Startseite Naturwissenschaften The crystal structure of catena-poly[aqua-μ2-2-nitro-benzene-1,3-dicarboxylato-κ2O,O′)-(1,10-phenanthroline-κ2N,N′)-zinc(II)], C20H13N3O7Zn
Artikel Open Access

The crystal structure of catena-poly[aqua-μ2-2-nitro-benzene-1,3-dicarboxylato-κ2O,O′)-(1,10-phenanthroline-κ2N,N′)-zinc(II)], C20H13N3O7Zn

  • Weizheng Kong ORCID logo EMAIL logo , Youming Zhang und Ying Zhang
Veröffentlicht/Copyright: 25. Juni 2025

Abstract

C20H13N3O7Zn, orthorhombic, Pbca (no. 61), a = 7.28990(10) Å, b = 19.6852(2) Å, c = 25.3532(3) Å, V = 3638.26(8) Å3, Z = 8, R gt (F) = 0.0328, wR ref (F2) = 0.0924, T = 297(2) K.

CCDC no.: 2465521

The molecular structure is shown in the figure. Table 1 contains the crystallographic data and the list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.26 × 0.18 × 0.12 mm
Wavelength: Cu Kα radiation (1.54184 Å)
μ: 2.36 mm−1
Diffractometer, scan mode: Rigaku Synergy, ω scans
θmax, completeness: 70.0°, 100 %
N(hkl)measured, N(hkl)unique, Rint: 12843, 3420, 0.020
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 3,268
N(param)refined: 287
Programs: Rigaku 1 , Olex2 2 , SHELX 3 , 4

1 Source of materials

2-Nitro-benzene-1,3-dicarboxylic acid (0.1 mmol, 0.0211 g), 1,10-phenanthroline (0.1 mmol, 0.0198 mg), ZnCl2 (0.1 mmol, 0.0136 g) and NaOH (0.2 mmol, 0.008 g) was added to 10.0 mL bi-distilled water and was stirred for 10 min to form a mixture, then was placed in a 23 mL Teflon-lined stainless steel autoclave. The autoclave was heated to 413 K for 3 days, and then cooled naturally to room temperature. A large number of colourless crystals were obtained, filtered off, washed with anhydrous ethanol, and dried in air, yield 46.3 % (based on 2-nitro-benzene-1,3-dicarboxylic acid).

2 Experimental details

The structure was solved by Direct Methods with the SHELXS-2018 program. All H-atoms from C and O atoms were positioned with idealized geometry and refined isotropically (Uiso(H) = 1.2 Ueq(C) and Uiso(H) = 1.5 Ueq(O)) using a riding model with C–H = 0.930 Å and fixed distances of O–H = 0.842 and 0.847 Å, respectively.

3 Comment

Metal-organic coordination polymers offer innovative solutions to the limitations through their unique combination of metal ions and organic ligands for pharmacy, such as drug loadings, tumor therapy, drug delivery and detection of drugs, and so on. Zinc-organic coordination polymers have been increasingly studied due to their low toxicity. 5 To date, many 1,10-phenanthroline combining benzene-1,3-dicarboxylatic acid 6 , 7 and its derivatives based zinc-organic complexes have been reported, including 2-, 8 , 9 4- 10 , 11 and 5-substituted 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 benzene-1,3-dicarboxylatic acid. We herein report the crystal structure of the title zinc-organic coordination polymer, catena-[μ2-2-nitro-benzene-1,3-dicarboxylato-κ2O,O′)-aqua-(1,10-phenanthroline-κ2N,N′)-zinc(II)].

