Startseite Naturwissenschaften The cocrystal of caffeic acid — progesterone — water (1/2/1), C51H70O9
Artikel Open Access

The cocrystal of caffeic acid — progesterone — water (1/2/1), C51H70O9

  • Jiaxing Wang , Yong Yuan und Xin Zhu ORCID logo EMAIL logo
Veröffentlicht/Copyright: 18. Juli 2025

Abstract

C51H70O9, triclinic, space group P1 (no. 1), a = 7.67650(10) Å, b = 11.9494(2) Å, c = 13.8656(2) Å, α = 114.055(1), β = 103.568(1), γ = 93.456(1), V = 1111.46(3) Å3, Z = 1, T = 100(11) K.

CCDC no.: 2469075

The molecular structure is shown in the figure. Table 1 contains the crystallographic data and the list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Clear light colourless block
Size: 0.14 × 0.12 × 0.10 mm
Wavelength: Cu Kα radiation (1.54184 Å)
μ: 0.66 mm−1
Diffractometer, scan mode: Rigaku XtaLAB, ω scans
θmax, completeness: 74.2°, 99 %
N(hkl)measured, N(hkl)unique, Rint: 10,987, 5,428, 0.020
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 5,348
N(param)refined: 553
Programs: Rigaku, 1 Olex2, 2 SHELX 3

1 Source of materials

Equimolar quantities of progesterone (31.5 mg, 0.1 mmol) and caffeic acid (18.0 mg, 0.1 mmol) were dissolved in a 5 mL ethanol/water (v/v = 2:1) solution. The mixture was vigorously stirred for 20 min to ensure complete dissolution. Then the solution was subjected to slow solvent evaporation at room temperature. After 7 days, colorless block crystals were obtained.

2 Experimental details

Using Olex2, 2 the structure was refined with the SHELXL 3 refinement package using least squares minimisation. All H atoms bonded to C or O were idealized and refined using riding model.

3 Comment

Progesterone (PROG) is a key steroid hormone that plays a crucial role in reproductive health. 4 However, PROG has a water solubility of only 5.46 mg/L at room temperature, which suggests it has low oral bioavailability and poor absorption in the body. 5 In recent years, various methods have been developed to improve drug dissolution and bioavailability. 6 Co-crystallization involves the formation of a crystalline complex between progesterone and special cocrystal former, which could significantly improve its pharmacological properties and clinical efficacy. For example, the cocrystal of PROG and isophthalic acid (IPA), showed approximately 3–4 times improvements in AUC0–24h and AUC0–∞, compared with the free PROG. 7 Here, we have firstly prepared the cocrystal of PROG and caffeic acid (CA).

The asymmetric unit of the title compound contains two PROG molecules, one CA molecule, and one water molecule. Hydrogen bonds play a crucial role in the formation of the cocrystal. The –OH and –COOH groups of CA act as hydrogen bond acceptors, forming O–H⋯O hydrogen bonds with the –C=O groups of PROG molecules, connecting adjacent PROG molecules to create a two-dimensional layered hydrogen bond network. Furthermore, water molecules link the layers of CA through O–H⋯O bonds, resulting in a three-dimensional network structure. Geometric parameters are in general in the expected ranges. 8 , 9


Corresponding author: Xin Zhu, Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, China, E-mail:

Acknowledgments

This project was sponsored by the Scientific and Technological Brainstorm Project of Henan Province (242102310525).

References

1. Rigaku Oxford DiffractionCrysAlisPRO. Rigaku Oxford Diffraction, Yarnton, England (2015).Suche in Google Scholar

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. Olex2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Bulletti, C.; Bulletti, F. M.; Sciorio, R.; Guido, M. Progesterone: The Key Factor of the Beginning of Life. Int. J. Mol. Sci. 2022, 23, 14138; https://doi.org/10.3390/ijms232214138.Suche in Google Scholar PubMed PubMed Central

5. Hassan, A. S.; Soliman, G. M.; El-Mahdy, M. M.; El-Gindy, G. E. A. Solubilization and Enhancement of Ex Vivo Vaginal Delivery of Progesterone Using Solid Dispersions, Inclusion Complexes and Micellar Solubilization. Curr. Drug Deliv. 2018, 15, 110–121; https://doi.org/10.2174/1567201814666170320142136.Suche in Google Scholar PubMed

