Startseite Naturwissenschaften Crystal structure of N, N-Dimethyl-N′-tosylformimidamide, C10H14N2O2S
Artikel Open Access

Crystal structure of N, N-Dimethyl-N′-tosylformimidamide, C10H14N2O2S

Veröffentlicht/Copyright: 29. Juli 2025

Abstract

C10H14N2O2S, Triclinic, P1̄ (no. 2), a = 7.622(3) Å, b = 7.949(2) Å, c = 10.868(3) Å, α = 74.179(4)°, β = 78.292(4)°, γ = 62.651(4)°, V = 560.4(3) Å3, Z = 2, Rgt(F) = 0.0498, wRref(F2) = 0.1424, T = 293(2) K.

CCDC no.: 2457103

The molecular structure is shown in the figure. Table 1 contains the crystallographic data and the list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.05 × 0.05 × 0.04 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.27 mm−1
Diffractometer, scan mode: Bruker Apex2, φ and ω scans
θmax, completeness: 25.1°, 99 %
N(hkl)measured, N(hkl)unique, Rint: 3988, 1966, 0.036
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 1,446
N(param)refined: 139
Programs: Bruker, 1 Olex2, 2 Shelx 3

1 Source of materials

According to the synthesis method in refs. [4], [5], [6, NBS (196 mg, 1.1 mmol) and water (3.6 μL) were added to a solution of 4-methylbenzenesulfonamide (171 mg, 1.0 mmol) in DMF (2 mL). The resulting solution was stirred at 80 °C for 8 h. After completion of the reaction, the mixture was extracted with dichloromethane (3 × 10 mL) and the combined extracts were dried with anhydrous sodium sulfate. The solvent was removed under reduced pressure, then the pure product was purified by silica gel column chromatography to obtain the pure white solid. The colorless crystals of N, N-Dimethyl-N′-tosylformimidamide were obtained by slow evaporation of a dichloromethane solution at room temperature.

2 Experimental details

Hydrogen atoms were placed in their geometrically idealized positions and refined isotropically using a riding model. For all C(H) groups, Uiso(H) = 1.2 Ueq(C); for all C(H, H, H) groups, Uiso(H) = 1.5 Ueq(C). Idealised Me was refined as rotating group.

3 Comment

The synthesis of N-sulfonylamidines has attracted a great deal of attention due to their widespread applications in organic synthesis and biochemistry. 7 , 8 , 9 , 10 , 11 Due to their unique structural motifs, they exhibit a range of biological activities like antibacterial, antifungal, and anticancer properties, 12 , 13 and also play an important role in delaying Alzheimer’s disease. 14

The title structure crystallized in the triclinic P1̄ space group, with one molecule in the asymmetric unit. In the crystal structure, a methyl formate group and a sulfamidine group are connected to the same benzene ring with C(1)–C(2) and C(5)–S(1). The bond lengths of S(1)–C(5), S(1)–O(1), S(1)–O(2), and S(1)–N(1) are 1.750(3), 1.429(2), 1.437(2), 1.611(2) Å, respectively. The bond lengths of N(1)–C(8), N(2)–C(8), N(2)–C(10) and N(2)–C(9) are 1.297(4), 1.310(4), 1.450(4) and 1.447(4) Å, respectively. The bond angles of C(5)–S(1)–N(1), C(5)–S(1)–O(2), C(5)–S(1)–O(1), N(1)–S(1)–O(1), N(1)–S(1)–O(2) and O(1)–S(1)–O(2) are 103.42(13), 107.94(13), 108.57(14), 107.26(13), 112.12(13) and 116.69(13)°. The bond angles of N(1)–C(8)–N(2), C(8)–N(2)–C(9) and C(9)–N(2)–C(10) are 122.9(3), 122.2(3) and 117.1(3)°. All geometrical parameters are comparable with those of structural analogs that were found in the Cambridge Structural Database. 15


Corresponding author: Xue Lei, Department of Pharmacy, City University of Wuhan, Wuhan, Hubei 430083, China, E-mail:

Acknowledgments

We gratefully acknowledge support by Outstanding Young and Middle-aged Science and Technology Innovation Team Project for Colleges and Universities of Hubei Province, China (NO: T2023052).