As shown in the figure, the title compound crystallizes in an orthorhombic system, group Pbca (no. 61), with the formula of C20H13N3O7Zn. The asymmetric unit has a Zn(II) ion, a completely deprotonated μ2-2-nitro-benzene-1,3-dicarboxylate anion, a chelating 1,10-phenanthroline ligand and a terminal coordination water molecule. This coordination environment of Zn(II) is similar to the structure reported in reference 9]. The Zn1 is five-coordinated (ZnN2O3) forming a distorted square pyramidal geometry, where two nitrogen atoms are from the 1,10-phenanthroline, two oxygen atoms come from two μ2-2-nitro-benzene-1,3-dicarboxylate anion, and the last oxygen atom belongs to the terminal coordination water molecule. A 1D chain-like structure is generated by the linkage of the μ2-2-nitro-benzene-1,3-dicarboxylate anion, which is further forming a three-dimensional supramolecular structure by the hydrogen bonds O7–H7A···O1 and O7–HB···O3. All bond lengths of the title compound are comparable with the reported results. 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29


Corresponding author: Weizheng Kong, Department of Pharmacy, Tangshan Maternal and Child Health Hospital, Tangshan 063000, Hebei, P.R. China, E-mail:

References

1. CrysAlisPro. CrysAlisPro 1.171.42.94a; Rigaku OD: Oxfordshire, England, 2023.Suche in Google Scholar

2. Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. The Anatomy of a Comprehensive Constrained, Restrained Refinement Program for the Modern Computing Environment-Olex2 Dissected. Acta Crystallogr. 2015, A71, 59–75. https://doi.org/10.1107/s2053273314022207.Suche in Google Scholar

3. Sheldrick, G. M. Crystal Structure Refinement with SHELX. Acta Crystallogr. 2015, C71, 3–8, https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Sheldrick, G. Using Phases to Determine the Space Group. Acta Crystallogr. 2018, A74, A353. https://doi.org/10.1107/s0108767318096472.Suche in Google Scholar

5. Ye, X. M.; Xiong, M. M.; Yuan, K. R.; Liu, W.; Cai, X. Q.; Yuan, Y.; Yuan, Y. H.; Qin, Y. F.; Wu, D. D. Synthesis and Characterization of a Novel Zinc-Based Metal-Organic Framework Containing Benzoic Acid: A Low-Toxicity Carrier for Drug Delivery. Iran. J. Pharm. Res. 2023, 22, e136238. https://doi.org/10.5812/ijpr-136238.Suche in Google Scholar PubMed PubMed Central

6. Zhang, L. Y.; Liu, G.-F.; Zheng, S.-L.; Ye, B.-H.; Zhang, X.-M.; Chen, X.-M. Helical Ribbons of Cadmium(II) and Zinc(II) Dicarboxylates with Bipyridyl-Like Chelates-Syntheses, Crystal Structures and Photoluminescence. Eur. J. Inorg. Chem. 2003, 16, 2965–2971. https://doi.org/10.1002/ejic.200300061.Suche in Google Scholar

7. Lu, X.; Chen, Y.-Y.; Li, P.-Z.; Bi, Y.-G.; Yu, C.; Shi, X.-D.; Chi, Z.-X. Self-Assembly of Three 1-D Zinc-Benzenedicarboxylate Coordination Polymers with 1,10-Phenanthroline. J. Coord. Chem. 2010, 63, 3923–3932. https://doi.org/10.1080/00958972.2010.523826.Suche in Google Scholar

8. Zhang, X.-G.; Gao, L.-J.; Chen, C.; Ma, H.-Y. Syntheses, Crystal Structures and Fluorescent Properties of Zinc/Cadmium Complexes Based on Tetranuclear Metal Unit. Chin. J. Inorg. Chem. 2015, 31, 739–748.Suche in Google Scholar

9. Li, S.; Lu, L.; Feng, S.; Zhu, M. Syntheses, Structures, Magnetic Properties and Luminescence of Four Coordination Polymers Based on an Asymmetric Semirigid Tricarboxylate Ligand. J. Solid State Chem. 2019, 269, 56–64. https://doi.org/10.1016/j.jssc.2018.09.007.Suche in Google Scholar

10. Huang, Y.; Yan, B.; Shao, M. Hydrothermal Synthesis, Crystal Structure and Photoluminescence of Two 1D Zn(II) Coordination Polymers. J. Mol. Struct. 2009, 919, 185–188. https://doi.org/10.1016/j.molstruc.2008.09.009.Suche in Google Scholar

