, S.; Li, Q.-L. Facile Access to Tetra-Substituted FeIIFeII Biomimetics for the Oxidized State Active Site of [FeFe]-Hydrogenases. Inorg. Chem. Front. 2024, 11, 2372–2680; https://doi.org/10.1039/d4qi00773e.Suche in Google Scholar

11. Bai, S.-F.; Ma, J.-W.; Guo, Y.-N.; Du, X.-M.; Wang, Y.-L.; Li, Q.-L.; Lü, S. Aminophosphine-Substituted Fe/E (E = S, Se) Carbonyls Related to [FeFe]-Hydrogenases: Synthesis, Protonation, and Electrocatalytic Proton Reduction. J. Mol. Struct. 2023, 1283, 135827; https://doi.org/10.1016/j.molstruc.2023.135287.Suche in Google Scholar

12. Lü, S.; Bai, S.-F.; Gao, X.-P.; Wang, Y.-L.; Li, Q.-L. Aminodiphosphine Substituted 2Fe2Se Complex as New Precursor to Single and Double Butterfly Fe/Se Models Related to FeFe Hydrogenase Models. J. Mol. Struct. 2023, 1290, 135939; https://doi.org/10.1016/j.molstruc.2023.135939.Suche in Google Scholar

13. Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. Desulfovibrio Desulfuricans Iron Hydrogenase: The Structure Shows Unusual Coordination to an Active Site Fe Binuclear Center. Structure 1999, 1290, 13–23.10.1016/S0969-2126(99)80005-7Suche in Google Scholar PubMed

14. Liu, X.-F.; Li, Y.-L.; Liu, X.-H. Synthesis, Characterization, Electrocatalytic Properties, and Antifungal Activity of Isoxazole-Containing Di-Iron Complexes. Chin. J. Inorg. Chem. 2023, 12, 2367–2376.Suche in Google Scholar

15. Zhu, L.-J.; Liu, X.-F. Electrocatalytic Hydrogen Evolution Performance of Tetra-Iron Complexes with Bridging Diphosphine Ligands. Chin. J. Inorg. Chem. 2025, 2, 321–328.Suche in Google Scholar

16. Zhu, L.-J.; Liu, X.-F. Synthesis, Characterization and Electrocatalytic Hydrogen Evolution of Two Di-Iron Complexes Containing a Phosphine Ligand with a Pendant Amine. Chin. J. Inorg. Chem. 2025, 5, 939–947.Suche in Google Scholar

17. Lü, S.; Gong, S.; Qin, C.-R.; Li, Q.-L. PNP Bridged Diiron Carbonyls Containing Fe/E (E = S and Se) ‘Cluster Core Related to the Active Site of [FeFe]–H2ases. J. Organomet. Chem. 2022, 929, 121581.10.1016/j.jorganchem.2020.121581Suche in Google Scholar

18. Wu, M. G.; Liu, X. F. The Crystal Structure of tris(carbonyl)-bis(carbonyl)-[μ-propane-1,2- dithiolato]-(benzyldiphenylphosphine)diiron (Fe–Fe). Z. Kristallogr. - N. Cryst. Struct 2023, 238, 133–135 https://doi.org/10.1515/ncrs-2022-0520.Suche in Google Scholar

19. Daraosheh, A. Q.; Apfel, U.-P.; Gorls, H.; Friebe, C.; Schubert, U. S.; El-khateeb, M.; Mloston, G.; Weigand, W. New Approach to [FeFe]–Hydrogenase Models Using Aromatic Thioketones. Eur. J. Inorg. Chem. 2012, 318; https://doi.org/10.1002/ejic.201101032.Suche in Google Scholar

Received: 2025-05-14
Accepted: 2025-07-02
Published Online: 2025-07-08
Published in Print: 2025-10-27