References

1. BRUKER. Saint, Apex2 and Sadabs; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Suche in Google Scholar

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. Olex2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Sheldrick, G. M. A Short History of Shelx. Acta Cryst. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed

4. Niu, Z.; Lin, S.; Dong, Z.; Sun, H.; Liang, F.; Zhang, J. Otherwise Inert Reaction of Sulfonamides/Carboxamides with Formamides via Proton Transfer-Enhanced Reactivity. Org. Biomol. Chem. 2013, 11, 2460–2465; https://doi.org/10.1039/c3ob27351b.Suche in Google Scholar PubMed

5. Gazvoda, M.; Marijan, K.; Polanc, S. In Situ Formation of Vilsmeier Reagents Mediated by Oxalyl Chloride: A Tool for the Selective Synthesis of N-Sulfonylformamidines. Eur. J. Org Chem. 2013, 24, 5381–5386.10.1002/ejoc.201300402Suche in Google Scholar

6. Chandna, N.; Chandak, N.; Kumar, P.; Kapoor, J. K.; Sharma, P. K. Metal- and Solvent-Free Synthesis of N-Sulfonylformamidines. Green Chem. 2013, 15, 2294–2301; https://doi.org/10.1039/c3gc40797g.Suche in Google Scholar

7. Yang, Y.; Bai, J.; Shen, R.; Brown, S. A. N.; Komissarova, E.; Huang, Y.; Jiang, N.; Alberts, G. F.; Costa, M.; Lu, L.; Winkles, J. A.; Dai, W. Polo-Like Kinase 3 Functions as a Tumor Suppressor and Is a Negative Regulator of Hypoxia-Inducible Factor-1α Under Hypoxic Conditions. Cancer Res. 2008, 68, 4077–4085; https://doi.org/10.1158/0008-5472.can-07-6182.Suche in Google Scholar

8. Stachulski, A. V.; Meng, X. L. Glucuronides from Metabolites to Medicines: A Survey of the in Vivo Generation, Chemical Synthesis and Properties of Glucuronides. Nat. Prod. Rep. 2013, 30, 806–848; https://doi.org/10.1039/c3np70003h.Suche in Google Scholar PubMed

9. Ethell, B. T.; Riedel, J.; Englert, H.; Jantz, H.; Oekonomopulos, R.; Burchell, B. Glucuronidation of HMR1098 in Human Microsomes: Evidence for the Involvement of UGT1A1 in the Formation of S-Glucuronides. Drug Metab. Dispos. 2003, 31, 1027–1034; https://doi.org/10.1124/dmd.31.8.1027.Suche in Google Scholar PubMed

10. Bekhit, A. A.; Ashour, H. M. A.; Ghany, Y. S. A.; Bekhit, A. E. A.; Baraka, A. Synthesis and Biological Evaluation of Some Thiazolyl and Thiadiazolyl Derivatives of 1H-pyrazole as Anti-Inflammatory Antimicrobial Agents. Eur. J. Med. Chem. 2008, 43, 456–463; https://doi.org/10.1016/j.ejmech.2007.03.030.Suche in Google Scholar PubMed

11. Goubet, A.; Chardon, A.; Kumar, P.; Pawan, K.; Rakesh, S. Synthesis of DNA Oligonucleotides Containing C5-Ethynylbenzenesulfon Amide-Modified Nucleotides (EBNA) by Polymerases Towards the Construction of Base Functionalized Nucleic Acids. Bioorg. Med. Chem. Lett. 2013, 23, 761–763; https://doi.org/10.1016/j.bmcl.2012.11.096.Suche in Google Scholar PubMed

12. Stolic, I.; Paljetak, H.; Peric, M.; Matijasic, M.; Stepanic, V.; Verbanac, D.; Bajic, M. Synthesis and Structure-Activity Relationship of Amidine Derivatives of 3,4-Ethylenedioxythiophene as Novel Antibacterial Agents. Eur. J. Med. Chem. 2015, 90, 68–81; https://doi.org/10.1016/j.ejmech.2014.11.003.Suche in Google Scholar PubMed

13. Wang, M.; Liu, Y.; Chang, L.; Kuo-Hsiung, L.; Zhao, Y. L.; Zhao, X. B.; Qian, K.; Nan, X.; Yang, L.; Yang, X. M.; Hung, H. Y.; Yang, J. S.; Kuo, D. H.; Goto, M.; Morris-Natschke, S. L.; Pan, S. L.; Teng, C. M.; Kuo, S. C.; Wu, T. S.; Wu, Y. C.; Lee, K. H. Design, Synthesis, Mechanisms of Action, and Toxicity of Novel 20(S)-Sulfonylamidine Derivatives of Camptothecin as Potent Antitumor Agents. J. Med. Chem. 2014, 57, 6008–6018; https://doi.org/10.1021/jm5003588.Suche in Google Scholar PubMed PubMed Central

