Home Crystal structure of (E)-(3-(3-bromophenyl)acryloyl)ferrocene, C19H15BrFeO
Article Open Access

Crystal structure of (E)-(3-(3-bromophenyl)acryloyl)ferrocene, C19H15BrFeO

  • Jingyin Yu , Xiaohua Li , Chanchan Liu , Dandan Cui and Hongjuan Tong ORCID logo EMAIL logo
Published/Copyright: June 27, 2025

Abstract

C19H15BrFeO, orthorhombic, P212121 (no. 19), a = 5.7615(2) Å, b = 10.5534(4) Å, c = 25.7793(10) Å, V = 1567.47(10) Å3, Z = 4, Rgt(F) = 0.0399 wRref(F2) = 0.0861, T = 170 K.

CCDC no.: 2445567

The molecular structure is shown in the figure. Table 1 contains the crystallographic data and the list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Red block
Size: 0.12 × 0.06 × 0.05 mm
Wavelength: MoKα radiation (0.71073 Å)
μ: 3.51 mm−1
Diffractometer, scan mode: Bruker Apex-II, φ and ω scans
θmax, completeness: 28.5°, 100 %
N(hkl)measured, N(hkl)unique, Rint: 12190, 3935, 0.072
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 3,006
N(param)refined: 199
Programs: Bruker, 1 Shelx, 2 , 3 Olex2 4

1 Source of materials

The 3-bromobenzaldehyde (3.68 g, 20.0 mmol), acetylferrocene (2.28 g, 10.0 mmol) and KOH (0.67 g, 12.0 mmol) were added to the mortar. After stirring well, the reaction mixture was ground for 20 min, until the TLC indicated the reaction was completed, then diluted with water and filtered. The solid was collected and washed with water, and dried overnight under vacuum. The crude product was further purified by flash silica chromatography to afford a single crystal of high quality. For crystal growth, the crude product was dissolved in a minimal amount of hot ethanol and slowly cooled to room temperature.

2 Experimental details

The crystal structure was solved via Direct Methods employing SHELXT, 2 followed by anisotropic refinement of non-hydrogen atoms using full-matrix least-squares calculations (SHELXL, 3 ) within the Olex2 platform. 4

3 Comment

The elucidation of crystal structures in ferrocene derivatives is pivotal for understanding their supramolecular organization, which governs bulk physicochemical properties such as charge transport, thermal stability, and solubility. 5 , 6 , 7 Precise crystallographic analysis reveals intermolecular interactions that dictate packing motifs, while also confirming regioselectivity and stereochemical fidelity in synthetic designs. 8 , 9 , 10

The molecular architecture of (E)-(3-(3-bromophenyl)acryloyl)ferrocene features a central ferrocene core comprising an iron atom (Fe1) coordinated symmetrically between two cyclopentadienyl (Cp) rings. The left Cp ring remains unsubstituted, preserving its planar aromatic character, 11 , 12 , 13 , 14 , 15 while the right Cp ring is functionalized with an acryloyl moiety extending into a propenoyl chain. This chain terminates at the C8 position of the acryloyl unit with a 3-bromophenyl substituent, introducing steric and electronic asymmetry. The acryloyl bridge adopts an E configuration at the C7=C8 double bond, as confirmed by the antiperiplanar arrangement of the carbonyl oxygen (O1) and the brominated phenyl group.

The stereochemical rigidity of the E-configured acryloyl group enforces a planar geometry across the conjugated system, facilitating electronic communication between the electron-withdrawing bromophenyl group and the electron-rich ferrocene core. The 3-bromophenyl substituent, positioned orthogonally to the Cp rings, introduces significant steric bulk, likely influencing π-π stacking interactions and solubility properties. 16 , 17 , 18 This structural duality (planar aromatic cores vs. flexible substituents) suggests tailored applications in catalysis or materials science, where tunable electronic and steric profiles are critical.

All geometric parameters are in the expected ranges for such complexes containing a halogenophenyl moiety. 11 , 14 , 19


Corresponding author: Hongjuan Tong, Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang, Shaanxi, China, E-mail:

  1. Research funding: This work was financially supported by the projects of Natural Science Foundation of Shannxi Province (2023-YBSF-009, 2024JC-YBMS-733), the Scientific research plan project of Shaanxi Provincial Department of Education (24JK0334), the 2023 research and development project of the Xianyang Science and Technology Bureau (L2023-ZDYF-SF-030), Key Laboratory of Molecular Imaging and Drug Synthesis of Xianyang city (2021QXNL-PT-0008), School-level Scientific and Technological Innovation Team for Design, Synthesis and Structural Modification of Drug Molecules (2024KCTD04).

