Startseite Naturwissenschaften The crystal structure of dimethylammonium 4-[2-(4-fluorophenyl)-4, 5-diphenyl-1H-imidazol-1-yl]benzenesulfonate, C29H26FN3O3S
Artikel Open Access

The crystal structure of dimethylammonium 4-[2-(4-fluorophenyl)-4, 5-diphenyl-1H-imidazol-1-yl]benzenesulfonate, C29H26FN3O3S

  • Qian Li und Chen Li ORCID logo EMAIL logo
Veröffentlicht/Copyright: 23. Juli 2025

Abstract

C29H26FN3O3S, monoclinic, P21/c (no. 14), a = 15.6550(2) Å, b = 7.9540(1) Å, c = 21.5331(3) Å, β = 108.033(2)°, V = 2549.59(6) Å3, Z = 4, R gt (F) = 0.0334, wR ref (F2) = 0.0875, T = 150 K.

CCDC no.: 2473249

The molecular structure is shown in the figure. Table 1 contains the crystallographic data and the list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Block
Size: 0.15 × 0.13 × 0.12 mm
Wavelength:

μ:
CuKα radiation (1.54184 Å)

1.49 mm−1
Diffractometer, scan mode:

θmax, completeness:
XtaLAB Synergy, ω scan

66.6°, 100 %
N(hkl)measured, N(hkl)unique, Rint: 31034, 4508, 0.041
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 4147
N(param)refined: 346
Programs: Rigaku, 1 , 2 SHELX, 3 Olex2 4 , 5

1 Source of materials

Synthesis of 4-[2-(4-fluorophenyl)-4,5-diphenyl-1H-imidazol-1-yl] benzenesulfonic (TPI–SO3H–2H). A mixture of sulfanilic acid (4.27 mmol, 0.741 g) and 3-fluorobenzaldehyde (3.57 mmol, 0.375 mL) in acetic acid (15 mL) was stirred at 120 °C for 2 h under the protection of nitrogen gas. After cooling to room temperature, benzil (3.57 mmol, 0.750 g) and ammonium acetate (35.7 mmol, 2.75 g) were added, and the mixture was further stirred under heating for 10 h. The crude product was further purified by column chromatography using dichloromethane-methanol (10:1, v/v) to afford the final product as a white solid with a yield of 80 %. 6 Synthesis of dimethylammonium 4-[2-(4-fluorophenyl)-4, 5-diphenyl-1H-imidazol-1-yl]benzenesulfonate: A mixture of TPI–SO3H–2H (0.04 g, 0.08 mmol), N,N′-dimethylformamide (DMF, 1 mL) and H2O (3 mL) was added to a 15 mL Teflon-lined reactor. The reaction was heated at 120 °C for 34 h. The resulting crystals were washed several times with water and dried under vacuum at room temperature for 4 h, yielding the product with a 70 % yield.

2 Experimental details

Diffraction data were collected with a Rigaku XtaLAB single crystal diffractometer using Cu–Kα radiation (λ = 1.54184 Å). 1 , 2 The structure was solved by Direct Methods and refined by the full-matrix least squares technique on F2 using the SHELXTL package. 3 Hydrogen atoms were generated geometrically. 4 , 5

3 Comment

1,2,4,5-Tetraphenylimidazole (TPI), a prototypical tetraarylimidazole derivative, adopts a highly twisted propeller-like conformation. There are four phenyl rings connected to a central imidazole core via substantial torsion angles, resulting in a non-planar geometry. These properties can effectively mitigate π-π stacking interactions in the aggregated state. The distortion is pivotal to the aggregation-induced emission (AIE) behavior, where in fluorescence intensity increases dramatically upon molecular aggregation. Recent research reports suggested that modifications of aryl rotors can significantly influence the AIE properties of tetraarylimidazole derivatives. 7 , 8 , 9 , 10 The title structure crystallizes in the monoclinic system with the P21/c space group, containing a TPI–SO3H–2H anion and one [Me2NH2]+ cation in an asymmetric unit. Specifically, [Me2NH2]+ and the SO3 group ligand form strong N–H⋯O (the distance range from 1.953 to 2.003 Å, and the angle range from 148.7° to 165.7°) hydrogen bonds, constructing a nonporous two-dimensional planar structure. These values were close to those reported for related compounds. All C–C and C–N bond lengths and angles are listed in the expected range. 10


Corresponding author: Chen Li, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China, E-mail:

Acknowledgments

This work was supported by the Foundation of Department of Education of Guangdong Province (2023KTSCX152).