14. Scott, J. D.; Li, S. W.; Brunskill, A. P. J.; Chen, X.; Cox, K.; Cumming, J. N.; Forman, M.; Gilbert, E. J.; Hodgson, R. A.; Hyde, L. A.; Jiang, Q.; Iserloh, U.; Kazakevich, I.; Kuvelkar, R.; Mei, H.; Meredith, J.; Misiaszek, J.; Orth, P.; Rossiter, L. M.; Slater, M.; Stone, J.; Strickland, C. O.; Voigt, J. H.; Wang, G.; Wang, H.; Wu, Y.; Greenlee, W. J.; Parker, E. M.; Kennedy, M. E.; Stamford, A. W. Discovery of the 3-Imino-1,2,4-thiadiazinane 1,1-Dioxide Derivative Verubecestat (MK-8931)–A β-Site Amyloid Precursor Protein Cleaving Enzyme 1 Inhibitor for the Treatment of Alzheimer’s Disease. J. Med. Chem. 2016, 59, 10435–10450; https://doi.org/10.1021/acs.jmedchem.6b00307.Suche in Google Scholar PubMed

15. Guo, C.-X.; Yogendra, S.; Gomila, R. M.; Frontera, A.; Hennersdorf, F.; Steup, J.; Schwedtmann, K.; Weigand, J. J. A Convenient Access to Fluorophosphonium Triflate Salts by Electrophilic Fluorination and Anion Exchange. Inorg. Chem. Front. 2021, 8, 2854–2864; https://doi.org/10.1039/D1QI00322D.Suche in Google Scholar

Received: 2025-06-16
Accepted: 2025-07-21
Published Online: 2025-07-29
Published in Print: 2025-10-27