References

1. Bruker. Saint, Apex2 and Sadabs; Bruker AXS Inc.: Madison, WI, USA, 2012.Search in Google Scholar

2. Sheldrick, G. M. Shelxt – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8.10.1107/S2053229614024218Search in Google Scholar PubMed PubMed Central

4. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H. Olex2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

5. Artigas, V.; González, D.; Fuentealba, M. Syntheses, Characterisation and Crystal Structures of Ferrocenyl β-diketones and Their Schiff Base NNO Ligand Derivatives with 2-Picolylamine. J. Mol. Struct. 2017, 1129, 325–332.10.1016/j.molstruc.2016.09.009Search in Google Scholar

6. Shi, Y.-C.; Yang, H.-M.; Shen, W.-B.; Yan, C.-G.; Hu, X.-Y. Syntheses and Crystal Structures of Ferrocene-Containing Enaminones and Their Copper Complexes. Polyhedron 2004, 23, 15–21; https://doi.org/10.1016/j.poly.2003.08.017.Search in Google Scholar

7. Celedon, S.; Fuentealba, M.; Roisnel, T.; Hamon, J.-R.; Carrillo, D.; Manzur, C. Stepwise Construction of a 4-hydroxyphenyl Functionalized O,N,N-Tridentate Ferrocene-Containing Enaminone: Spectral, Analytical and Structural Studies. Inorg. Chim. Acta 2012, 390, 184–189; https://doi.org/10.1016/j.ica.2012.04.028.Search in Google Scholar

8. Tang, W.; Gao, Y.; Tong, H.; Xu, X.; Zhu, Z.; Liu, B. Green Synthesis of Ferrocenyl Chalcones Against Triple Negative Breast Cancer. J. Organomet. Chem. 2023, 989, 122640; https://doi.org/10.1016/j.jorganchem.2023.122640.Search in Google Scholar

9. Delavaux-Nicot, B.; Maynadié, J.; Lavabre, D.; Lepetit, C.; Donnadieu, B. The First X-ray Characterized Monosubstituted Ferrocenyl Azacrown Chalcone: Focus on its Calcium Interaction/Electrochemical Detection Studies. Eur. J. Inorg. Chem. 2005, 2005, 2493–2505.10.1002/ejic.200400781Search in Google Scholar

10. Muškinja, J.; Burmudžija, A.; Ratković, Z.; Ranković, B.; Kosanić, M.; Bogdanović, G. A.; Novaković, S. B. Ferrocenyl Chalcones with O-alkylated Vanillins: Synthesis, Spectral Characterization, Microbiological Evaluation, and Single-Crystal X-ray Analysis. Med. Chem. Res. 2016, 25, 1744–1753; https://doi.org/10.1007/s00044-016-1609-8.Search in Google Scholar

11. Li, X.; Dang, X.; Yu, J.Liu, B. Crystal Structure of(4-(4-Chlorophenyl)-1H-Pyrrole-3-Carbonyl)Ferrocene, C21H16ClFeNO. Z. Kristallogr. N. Cryst. Struct. 2025, 240, 415–417; https://doi.org/10.1515/ncrs-2025-0034.Search in Google Scholar

12. Otano Vega, M. R.; Rivero, K. I.; Montes Gonzalez, I. (E)-1-Ferrocenyl-3-(2-Methoxyphenyl)Prop-2-en-1-one. Acta Crystallogr. Sect. E 2014, 70, m108–m109; https://doi.org/10.1107/s1600536814003912.Search in Google Scholar PubMed PubMed Central

13. Allison, M.; Caramés-Méndez, P.; Hofmann, B. J.; Pask, C. M.; Phillips, R. M.; Lord, R. M.; McGowan, P. C. Cytotoxicity of Ruthenium(II) Arene Complexes Containing Functionalized Ferrocenyl β-Diketonate Ligands. Organometallics 2023, 42, 1869–1881; https://doi.org/10.1021/acs.organomet.2c00553.Search in Google Scholar PubMed PubMed Central

14. Zhang, L.; Xie, M. The Crystal Structure of (E)-3-(2-Chlorophenyl)-1-Ferrocenylprop-2-en-1-one, C19H15ClFeO. Z. Kristallogr. N. Cryst. Struct. 2022, 237, 531–533; https://doi.org/10.1515/ncrs-2022-0042.Search in Google Scholar

15. Zhang, J.; Hu, X.; Liu, X.; He, Y. The Crystal Structure of (E)-1-Ferrocenyl-3-(4-Isopropylphenyl)Prop-2-en-1-one, C22H22FeO. Z. Kristallogr. N. Cryst. Struct. 2022, 237, 437–439; https://doi.org/10.1515/ncrs-2022-0063.Search in Google Scholar