11. Yang, X.-G.; Lu, X.-M.; Zhai, Z.-M.; Qin, J.-H.; Chang, X.-H.; Han, M.-L.; Li, F.-F.; Ma, L.-F. π-Type Halogen Bonding Enhanced Long-Last Room Temperature Phosphorescence of Zn(II) Coordination Polymers for Photoelectron Response Applications. Inorg. Chem. Front. 2020, 7, 2224–2230. https://doi.org/10.1039/d0qi00191k.Suche in Google Scholar

12. Cao, X.-Y.; Zhang, J.; Kang, Y.; Cheng, J.-K.; Li, Z.-J.; Wang, X.-Q.; Wen, Y.-H.; Yao, Y.-G. poly[[[(1,10-Phenanthroline-κ2N,N-zinc(II)]-µ3-5-Hydroxyisophthalato-κ4O,O′:O″:O‴]Monohydrate]. Acta Crystallogr. Sect. C 2004, 60, m350–m352. https://doi.org/10.1107/s010827010401056x.Suche in Google Scholar PubMed

13. Ren, H.; Song, T.; Xu, H.; He, X.; Wang, L.; Zhang, P.; Ye, J. Self-Assembly of Two Zinc(II) Supramolecular Architectures with Carboxylate and Chelating Aromatic Amine Ligands: [Zn(nba)2(phen)(H2O)] and [Zn(nip)(phen)]n(nba = 4-Nitrobenzoic Acid, Nip = 5-Nitroisophthalic Acid). Transition Met. Chem. 2006, 31, 992–998. https://doi.org/10.1007/s11243-006-0095-0.Suche in Google Scholar

14. Yang, E.; Song, X.-C.; Wang, L.-H.; Lin, Y.-D. catena-poly[[Aqua-(1,10-phenanthroline-κ2N,N-Zinc(II)]-μ-5-[4-(hydroxymethyl)benzyloxy]isophthalato-κ3O1,O1:O3-[Aqua-(1,10-Phenanthroline-κ2N,N′)Zinc(II)]-μ-5-[4-(Hydroxymethyl)Benzyloxy]Isophthalato-κ2O1:O3]. Acta Crystallogr. Sect. C 2007, 63, m481–m483. https://doi.org/10.1107/s0108270107046240.Suche in Google Scholar

15. Li, X.; Liu, W.; Zhang, H.-Y.; Wu, B.-L. Novel Coordination Polymers with Ferrocene-Containing Dicarboxylate Ligand: Syntheses, Crystal Structures and Properties. J. Organomet. Chem. 2008, 693, 3295–3302. https://doi.org/10.1016/j.jorganchem.2008.07.034.Suche in Google Scholar

16. Liang, F.-P.; Meng, Q.-L.; Ma, L.-F.; Wang, L.-Y. Hydrotherma Syntheses and Crystal Structures of Zn(II) and Co(II) Complexes Constructed from 5-Methoxyisophthalic Acid and 1,10-Phenanthroline Ligands. Chin. J. Struct. Chem. 2010, 29, 157–163.Suche in Google Scholar

17. Liu, Q.-Y.; Wang, Y.-L.; Du, Z.-Y.; Shan, Z.-M.; Yang, E.-L.; Zhang, N. Crystal Structures and Magnetic or Photoluminescent Properties of Copper(II) and Zinc(II)-5-Sulfoisophthalate Coordination Polymers. Aust. J. Chem. 2010, 63, 1565–1572. https://doi.org/10.1071/ch10192.Suche in Google Scholar

18. Zang, S.-Q.; Fan, Y.-J.; Li, J.-B.; Hou, H.-W.; Mak, T. C. W. Halogen Bonding in the Assembly of Coordination Polymers Based on 5-Iodo-Isophthalic Acid. Cryst. Growth Des. 2011, 11, 3395–3405. https://doi.org/10.1021/cg200022j.Suche in Google Scholar

19. Liu, Y.-Y.; Li, J.; Ma, J.-F.; Ma, J.-C.; Yang, J. A Series of 1D, 2D and 3D Coordination Polymers Based on a 5-(Benzonic-4-Ylmethoxy)Isophthalic Acid: Syntheses, Structures and Photoluminescence. CrystEngComm 2012, 14, 169–177. https://doi.org/10.1039/c1ce05639e.Suche in Google Scholar