6. Patil, N.; Maheshwari, R.; Wairkar, S. Advances in Progesterone Delivery Systems: Still Work in Progress? Int. J. Pharm. 2023, 643, 123250; https://doi.org/10.1016/j.ijpharm.2023.123250.Suche in Google Scholar PubMed

7. Xiong, J.; Xu, D.; Zhang, H.; Shi, Y.; Wu, X.; Wang, S. Improving the Solubility and Bioavailability of Progesterone Cocrystals with Selected Carboxylic Acids. Pharmaceutics 2024, 16, 816; https://doi.org/10.3390/pharmaceutics16060816.Suche in Google Scholar PubMed PubMed Central

8. Garcia-Granda, S.; Beurskens, G.; Beurskens, P. T.; Krishna, T. S. R.; Desiraju, G. R. Structure of 3,4-Dihydroxy-Trans-Cinnamic Acid (Caffeic Acid) and Its Lack of Solid-State Topochemical Reactivity. Acta Crystallogr. Sect. C 1987, 43, 683; https://doi.org/10.1107/S0108270187094526.Suche in Google Scholar

9. Wang, P.; Sun, R.; Yang, X. Cocrystal Structure of Progesterone-isophthalic Acid. Z. Kristallogr. - N. Cryst. Struct. 2024, 239, 919–921. https://doi.org/10.1515/ncrs-2024-0233.Suche in Google Scholar

Received: 2025-05-06
Accepted: 2025-07-02
Published Online: 2025-07-18
Published in Print: 2025-10-27