16. Anizaim, A. H.; Zainuri, D. A.; Zaini, M. F.; Razak, I. A.; Bakhtiar, H.; Arshad, S. Comparative Analyses of New Donor-π-Acceptor Ferrocenyl-Chalcones Containing Fluoro and Methoxy-Fluoro Acceptor Units as Synthesized Dyes for Organic Solar Cell Material. PLoS One 2020, 15, e0241113; https://doi.org/10.1371/journal.pone.0241113.Search in Google Scholar PubMed PubMed Central

17. Allison, M.; Caramés-Méndez, P.; Pask, C. M.; Phillips, R. M.; Lord, R. M.; McGowan, P. C. Bis(Bipyridine)Ruthenium(II) Ferrocenyl β-Diketonate Complexes: Exhibiting Nanomolar Potency Against Human Cancer Cell Lines. Chem. – Eur. J. 2021, 27, 3737–3744.10.1002/chem.202004024Search in Google Scholar PubMed

18. Vázquez-Bravo, J.; Aguilar-Marcelino, L.; Castañeda-Ramírez, G. S.; De los Santos-Pérez, I.; Arroyo-Carmona, R. E.; Bernès, S.; Hernández-Pareja, U.; Gómez-Rodríguez, O.; Rosas-Saito, G. H.. J. Helminthol. 2020, 94, E190; https://doi.org/10.1017/S0022149X2000070X.Search in Google Scholar PubMed

19. Tang, W.; Gao, Y.; Xu, X.; Zhu, Z. Crystal Structure of((4-(4-Bromophenyl)-1H-Pyrrole-3-yl)Methyl)Ferrocene, C21H16BrFeNO. Z. Kristallogr. N. Cryst. Struct. 2025, 240, 447–449; https://doi.org/10.1515/ncrs-2025-0049.Search in Google Scholar

Received: 2025-05-16
Accepted: 2025-06-19
Published Online: 2025-06-27
Published in Print: 2025-10-27