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (S)-N-(10-((2,2-dimethoxyethyl)amino)-1,2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydrobenzo[a]heptalen-7-yl)acetamide, C25H32N2O7
  4. The crystal structure of 6,6′-difluoro-3,3′-dimethyl-5,5′-di(10H-phenoxazin-10-yl)- [1,1′-biphenyl]-2,2′-dicarbonitrile, C40H24F2N4O2
  5. Crystal structure of poly[(di-ethylenediamine-κ2N,N′)cadmium(II) tetradedocyloxidohexavanadate] (V4+/V5+ = 2/1), C4H16CdN4O14V6
  6. The crystal structure of poly[bis(dimethylformamide-κ1N)-(μ4-2′,3,3″,5′-tetrakis(trifluoromethyl)-[1,1′:4′,1″-terphenyl]-4,4″-dicarboxylato-κ4 O,O′: O″,O‴)dicadmium(II)], C27H15CdF12NO5
  7. Crystal structure of bis(μ2-ferrocenylcarboxylato-O,O′)-(μ3-oxido-κ3O:O:O)-bis(μ2-salicyladoximato-κ2N,O,O′)-(μ2-isopropoxo)-tris(isopropoxy-κ1O trititanium(IV)), C48H55N2O13Fe2Ti3
  8. Crystal structure of 3-(diethylamino)-7,9,11-trimethyl-8-phenyl-6H,13H-12λ4,13λ4-chromeno[3′,4′:4,5]pyrrolo[1,2-c]pyrrolo[2,1-f][1,3,2]diazaborinin-6-one, C28H26BF2N3O2
  9. The crystal structure of catena-poly[aqua-μ2-2-nitro-benzene-1,3-dicarboxylato-κ2O,O′)-(1,10-phenanthroline-κ2N,N′)-zinc(II)], C20H13N3O7Zn
  10. Crystal structure of poly[diaqua-{μ3-1-(3-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ4O,O′:O′′:O′′′′}manganese(II)] hydrate
  11. Crystal structure of N′-((1-hydroxycyclohexyl)(phenyl)methyl)-2-methoxybenzohydrazide methanol solvate, C22H28N2O4
  12. The cocrystal of caffeic acid — progesterone — water (1/2/1), C51H70O9
  13. Crystal structure of (((oxido(quinolin-6-yl)methoxy)triphenyl-λ5-stibanyl)oxy)(quinolin-7-yl)methanolate
  14. Crystal structure of [(E)-6′-(diethylamino)-2-(2-(((E)-pyren-1-ylmethylene)amino)ethyl)-4′-(2-((E)-1,3,3-trimethylindolin-2-ylidene)ethylidene)-1′,2′,3′,4′-tetrahydrospiro[isoindoline-1,9′-xanthen]-3-one]-methanol, solvate C57H56N4O3
  15. The crystal structure of 1-(acridin-9-yl)pyrrolidine-2,5-dione, C17H22N2O2
  16. Crystal structure of N-(4-acetylphenyl)-2-(6-methoxynaphthalen-2-yl)propanamide, C22H21NO3
  17. The crystal structure of 5,10,15,20-tetrakis(4-(1H-1,2,4-triazol-1-yl)phenyl)porphyrin, C52H34N16
  18. Crystal structure of hexacarbonyl-μ2-[phenylmethanedithiolato-κ4S:S,S′:S′]diiron (Fe–Fe) C13H6Fe2O6S2
  19. Crystal structure of diiodo-bis(1-((2-propyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κ1N)cadmium(II), C34H34CdI2N10
  20. Crystal structure of (E)-(3-(3-bromophenyl)acryloyl)ferrocene, C19H15BrFeO
  21. Crystal structure of catena-poly(μ2-6-chloropyridine-2-carboxylato-κ3N,O:O′)(6-chloropyridine-2-carboxylato-κ2O,N)copper(II), C12H6Cl2N2O4Cu
  22. Crystal structure of poly[diaqua-μ 3-(5-(3,5-dicarboxy-2,4,6-trimethylbenzyl)-2,4,6-trimethylisophthalato)-κ 6O,O′:O″,O‴:O‴′,O‴″) terbium(III)-monohydrate], C23H28TbO12
  23. Crystal structure of (E)-2-(((5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene)amino)-3′,6′-dihydroxyspiro[isoindoline-1,9′-xanthen]-3-one – ethanol (1/2), C35H33ClN4O6
  24. The crystal structure of 3-(5-amino-3-phenylisoxazol-4-yl)-4-chloro-3-hydroxyindolin-2-one, C17H12ClN3O3
  25. The crystal structure of dimethylammonium 4-[2-(4-fluorophenyl)-4, 5-diphenyl-1H-imidazol-1-yl]benzenesulfonate, C29H26FN3O3S
  26. Crystal structure of (R)-2-ammonio-3-((5-carboxypentyl)thio)propanoate
  27. Crystal structure of 4-cyclohexyl-5-(thiophen-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione, C12H15N3S2
  28. The crystal structure of 4,6-bis(dimethylamino)-2-fluoroisophthalonitrile, C12H13FN4
  29. Hydrogen bonding in the crystal structure of nicotin-1,1′-dium tetrabromidomanganate(II)
  30. The crystal structure of bis(2-bromobenzyl)(2-((2-oxybenzylidene)amino)-4-methylpentanoato-κ3N, O,O′)tin(IV), C27H27Br2NO3Sn
  31. Crystal structure of (E)-(3-(p-tolyl)acryloyl)ferrocene, C20H18FeO
  32. Crystal structure of (E)-7-fluoro-2-((5-(4-methylpiperazin-1-yl)pyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C21H22FN3O
  33. Crystal structure of (E)-7-methoxy-2-((5-(4-methylpiperazin-1-yl)pyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C22H25N3O2
  34. The crystal structure of poly(bis(μ2-1,3,5-tri(1H-imidazol-1-yl)benzene-κ2N:N′)-(μ2-2,3,5,6-tetrafluoroterephthalato-κ2O:O′)-manganese(II), C38H24F4N12O4Mn
  35. Crystal structure of (3,4-dimethoxybenzyl)triphenylphosphonium bromide ethanol solvate, C29H32BrO3P
  36. Crystal structure of tetraethylammonium hydrogencarbonate – (diaminomethylene)thiourea – water (2/1/3)
  37. Crystal structure of N, N-Dimethyl-N′-tosylformimidamide, C10H14N2O2S
  38. The crystal structure of ethyl 2-methyl-5-oxo-4-(2-methoxyphenyl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C20H23N2O4
  39. Crystal structure of bis(μ2-1,5-bis[(E)-1-(2-hydroxyphenyl)ethylidene] thiocarbonohydrazide)-bis(dimethylformamide)-dizinc(II) dimethylformamide solvate, C40H46N10O6S2Zn2⋅C3H7NO
  40. Crystal structure of azido-κ1N{hydridotris(3-tert-butyl-5-methylpyrazol-1-yl)borato-κ3N,N′,N″}copper(II), C24H40BCuN9
  41. The crystal structure of fac-tricarbonyl(1,10-phenanthroline-κ2N,N′)-(azido-κ1N)rhenium(I), C15H8N5O3Re
  42. Crystal structure of 4-((triphenylphosphonio)methyl)pyridin-1-ium tetrachloridozincate(II), C24H22Cl4NPZn
Heruntergeladen am 26.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0277/html
Button zum nach oben scrollen