References

1. Rigaku Oxford Diffraction: CrysAlisPRO; Rigaku Oxford Diffraction: Yarnton, England, 2015.Suche in Google Scholar

2. CrysAlisPRO. R. O. D.; Agilent Technologies: Santa Clara, CA, USA, 2017. Version.Suche in Google Scholar

3. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. C 2015, 71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. The Anatomy of a Comprehensive Constrained, Restrained Refinement Program for the Modern Computing environment–Olex2 Dissected. Acta Crystallogr. A 2015, 71, 59–75; https://doi.org/10.1107/s2053273314022207.Suche in Google Scholar

5. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. Olex2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

6. Zhou, W.-Q.; Ye, J.-W.; Zhang, W.-J.; Huang, M.-J.; Chen, L.; Chen, X.-M. Fluorescent Probes with Variable Intramolecular Charge Transfer: Constructing Closed–Circle Plots for Distinguishing D2O from H2O. Anal. Chem. 2023, 95, 8239–8249; https://doi.org/10.1021/acs.analchem.3c00157.Suche in Google Scholar PubMed

7. Zhao, Y.; Chen, P.; Li, G.; Niu, Z.; Wang, E. Tetraarylimidazole–Based Aggregation–Induced Emission Luminogens and their Cell–Imaging Application. Chin. J. Org. Chem. 2023, 43, 2156–2162; https://doi.org/10.6023/cjoc202210002.Suche in Google Scholar

8. Sharma, D. K.; Jayashree, A.; Narayana, B.; Sarojini, B. K.; Ravikumar, C.; Murugavel, S.; Anthal, S.; Kant, R. Crystal Structure and Molecular Docking Studies of 1,2,4,5-Tetraaryl Substituted Imidazoles. Heterocycl. Commun. 2018, 24, 205–210; https://doi.org/10.1515/hc-2017-0165.Suche in Google Scholar

9. Jayashree, A.; Narayana, B.; Uppine, G. B.; Ghate, V. M.; Lewis, S. A.; Prakash, B.; Kunhanna, S. B.; Kumar, M. S. ZnO Nanocatalyst Mediated Convergent Synthesis of Highly Substituted Imidazole and Imidazole–Derived Bi-heterocyclic Scaffolds as Potential Antibacterial Agents. J. Heterocycl. Chem. 2019, 56, 2398–2410; https://doi.org/10.1002/jhet.3627.Suche in Google Scholar

10. Sharma, G.; Anthal, S.; Jayashree, A.; Narayana, B.; Sarojini, B. K.; Kant, R. Synthesis and Crystal Structure Analysis of 4-(2-(4-Chlorophenyl)-4, 5-diphenyl-1H-imidazole-1-yl)-2,3-dimethyl-1-phenyl-1,2-dihydropyrazol-5-one. Rasayan J. Chem. 2019, 12, 773–779; https://doi.org/10.31788/rjc.2019.1225157.Suche in Google Scholar

Received: 2025-05-22
Accepted: 2025-07-16
Published Online: 2025-07-23
Published in Print: 2025-10-27