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (S)-N-(10-((2,2-dimethoxyethyl)amino)-1,2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydrobenzo[a]heptalen-7-yl)acetamide, C25H32N2O7
  4. The crystal structure of 6,6′-difluoro-3,3′-dimethyl-5,5′-di(10H-phenoxazin-10-yl)- [1,1′-biphenyl]-2,2′-dicarbonitrile, C40H24F2N4O2
  5. Crystal structure of poly[(di-ethylenediamine-κ2N,N′)cadmium(II) tetradedocyloxidohexavanadate] (V4+/V5+ = 2/1), C4H16CdN4O14V6
  6. The crystal structure of poly[bis(dimethylformamide-κ1N)-(μ4-2′,3,3″,5′-tetrakis(trifluoromethyl)-[1,1′:4′,1″-terphenyl]-4,4″-dicarboxylato-κ4 O,O′: O″,O‴)dicadmium(II)], C27H15CdF12NO5
  7. Crystal structure of bis(μ2-ferrocenylcarboxylato-O,O′)-(μ3-oxido-κ3O:O:O)-bis(μ2-salicyladoximato-κ2N,O,O′)-(μ2-isopropoxo)-tris(isopropoxy-κ1O trititanium(IV)), C48H55N2O13Fe2Ti3
  8. Crystal structure of 3-(diethylamino)-7,9,11-trimethyl-8-phenyl-6H,13H-12λ4,13λ4-chromeno[3′,4′:4,5]pyrrolo[1,2-c]pyrrolo[2,1-f][1,3,2]diazaborinin-6-one, C28H26BF2N3O2
  9. The crystal structure of catena-poly[aqua-μ2-2-nitro-benzene-1,3-dicarboxylato-κ2O,O′)-(1,10-phenanthroline-κ2N,N′)-zinc(II)], C20H13N3O7Zn
  10. Crystal structure of poly[diaqua-{μ3-1-(3-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ4O,O′:O′′:O′′′′}manganese(II)] hydrate
  11. Crystal structure of N′-((1-hydroxycyclohexyl)(phenyl)methyl)-2-methoxybenzohydrazide methanol solvate, C22H28N2O4
  12. The cocrystal of caffeic acid — progesterone — water (1/2/1), C51H70O9
  13. Crystal structure of (((oxido(quinolin-6-yl)methoxy)triphenyl-λ5-stibanyl)oxy)(quinolin-7-yl)methanolate
  14. Crystal structure of [(E)-6′-(diethylamino)-2-(2-(((E)-pyren-1-ylmethylene)amino)ethyl)-4′-(2-((E)-1,3,3-trimethylindolin-2-ylidene)ethylidene)-1′,2′,3′,4′-tetrahydrospiro[isoindoline-1,9′-xanthen]-3-one]-methanol, solvate C57H56N4O3
  15. The crystal structure of 1-(acridin-9-yl)pyrrolidine-2,5-dione, C17H22N2O2
  16. Crystal structure of N-(4-acetylphenyl)-2-(6-methoxynaphthalen-2-yl)propanamide, C22H21NO3
  17. The crystal structure of 5,10,15,20-tetrakis(4-(1H-1,2,4-triazol-1-yl)phenyl)porphyrin, C52H34N16
  18. Crystal structure of hexacarbonyl-μ2-[phenylmethanedithiolato-κ4S:S,S′:S′]diiron (Fe–Fe) C13H6Fe2O6S2
  19. Crystal structure of diiodo-bis(1-((2-propyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κ1N)cadmium(II), C34H34CdI2N10
  20. Crystal structure of (E)-(3-(3-bromophenyl)acryloyl)ferrocene, C19H15BrFeO
  21. Crystal structure of catena-poly(μ2-6-chloropyridine-2-carboxylato-κ3N,O:O′)(6-chloropyridine-2-carboxylato-κ2O,N)copper(II), C12H6Cl2N2O4Cu
  22. Crystal structure of poly[diaqua-μ3-(5-(3,5-dicarboxy-2,4,6-trimethylbenzyl)-2,4,6-trimethylisophthalato)-κ6O,O′:O″,O‴:O‴′,O‴″) terbium(III)-monohydrate], C23H28TbO12
  23. Crystal structure of (E)-2-(((5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene)amino)-3′,6′-dihydroxyspiro[isoindoline-1,9′-xanthen]-3-one – ethanol (1/2), C35H33ClN4O6
  24. The crystal structure of 3-(5-amino-3-phenylisoxazol-4-yl)-4-chloro-3-hydroxyindolin-2-one, C17H12ClN3O3
  25. The crystal structure of dimethylammonium 4-[2-(4-fluorophenyl)-4, 5-diphenyl-1H-imidazol-1-yl]benzenesulfonate, C29H26FN3O3S
  26. Crystal structure of (R)-2-ammonio-3-((5-carboxypentyl)thio)propanoate
  27. Crystal structure of 4-cyclohexyl-5-(thiophen-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione, C12H15N3S2
  28. The crystal structure of 4,6-bis(dimethylamino)-2-fluoroisophthalonitrile, C12H13FN4
  29. Hydrogen bonding in the crystal structure of nicotin-1,1′-dium tetrabromidomanganate(II)
  30. The crystal structure of bis(2-bromobenzyl)(2-((2-oxybenzylidene)amino)-4-methylpentanoato-κ3N, O,O′)tin(IV), C27H27Br2NO3Sn
  31. Crystal structure of (E)-(3-(p-tolyl)acryloyl)ferrocene, C20H18FeO
  32. Crystal structure of (E)-7-fluoro-2-((5-(4-methylpiperazin-1-yl)pyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C21H22FN3O
  33. Crystal structure of (E)-7-methoxy-2-((5-(4-methylpiperazin-1-yl)pyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C22H25N3O2
  34. The crystal structure of poly(bis(μ2-1,3,5-tri(1H-imidazol-1-yl)benzene-κ2N:N′)-(μ2-2,3,5,6-tetrafluoroterephthalato-κ2O:O′)-manganese(II), C38H24F4N12O4Mn
  35. Crystal structure of (3,4-dimethoxybenzyl)triphenylphosphonium bromide ethanol solvate, C29H32BrO3P
  36. Crystal structure of tetraethylammonium hydrogencarbonate – (diaminomethylene)thiourea – water (2/1/3)
  37. Crystal structure of N, N-Dimethyl-N′-tosylformimidamide, C10H14N2O2S
  38. The crystal structure of ethyl 2-methyl-5-oxo-4-(2-methoxyphenyl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C20H23N2O4
  39. Crystal structure of bis(μ2-1,5-bis[(E)-1-(2-hydroxyphenyl)ethylidene] thiocarbonohydrazide)-bis(dimethylformamide)-dizinc(II) dimethylformamide solvate, C40H46N10O6S2Zn2⋅C3H7NO
  40. Crystal structure of azido-κ1N{hydridotris(3-tert-butyl-5-methylpyrazol-1-yl)borato-κ3N,N′,N″}copper(II), C24H40BCuN9
  41. The crystal structure of fac-tricarbonyl(1,10-phenanthroline-κ2N,N′)-(azido-κ1N)rhenium(I), C15H8N5O3Re
  42. Crystal structure of 4-((triphenylphosphonio)methyl)pyridin-1-ium tetrachloridozincate(II), C24H22Cl4NPZn
Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0232/html
Scroll to top button