Startseite Naturwissenschaften The crystal structure of 5,10,15,20-tetrakis(4-(1H-1,2,4-triazol-1-yl)phenyl)porphyrin, C52H34N16
Artikel Open Access

The crystal structure of 5,10,15,20-tetrakis(4-(1H-1,2,4-triazol-1-yl)phenyl)porphyrin, C52H34N16

  • Ren-Yun Kuang , Da-Wei Wang , Yi-Dong Wang , Qiu-Yan Luo und Jin-Hua Cai ORCID logo EMAIL logo
Veröffentlicht/Copyright: 24. Juni 2025

Abstract

C52H34N16, monoclinic, P21/n, a = 9.3698(9) Å, b = 10.4687(9) Å, c = 22.1994(16) Å, β = 99.317(9)°, V = 2148.8(3) Å3, Z = 2, R gt (F) = 0.0851, wR ref (F 2 ) = 0.1540, T = 293(2) K.

CCDC no.: 2445400

The molecular structure is shown in the figure. Table 1 contains the crystallographic data and the list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Purple block
Size: 0.20 × 0.16 × 0.12 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.09 mm−1
Diffractometer, scan mode: Rigaku XtaLAB Synergy, ω scans
θmax, completeness: 29.3°, 100 %
N(hkl)measured, N(hkl)unique, Rint: 18650, 5909, 0.077
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 2,847
N(param)refined: 371
Programs: Bruker, 1 Olex2, 2 SHELX 3

1 Source of materials

A solution of 4-(1H-1,2,4-triazol-1-yl)benzaldehyde (4.00 g, 46.2 mmol) in 90 mL propionic acid was charged into a 200 mL three-necked flask equipped with mechanical stirring and heated to reflux. Separately, freshly distilled pyrrole (3.05 g, 46.2 mmol) dissolved in 20 mL propionic acid was transferred to a constant-pressure dropping funnel. When the oil bath temperature stabilized at 130 °C, the pyrrole solution was added dropwise over 20 min, during which the reaction mixture gradually darkened to a brownish-black color. The stirring rate was subsequently increased to vigorous agitation, and the reaction was continued for an additional 40 min under these conditions. After cooling to 80 °C with maintained stirring, 100 mL of anhydrous ethanol was carefully introduced. The mixture was stored refrigerated overnight, followed by vacuum filtration to afford 0.92 g of a purplish-black solid. Dissolve the dried crude porphyrin product in chloroform, then transfer it to a silica gel-packed chromatography column. Elute using a mixture of chloroform and petroleum ether in a 15:1 volume ratio (v/v) as the eluent. Collect the first colored band to obtain the corresponding pure porphyrin compound. Crystals were grown by slow vapor diffusion of n-hexane into a toluene solution of the target porphyrin product at ambient temperature under sealed conditions. 1H-NMR (CDCl3, ppm): C2.78 (s, 2H), 8.09 C8.16 (d, 8H), 8.35 C8.40 (d, 8H), 8.87–8.98 (d, 16H).

2 Experimental details

A suitable crystal was selected and mounted on the diffractometer and the data was collected. The structure was solved with the ShelXT 4 structure solution program and refined with the XL 5 refinement package. A aromatic/amide H refined with riding coordinates: N1(H1).

3 Comment

As a quintessential macrocyclic system, porphyrin-based materials have evolved over decades into an interdisciplinary theoretical framework through systematic structure-property engineering. Their groundbreaking applications spanning biomedical fields, electronic materials engineering, catalytic science, and functional assembly systems have been propelling the innovation of molecular design strategies. Precise modulation of their physicochemical properties and bioactivities is achievable through three-dimensional structural editing: (1) peripheral substituent functionalization, (2) topological engineering of meso-substituents, and (3) metal-ligand coordination at the macrocyclic core. Particularly, meso-symmetrically substituted porphyrins exhibit unparalleled supramolecular assembly capabilities derived from their square-planar molecular symmetry (D4h point group) and self-complementary hydrogen bonding – interactions, establishing them as a paradigm in supramolecular material systems. 6 , 7 , 8

The molecular asymmetric unit contains one half of a porphyrin (see the figure). The aromatic pyrrole rings are interconnected via a meso-methylidyne bridge at their -positions, with para-substituted phenyl rings bearing 1,2,4-triazole groups attached to the meso-carbon bridge. The porphyrin core comprises 24 principal atoms. Where the N(1) and N(2) atoms collectively form an N4 coordination core. While the core adopts a nearly planar geometry, it exhibits slight distortion. The deviation from planarity likely arises from steric crowding caused by adjacent phenyl rings, hydrogen atoms on the pyrrole rings, and other spatially proximate interactions. The average C–N bond length in the molecule was determined to be 1.33 Å and 0.3 Å, while the C–C bond lengths measured 1.37 Å and 1.38 Å. These values exhibit close agreement with reported bond parameters for porphyrin-based systems, 9 , 10 , 11 , 12 indicating that the 1,2,4-triazole substitution induces negligible electronic perturbation to the porphyrin core. The phenyl and triazole rings are not in the same plane. The dihedral angle between benzene ring A (C(5), C(6), C(7), C(8), C(9), C(10)) and the triazole rings is 132.38°, while 16.74° between benzene ring B (C(19), C(20), C(21), C(22), C(23), C(24)) and the triazole rings.