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (S)-N-(10-((2,2-dimethoxyethyl)amino)-1,2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydrobenzo[a]heptalen-7-yl)acetamide, C25H32N2O7
  4. The crystal structure of 6,6′-difluoro-3,3′-dimethyl-5,5′-di(10H-phenoxazin-10-yl)- [1,1′-biphenyl]-2,2′-dicarbonitrile, C40H24F2N4O2
  5. Crystal structure of poly[(di-ethylenediamine-κ2N,N′)cadmium(II) tetradedocyloxidohexavanadate] (V4+/V5+ = 2/1), C4H16CdN4O14V6
  6. The crystal structure of poly[bis(dimethylformamide-κ1N)-(μ4-2′,3,3″,5′-tetrakis(trifluoromethyl)-[1,1′:4′,1″-terphenyl]-4,4″-dicarboxylato-κ4 O,O′: O″,O‴)dicadmium(II)], C27H15CdF12NO5
  7. Crystal structure of bis(μ2-ferrocenylcarboxylato-O,O′)-(μ3-oxido-κ3O:O:O)-bis(μ2-salicyladoximato-κ2N,O,O′)-(μ2-isopropoxo)-tris(isopropoxy-κ1O trititanium(IV)), C48H55N2O13Fe2Ti3
  8. Crystal structure of 3-(diethylamino)-7,9,11-trimethyl-8-phenyl-6H,13H-12λ4,13λ4-chromeno[3′,4′:4,5]pyrrolo[1,2-c]pyrrolo[2,1-f][1,3,2]diazaborinin-6-one, C28H26BF2N3O2
  9. The crystal structure of catena-poly[aqua-μ2-2-nitro-benzene-1,3-dicarboxylato-κ2O,O′)-(1,10-phenanthroline-κ2N,N′)-zinc(II)], C20H13N3O7Zn
  10. Crystal structure of poly[diaqua-{μ3-1-(3-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ4O,O′:O′′:O′′′′}manganese(II)] hydrate
  11. Crystal structure of N′-((1-hydroxycyclohexyl)(phenyl)methyl)-2-methoxybenzohydrazide methanol solvate, C22H28N2O4
  12. The cocrystal of caffeic acid — progesterone — water (1/2/1), C51H70O9
  13. Crystal structure of (((oxido(quinolin-6-yl)methoxy)triphenyl-λ5-stibanyl)oxy)(quinolin-7-yl)methanolate
  14. Crystal structure of [(E)-6′-(diethylamino)-2-(2-(((E)-pyren-1-ylmethylene)amino)ethyl)-4′-(2-((E)-1,3,3-trimethylindolin-2-ylidene)ethylidene)-1′,2′,3′,4′-tetrahydrospiro[isoindoline-1,9′-xanthen]-3-one]-methanol, solvate C57H56N4O3
  15. The crystal structure of 1-(acridin-9-yl)pyrrolidine-2,5-dione, C17H22N2O2
  16. Crystal structure of N-(4-acetylphenyl)-2-(6-methoxynaphthalen-2-yl)propanamide, C22H21NO3
  17. The crystal structure of 5,10,15,20-tetrakis(4-(1H-1,2,4-triazol-1-yl)phenyl)porphyrin, C52H34N16
  18. Crystal structure of hexacarbonyl-μ2-[phenylmethanedithiolato-κ4S:S,S′:S′]diiron (Fe–Fe) C13H6Fe2O6S2
  19. Crystal structure of diiodo-bis(1-((2-propyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κ1N)cadmium(II), C34H34CdI2N10
  20. Crystal structure of (E)-(3-(3-bromophenyl)acryloyl)ferrocene, C19H15BrFeO
  21. Crystal structure of catena-poly(μ2-6-chloropyridine-2-carboxylato-κ3N,O:O′)(6-chloropyridine-2-carboxylato-κ2O,N)copper(II), C12H6Cl2N2O4Cu
  22. Crystal structure of poly[diaqua-μ 3-(5-(3,5-dicarboxy-2,4,6-trimethylbenzyl)-2,4,6-trimethylisophthalato)-κ 6O,O′:O″,O‴:O‴′,O‴″) terbium(III)-monohydrate], C23H28TbO12
  23. Crystal structure of (E)-2-(((5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene)amino)-3′,6′-dihydroxyspiro[isoindoline-1,9′-xanthen]-3-one – ethanol (1/2), C35H33ClN4O6
  24. The crystal structure of 3-(5-amino-3-phenylisoxazol-4-yl)-4-chloro-3-hydroxyindolin-2-one, C17H12ClN3O3
  25. The crystal structure of dimethylammonium 4-[2-(4-fluorophenyl)-4, 5-diphenyl-1H-imidazol-1-yl]benzenesulfonate, C29H26FN3O3S
  26. Crystal structure of (R)-2-ammonio-3-((5-carboxypentyl)thio)propanoate
  27. Crystal structure of 4-cyclohexyl-5-(thiophen-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione, C12H15N3S2
  28. The crystal structure of 4,6-bis(dimethylamino)-2-fluoroisophthalonitrile, C12H13FN4
  29. Hydrogen bonding in the crystal structure of nicotin-1,1′-dium tetrabromidomanganate(II)
  30. The crystal structure of bis(2-bromobenzyl)(2-((2-oxybenzylidene)amino)-4-methylpentanoato-κ3N, O,O′)tin(IV), C27H27Br2NO3Sn
  31. Crystal structure of (E)-(3-(p-tolyl)acryloyl)ferrocene, C20H18FeO
  32. Crystal structure of (E)-7-fluoro-2-((5-(4-methylpiperazin-1-yl)pyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C21H22FN3O
  33. Crystal structure of (E)-7-methoxy-2-((5-(4-methylpiperazin-1-yl)pyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C22H25N3O2
  34. The crystal structure of poly(bis(μ2-1,3,5-tri(1H-imidazol-1-yl)benzene-κ2N:N′)-(μ2-2,3,5,6-tetrafluoroterephthalato-κ2O:O′)-manganese(II), C38H24F4N12O4Mn
  35. Crystal structure of (3,4-dimethoxybenzyl)triphenylphosphonium bromide ethanol solvate, C29H32BrO3P
  36. Crystal structure of tetraethylammonium hydrogencarbonate – (diaminomethylene)thiourea – water (2/1/3)
  37. Crystal structure of N, N-Dimethyl-N′-tosylformimidamide, C10H14N2O2S
  38. The crystal structure of ethyl 2-methyl-5-oxo-4-(2-methoxyphenyl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C20H23N2O4
  39. Crystal structure of bis(μ2-1,5-bis[(E)-1-(2-hydroxyphenyl)ethylidene] thiocarbonohydrazide)-bis(dimethylformamide)-dizinc(II) dimethylformamide solvate, C40H46N10O6S2Zn2⋅C3H7NO
  40. Crystal structure of azido-κ1N{hydridotris(3-tert-butyl-5-methylpyrazol-1-yl)borato-κ3N,N′,N″}copper(II), C24H40BCuN9
  41. The crystal structure of fac-tricarbonyl(1,10-phenanthroline-κ2N,N′)-(azido-κ1N)rhenium(I), C15H8N5O3Re
  42. Crystal structure of 4-((triphenylphosphonio)methyl)pyridin-1-ium tetrachloridozincate(II), C24H22Cl4NPZn
Heruntergeladen am 26.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0241/html
Button zum nach oben scrollen