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (S)-N-(10-((2,2-dimethoxyethyl)amino)-1,2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydrobenzo[a]heptalen-7-yl)acetamide, C25H32N2O7
  4. The crystal structure of 6,6′-difluoro-3,3′-dimethyl-5,5′-di(10H-phenoxazin-10-yl)- [1,1′-biphenyl]-2,2′-dicarbonitrile, C40H24F2N4O2
  5. Crystal structure of poly[(di-ethylenediamine-κ2N,N′)cadmium(II) tetradedocyloxidohexavanadate] (V4+/V5+ = 2/1), C4H16CdN4O14V6
  6. The crystal structure of poly[bis(dimethylformamide-κ1N)-(μ4-2′,3,3″,5′-tetrakis(trifluoromethyl)-[1,1′:4′,1″-terphenyl]-4,4″-dicarboxylato-κ4 O,O′: O″,O‴)dicadmium(II)], C27H15CdF12NO5
  7. Crystal structure of bis(μ2-ferrocenylcarboxylato-O,O′)-(μ3-oxido-κ3O:O:O)-bis(μ2-salicyladoximato-κ2N,O,O′)-(μ2-isopropoxo)-tris(isopropoxy-κ1O trititanium(IV)), C48H55N2O13Fe2Ti3
  8. Crystal structure of 3-(diethylamino)-7,9,11-trimethyl-8-phenyl-6H,13H-12λ4,13λ4-chromeno[3′,4′:4,5]pyrrolo[1,2-c]pyrrolo[2,1-f][1,3,2]diazaborinin-6-one, C28H26BF2N3O2
  9. The crystal structure of catena-poly[aqua-μ2-2-nitro-benzene-1,3-dicarboxylato-κ2O,O′)-(1,10-phenanthroline-κ2N,N′)-zinc(II)], C20H13N3O7Zn
  10. Crystal structure of poly[diaqua-{μ3-1-(3-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ4O,O′:O′′:O′′′′}manganese(II)] hydrate
  11. Crystal structure of N′-((1-hydroxycyclohexyl)(phenyl)methyl)-2-methoxybenzohydrazide methanol solvate, C22H28N2O4
  12. The cocrystal of caffeic acid — progesterone — water (1/2/1), C51H70O9
  13. Crystal structure of (((oxido(quinolin-6-yl)methoxy)triphenyl-λ5-stibanyl)oxy)(quinolin-7-yl)methanolate
  14. Crystal structure of [(E)-6′-(diethylamino)-2-(2-(((E)-pyren-1-ylmethylene)amino)ethyl)-4′-(2-((E)-1,3,3-trimethylindolin-2-ylidene)ethylidene)-1′,2′,3′,4′-tetrahydrospiro[isoindoline-1,9′-xanthen]-3-one]-methanol, solvate C57H56N4O3
  15. The crystal structure of 1-(acridin-9-yl)pyrrolidine-2,5-dione, C17H22N2O2
  16. Crystal structure of N-(4-acetylphenyl)-2-(6-methoxynaphthalen-2-yl)propanamide, C22H21NO3
  17. The crystal structure of 5,10,15,20-tetrakis(4-(1H-1,2,4-triazol-1-yl)phenyl)porphyrin, C52H34N16
  18. Crystal structure of hexacarbonyl-μ2-[phenylmethanedithiolato-κ4S:S,S′:S′]diiron (Fe–Fe) C13H6Fe2O6S2
  19. Crystal structure of diiodo-bis(1-((2-propyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κ1N)cadmium(II), C34H34CdI2N10
  20. Crystal structure of (E)-(3-(3-bromophenyl)acryloyl)ferrocene, C19H15BrFeO
  21. Crystal structure of catena-poly(μ2-6-chloropyridine-2-carboxylato-κ3N,O:O′)(6-chloropyridine-2-carboxylato-κ2O,N)copper(II), C12H6Cl2N2O4Cu
  22. Crystal structure of poly[diaqua-μ 3-(5-(3,5-dicarboxy-2,4,6-trimethylbenzyl)-2,4,6-trimethylisophthalato)-κ 6O,O′:O″,O‴:O‴′,O‴″) terbium(III)-monohydrate], C23H28TbO12
  23. Crystal structure of (E)-2-(((5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene)amino)-3′,6′-dihydroxyspiro[isoindoline-1,9′-xanthen]-3-one – ethanol (1/2), C35H33ClN4O6
  24. The crystal structure of 3-(5-amino-3-phenylisoxazol-4-yl)-4-chloro-3-hydroxyindolin-2-one, C17H12ClN3O3
  25. The crystal structure of dimethylammonium 4-[2-(4-fluorophenyl)-4, 5-diphenyl-1H-imidazol-1-yl]benzenesulfonate, C29H26FN3O3S
  26. Crystal structure of (R)-2-ammonio-3-((5-carboxypentyl)thio)propanoate
  27. Crystal structure of 4-cyclohexyl-5-(thiophen-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione, C12H15N3S2
  28. The crystal structure of 4,6-bis(dimethylamino)-2-fluoroisophthalonitrile, C12H13FN4
  29. Hydrogen bonding in the crystal structure of nicotin-1,1′-dium tetrabromidomanganate(II)
  30. The crystal structure of bis(2-bromobenzyl)(2-((2-oxybenzylidene)amino)-4-methylpentanoato-κ3N, O,O′)tin(IV), C27H27Br2NO3Sn
  31. Crystal structure of (E)-(3-(p-tolyl)acryloyl)ferrocene, C20H18FeO
  32. Crystal structure of (E)-7-fluoro-2-((5-(4-methylpiperazin-1-yl)pyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C21H22FN3O
  33. Crystal structure of (E)-7-methoxy-2-((5-(4-methylpiperazin-1-yl)pyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C22H25N3O2
  34. The crystal structure of poly(bis(μ2-1,3,5-tri(1H-imidazol-1-yl)benzene-κ2N:N′)-(μ2-2,3,5,6-tetrafluoroterephthalato-κ2O:O′)-manganese(II), C38H24F4N12O4Mn
  35. Crystal structure of (3,4-dimethoxybenzyl)triphenylphosphonium bromide ethanol solvate, C29H32BrO3P
  36. Crystal structure of tetraethylammonium hydrogencarbonate – (diaminomethylene)thiourea – water (2/1/3)
  37. Crystal structure of N, N-Dimethyl-N′-tosylformimidamide, C10H14N2O2S
  38. The crystal structure of ethyl 2-methyl-5-oxo-4-(2-methoxyphenyl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C20H23N2O4
  39. Crystal structure of bis(μ2-1,5-bis[(E)-1-(2-hydroxyphenyl)ethylidene] thiocarbonohydrazide)-bis(dimethylformamide)-dizinc(II) dimethylformamide solvate, C40H46N10O6S2Zn2⋅C3H7NO
  40. Crystal structure of azido-κ1N{hydridotris(3-tert-butyl-5-methylpyrazol-1-yl)borato-κ3N,N′,N″}copper(II), C24H40BCuN9
  41. The crystal structure of fac-tricarbonyl(1,10-phenanthroline-κ2N,N′)-(azido-κ1N)rhenium(I), C15H8N5O3Re
  42. Crystal structure of 4-((triphenylphosphonio)methyl)pyridin-1-ium tetrachloridozincate(II), C24H22Cl4NPZn
Heruntergeladen am 26.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0220/html
Button zum nach oben scrollen