20. Jin, R.-F.; Yang, S.-Y.; Li, H.-M.; Long, L.-S.; Huang, R.-B.; Zheng, L.-S. Effect of Ionic Radius on the Assemblies of First Row Transition Metal-5-Tert-Butylisophthalates-(2,2′-Bipyridine or Phenanthroline) Coordination Compounds. CrystEngComm 2012, 14, 1301–1316. https://doi.org/10.1039/c1ce05959a.Suche in Google Scholar

21. Xin, L.-Y.; Li, X.-L.; Guo, H. Crystal Structure of Bis-(phenanthroline)-zinc(II) 5-(4-carboxy-2-nitrophenoxy)-isophthalic hydrate, Zn(C15H9NO9)(C12H8N2)2(H2O), C39H25N5O10Zn. Z. Kristallogr. N. Cryst. Struct. 2012, 227, 407–409.10.1524/ncrs.2012.0166Suche in Google Scholar

22. Wang, J.-J.; Bao, Q.-L.; Chen, J.-X. Two 2-D Layered Coordination Polymers Based on 5-Aminoisophthalate and 1,10-Phenanthroline. J. Coord. Chem. 2013, 66, 2578–2586. https://doi.org/10.1080/00958972.2013.813939.Suche in Google Scholar

23. Weng, Z.; Zhang, C. L.; Zhang, H. Y.; Zhou, Y.; Zhang, S. H. Syntheses, Crystal Structures, and Spectroscopic Properties of Two New Complexes Based on 5-Hydroxyisophthalic Acid. Inorg. Nano-Met. Chem. 2017, 47, 390–395. https://doi.org/10.1080/15533174.2016.1186060.Suche in Google Scholar

24. Mukherjee, S.; Ganguly, S.; Manna, K.; Mondal, S.; Mahapatra, S.; Das, D. Green Approach to Synthesize Crystalline Nanoscale ZnII-Coordination Polymers: Cell Growth Inhibition and Immunofluorescence Study. Inorg. Chem. 2018, 57, 4050–4060. https://doi.org/10.1021/acs.inorgchem.8b00237.Suche in Google Scholar PubMed

25. An, Y.; Lu, L.; Zhu, M. Three New ZnII Coordination Polymers Constructed from a Semirigid Tricarboxylic Acid: Structural Changes Caused by Flexibility and Luminescence Sensing for Hexa-Valent Chromate Anions. Acta Crystallogr. Sect. C: 2019, 75, 1286–1298. https://doi.org/10.1107/s2053229619011069.Suche in Google Scholar

26. Bej, S.; Das, R.; Kundu, D.; Pal, T. K.; Banerjee, P. A De Novo Strategy for the Development of a ZnII-Organic Framework Based Luminescent ‘Switch-On’ Assay for Size-Exclusive Sensitization of the Oxidised Form of Glutathione (GSSG) Over the Reduced Form (GSH): Insights into the Sensing Mechanism Through DFT. CrystEngComm 2023, 25, 1626–1636. https://doi.org/10.1039/d2ce01600a.Suche in Google Scholar

27. Song, X.; Hou, X.; Zhao, Q.; Ma, Z.; Ren, Y. Fluorescence-Quenching Mechanisms of Novel Isomorphic Zn/Cd Coordination Polymers for Selective Nitrobenzene Detection. Spectrochim. Acta, Part A 2024, 308, 123729. https://doi.org/10.1016/j.saa.2023.123729.Suche in Google Scholar PubMed

28. Ye, R.-P.; Zhang, X.; Zhai, J.-Q.; Qin, Y.-Y.; Zhang, L.; Yuan-Gen Yao, Y.-G.; Jian Zhang, J. N-Donor Ligands Enhancing Luminescence Properties of Seven Zn/Cd(ii) MOFs Based on a Large Rigid π-Conjugated Carboxylate Ligand. CrystEngComm 2015, 17, 9155–9166. https://doi.org/10.1039/c5ce01884f.Suche in Google Scholar