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (S)-N-(10-((2,2-dimethoxyethyl)amino)-1,2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydrobenzo[a]heptalen-7-yl)acetamide, C25H32N2O7
  4. The crystal structure of 6,6′-difluoro-3,3′-dimethyl-5,5′-di(10H-phenoxazin-10-yl)- [1,1′-biphenyl]-2,2′-dicarbonitrile, C40H24F2N4O2
  5. Crystal structure of poly[(di-ethylenediamine-κ2N,N′)cadmium(II) tetradedocyloxidohexavanadate] (V4+/V5+ = 2/1), C4H16CdN4O14V6
  6. The crystal structure of poly[bis(dimethylformamide-κ1N)-(μ4-2′,3,3″,5′-tetrakis(trifluoromethyl)-[1,1′:4′,1″-terphenyl]-4,4″-dicarboxylato-κ4 O,O′: O″,O‴)dicadmium(II)], C27H15CdF12NO5
  7. Crystal structure of bis(μ2-ferrocenylcarboxylato-O,O′)-(μ3-oxido-κ3O:O:O)-bis(μ2-salicyladoximato-κ2N,O,O′)-(μ2-isopropoxo)-tris(isopropoxy-κ1O trititanium(IV)), C48H55N2O13Fe2Ti3
  8. Crystal structure of 3-(diethylamino)-7,9,11-trimethyl-8-phenyl-6H,13H-12λ4,13λ4-chromeno[3′,4′:4,5]pyrrolo[1,2-c]pyrrolo[2,1-f][1,3,2]diazaborinin-6-one, C28H26BF2N3O2
  9. The crystal structure of catena-poly[aqua-μ2-2-nitro-benzene-1,3-dicarboxylato-κ2O,O′)-(1,10-phenanthroline-κ2N,N′)-zinc(II)], C20H13N3O7Zn
  10. Crystal structure of poly[diaqua-{μ3-1-(3-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ4O,O′:O′′:O′′′′}manganese(II)] hydrate
  11. Crystal structure of N′-((1-hydroxycyclohexyl)(phenyl)methyl)-2-methoxybenzohydrazide methanol solvate, C22H28N2O4
  12. The cocrystal of caffeic acid — progesterone — water (1/2/1), C51H70O9
  13. Crystal structure of (((oxido(quinolin-6-yl)methoxy)triphenyl-λ5-stibanyl)oxy)(quinolin-7-yl)methanolate
  14. Crystal structure of [(E)-6′-(diethylamino)-2-(2-(((E)-pyren-1-ylmethylene)amino)ethyl)-4′-(2-((E)-1,3,3-trimethylindolin-2-ylidene)ethylidene)-1′,2′,3′,4′-tetrahydrospiro[isoindoline-1,9′-xanthen]-3-one]-methanol, solvate C57H56N4O3
  15. The crystal structure of 1-(acridin-9-yl)pyrrolidine-2,5-dione, C17H22N2O2
  16. Crystal structure of N-(4-acetylphenyl)-2-(6-methoxynaphthalen-2-yl)propanamide, C22H21NO3
  17. The crystal structure of 5,10,15,20-tetrakis(4-(1H-1,2,4-triazol-1-yl)phenyl)porphyrin, C52H34N16
  18. Crystal structure of hexacarbonyl-μ2-[phenylmethanedithiolato-κ4S:S,S′:S′]diiron (Fe–Fe) C13H6Fe2O6S2
  19. Crystal structure of diiodo-bis(1-((2-propyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κ1N)cadmium(II), C34H34CdI2N10
  20. Crystal structure of (E)-(3-(3-bromophenyl)acryloyl)ferrocene, C19H15BrFeO
  21. Crystal structure of catena-poly(μ2-6-chloropyridine-2-carboxylato-κ3N,O:O′)(6-chloropyridine-2-carboxylato-κ2O,N)copper(II), C12H6Cl2N2O4Cu
  22. Crystal structure of poly[diaqua-μ 3-(5-(3,5-dicarboxy-2,4,6-trimethylbenzyl)-2,4,6-trimethylisophthalato)-κ 6O,O′:O″,O‴:O‴′,O‴″) terbium(III)-monohydrate], C23H28TbO12
  23. Crystal structure of (E)-2-(((5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene)amino)-3′,6′-dihydroxyspiro[isoindoline-1,9′-xanthen]-3-one – ethanol (1/2), C35H33ClN4O6
  24. The crystal structure of 3-(5-amino-3-phenylisoxazol-4-yl)-4-chloro-3-hydroxyindolin-2-one, C17H12ClN3O3
  25. The crystal structure of dimethylammonium 4-[2-(4-fluorophenyl)-4, 5-diphenyl-1H-imidazol-1-yl]benzenesulfonate, C29H26FN3O3S
  26. Crystal structure of (R)-2-ammonio-3-((5-carboxypentyl)thio)propanoate
  27. Crystal structure of 4-cyclohexyl-5-(thiophen-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione, C12H15N3S2
  28. The crystal structure of 4,6-bis(dimethylamino)-2-fluoroisophthalonitrile, C12H13FN4
  29. Hydrogen bonding in the crystal structure of nicotin-1,1′-dium tetrabromidomanganate(II)
  30. The crystal structure of bis(2-bromobenzyl)(2-((2-oxybenzylidene)amino)-4-methylpentanoato-κ3N, O,O′)tin(IV), C27H27Br2NO3Sn
  31. Crystal structure of (E)-(3-(p-tolyl)acryloyl)ferrocene, C20H18FeO
  32. Crystal structure of (E)-7-fluoro-2-((5-(4-methylpiperazin-1-yl)pyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C21H22FN3O
  33. Crystal structure of (E)-7-methoxy-2-((5-(4-methylpiperazin-1-yl)pyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C22H25N3O2
  34. The crystal structure of poly(bis(μ2-1,3,5-tri(1H-imidazol-1-yl)benzene-κ2N:N′)-(μ2-2,3,5,6-tetrafluoroterephthalato-κ2O:O′)-manganese(II), C38H24F4N12O4Mn
  35. Crystal structure of (3,4-dimethoxybenzyl)triphenylphosphonium bromide ethanol solvate, C29H32BrO3P
  36. Crystal structure of tetraethylammonium hydrogencarbonate – (diaminomethylene)thiourea – water (2/1/3)
  37. Crystal structure of N, N-Dimethyl-N′-tosylformimidamide, C10H14N2O2S
  38. The crystal structure of ethyl 2-methyl-5-oxo-4-(2-methoxyphenyl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C20H23N2O4
  39. Crystal structure of bis(μ2-1,5-bis[(E)-1-(2-hydroxyphenyl)ethylidene] thiocarbonohydrazide)-bis(dimethylformamide)-dizinc(II) dimethylformamide solvate, C40H46N10O6S2Zn2⋅C3H7NO
  40. Crystal structure of azido-κ1N{hydridotris(3-tert-butyl-5-methylpyrazol-1-yl)borato-κ3N,N′,N″}copper(II), C24H40BCuN9
  41. The crystal structure of fac-tricarbonyl(1,10-phenanthroline-κ2N,N′)-(azido-κ1N)rhenium(I), C15H8N5O3Re
  42. Crystal structure of 4-((triphenylphosphonio)methyl)pyridin-1-ium tetrachloridozincate(II), C24H22Cl4NPZn
Heruntergeladen am 26.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0230/html
Button zum nach oben scrollen