29. Wen-Jie, B.; Dong, X.; Xing-Ming, H.; Hu, C.; He-Dong, B. Hydrothermal Synthesis and Crystal Structure of Catena-poly[(1,10-Phenanthroline-κ2N,N′)-bis(µ2-nitroisophthalato-κ3O,O′:O″)nickel(II)]. Z. Kristallogr. N. Cryst. Struct. 2025, 240, 11. https://doi.org/10.1515/ncrs-2024–0286.10.1515/ncrs-2024-0286Suche in Google Scholar

Received: 2025-04-26
Accepted: 2025-06-19
Published Online: 2025-06-25
Published in Print: 2025-10-27

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (S)-N-(10-((2,2-dimethoxyethyl)amino)-1,2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydrobenzo[a]heptalen-7-yl)acetamide, C25H32N2O7
  4. The crystal structure of 6,6′-difluoro-3,3′-dimethyl-5,5′-di(10H-phenoxazin-10-yl)- [1,1′-biphenyl]-2,2′-dicarbonitrile, C40H24F2N4O2
  5. Crystal structure of poly[(di-ethylenediamine-κ2N,N′)cadmium(II) tetradedocyloxidohexavanadate] (V4+/V5+ = 2/1), C4H16CdN4O14V6
  6. The crystal structure of poly[bis(dimethylformamide-κ1N)-(μ4-2′,3,3″,5′-tetrakis(trifluoromethyl)-[1,1′:4′,1″-terphenyl]-4,4″-dicarboxylato-κ4 O,O′: O″,O‴)dicadmium(II)], C27H15CdF12NO5
  7. Crystal structure of bis(μ2-ferrocenylcarboxylato-O,O′)-(μ3-oxido-κ3O:O:O)-bis(μ2-salicyladoximato-κ2N,O,O′)-(μ2-isopropoxo)-tris(isopropoxy-κ1O trititanium(IV)), C48H55N2O13Fe2Ti3
  8. Crystal structure of 3-(diethylamino)-7,9,11-trimethyl-8-phenyl-6H,13H-12λ4,13λ4-chromeno[3′,4′:4,5]pyrrolo[1,2-c]pyrrolo[2,1-f][1,3,2]diazaborinin-6-one, C28H26BF2N3O2
  9. The crystal structure of catena-poly[aqua-μ2-2-nitro-benzene-1,3-dicarboxylato-κ2O,O′)-(1,10-phenanthroline-κ2N,N′)-zinc(II)], C20H13N3O7Zn
  10. Crystal structure of poly[diaqua-{μ3-1-(3-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ4O,O′:O′′:O′′′′}manganese(II)] hydrate
  11. Crystal structure of N′-((1-hydroxycyclohexyl)(phenyl)methyl)-2-methoxybenzohydrazide methanol solvate, C22H28N2O4
  12. The cocrystal of caffeic acid — progesterone — water (1/2/1), C51H70O9
  13. Crystal structure of (((oxido(quinolin-6-yl)methoxy)triphenyl-λ5-stibanyl)oxy)(quinolin-7-yl)methanolate
  14. Crystal structure of [(E)-6′-(diethylamino)-2-(2-(((E)-pyren-1-ylmethylene)amino)ethyl)-4′-(2-((E)-1,3,3-trimethylindolin-2-ylidene)ethylidene)-1′,2′,3′,4′-tetrahydrospiro[isoindoline-1,9′-xanthen]-3-one]-methanol, solvate C57H56N4O3
  15. The crystal structure of 1-(acridin-9-yl)pyrrolidine-2,5-dione, C17H22N2O2
  16. Crystal structure of N-(4-acetylphenyl)-2-(6-methoxynaphthalen-2-yl)propanamide, C22H21NO3
  17. The crystal structure of 5,10,15,20-tetrakis(4-(1H-1,2,4-triazol-1-yl)phenyl)porphyrin, C52H34N16
  18. Crystal structure of hexacarbonyl-μ2-[phenylmethanedithiolato-κ4S:S,S′:S′]diiron (Fe–Fe) C13H6Fe2O6S2
  19. Crystal structure of diiodo-bis(1-((2-propyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κ1N)cadmium(II), C34H34CdI2N10
  20. Crystal structure of (E)-(3-(3-bromophenyl)acryloyl)ferrocene, C19H15BrFeO
  21. Crystal structure of catena-poly(μ2-6-chloropyridine-2-carboxylato-κ3N,O:O′)(6-chloropyridine-2-carboxylato-κ2O,N)copper(II), C12H6Cl2N2O4Cu
  22. Crystal structure of poly[diaqua-μ 3-(5-(3,5-dicarboxy-2,4,6-trimethylbenzyl)-2,4,6-trimethylisophthalato)-κ 6O,O′:O″,O‴:O‴′,O‴″) terbium(III)-monohydrate], C23H28TbO12
  23. Crystal structure of (E)-2-(((5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene)amino)-3′,6′-dihydroxyspiro[isoindoline-1,9′-xanthen]-3-one – ethanol (1/2), C35H33ClN4O6
  24. The crystal structure of 3-(5-amino-3-phenylisoxazol-4-yl)-4-chloro-3-hydroxyindolin-2-one, C17H12ClN3O3
  25. The crystal structure of dimethylammonium 4-[2-(4-fluorophenyl)-4, 5-diphenyl-1H-imidazol-1-yl]benzenesulfonate, C29H26FN3O3S
  26. Crystal structure of (R)-2-ammonio-3-((5-carboxypentyl)thio)propanoate
  27. Crystal structure of 4-cyclohexyl-5-(thiophen-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione, C12H15N3S2
  28. The crystal structure of 4,6-bis(dimethylamino)-2-fluoroisophthalonitrile, C12H13FN4
  29. Hydrogen bonding in the crystal structure of nicotin-1,1′-dium tetrabromidomanganate(II)
  30. The crystal structure of bis(2-bromobenzyl)(2-((2-oxybenzylidene)amino)-4-methylpentanoato-κ3N, O,O′)tin(IV), C27H27Br2NO3Sn
  31. Crystal structure of (E)-(3-(p-tolyl)acryloyl)ferrocene, C20H18FeO
  32. Crystal structure of (E)-7-fluoro-2-((5-(4-methylpiperazin-1-yl)pyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C21H22FN3O
  33. Crystal structure of (E)-7-methoxy-2-((5-(4-methylpiperazin-1-yl)pyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C22H25N3O2
  34. The crystal structure of poly(bis(μ2-1,3,5-tri(1H-imidazol-1-yl)benzene-κ2N:N′)-(μ2-2,3,5,6-tetrafluoroterephthalato-κ2O:O′)-manganese(II), C38H24F4N12O4Mn
  35. Crystal structure of (3,4-dimethoxybenzyl)triphenylphosphonium bromide ethanol solvate, C29H32BrO3P
  36. Crystal structure of tetraethylammonium hydrogencarbonate – (diaminomethylene)thiourea – water (2/1/3)
  37. Crystal structure of N, N-Dimethyl-N′-tosylformimidamide, C10H14N2O2S
  38. The crystal structure of ethyl 2-methyl-5-oxo-4-(2-methoxyphenyl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C20H23N2O4
  39. Crystal structure of bis(μ2-1,5-bis[(E)-1-(2-hydroxyphenyl)ethylidene] thiocarbonohydrazide)-bis(dimethylformamide)-dizinc(II) dimethylformamide solvate, C40H46N10O6S2Zn2⋅C3H7NO
  40. Crystal structure of azido-κ1N{hydridotris(3-tert-butyl-5-methylpyrazol-1-yl)borato-κ3N,N′,N″}copper(II), C24H40BCuN9
  41. The crystal structure of fac-tricarbonyl(1,10-phenanthroline-κ2N,N′)-(azido-κ1N)rhenium(I), C15H8N5O3Re
  42. Crystal structure of 4-((triphenylphosphonio)methyl)pyridin-1-ium tetrachloridozincate(II), C24H22Cl4NPZn
Heruntergeladen am 26.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0208/html
Button zum nach oben scrollen