Corresponding author: Jin-Hua Cai, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, P.R. China, E-mail:

Acknowledgments

The authors gratefully acknowledge support from the project of Ji’an City Key Technology Plan Project (20233–117677).

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku Oxford Diffraction. CrysAlisPRO; Rigaku Oxford Diffraction: Yarnton, England, 2015.Suche in Google Scholar

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. The Anatomy of a Comprehensive Constrained, Restrained Refinement Program for the Modern Computing Environment – Olex2 Dissected. Acta Crystallogr. 2015, A71, 59–75. https://doi.org/10.1107/s2053273314022207.Suche in Google Scholar

4. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

5. Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. 2008, A64, 112–122. https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar PubMed

6. Ishihara, S.; Hill, J. P.; Shundo, A.; Richards, G. J.; Labuta, J.; Ohkubo, K.; Fukuzumi, S.; Sato, A.; Elsegood, M. R. J.; Teat, S. J.; Ariga, K. Reversible Photoredox Switching of Porphyrin-Bridged Bis-2,6-Di-Tert-Butylphenols. J. Am. Chem. Soc. 2011, 133 (40), 16119–16126. https://doi.org/10.1021/ja2056165.Suche in Google Scholar PubMed

7. Stefak, R.; Ratel-Ramond, N.; Rapenne, G. Synthesis and Electrochemical Characteristics of a Donor-Acceptor Porphyrinate Rotor Mounted on a Naphthalocyaninato Europium Complex. Inorg. Chim. Acta. 2012, 380, 181–186. https://doi.org/10.1016/j.ica.2011.10.051.Suche in Google Scholar

8. Bondon, A.; Leroy, J. β-Fluorinated Porphyrins and Related Compounds: An Overview. Eur. J. Org Chem. 2008, 3, 417–433. https://doi.org/10.1002/ejoc.200700734.Suche in Google Scholar

9. Huang, N.; Yuan, S.; Drake, H.; Yang, X. Y.; Pang, J. D.; Qin, J. S.; Li, J. L.; Zhang, Y. M.; Wang, Q.; Jiang, D. L.; Zhou, H. C. Systematic Engineering of Single Substitution in Zirconium Metal-Organic Frameworks Toward High-Performance Catalysis. J. Am. Chem. Soc. 2017, 139, 18590–18597. https://doi.org/10.1021/jacs.7b09553.Suche in Google Scholar PubMed

10. Yang, L. X.; Li, H. L.; Liu, D.; Su, H. F.; Wang, K.; Liu, G. Y.; Luo, X. G.; Wu, F. S. Organic Small Molecular Nanoparticles Based on Self-Assembly of Amphiphilic Fluoroporphyrins for Photodynamic and Photothermal Synergistic Cancer Therapy. Colloids Surf. B 2019, 182, 110345. https://doi.org/10.1016/j.colsurfb.2019.110345.Suche in Google Scholar PubMed

11. Zhang, D. W.; Chen, W. T. Two Novel TCPP Porphyrinic Compounds: In Situ Synthese, Characterization and Reaction Mechanism. J. Chil. Chem. Soc. 2017, 62, 3381–3385. https://doi.org/10.4067/s0717-97072017000100015.Suche in Google Scholar

12. Dar, U. A.; Shah, S. A. Exploring Crystal Structure of 5,10,15,20-Tetrakis (4-Iodophenyl) Porphyrin; H2TIPP: Experimental and Theoretical Investigations. J. Mol. Struct. 2021, 1240, 130601. https://doi.org/10.1016/j.molstruc.2021.130601.Suche in Google Scholar

Received: 2025-05-13
Accepted: 2025-06-19
Published Online: 2025-06-24
Published in Print: 2025-10-27

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (S)-N-(10-((2,2-dimethoxyethyl)amino)-1,2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydrobenzo[a]heptalen-7-yl)acetamide, C25H32N2O7
  4. The crystal structure of 6,6′-difluoro-3,3′-dimethyl-5,5′-di(10H-phenoxazin-10-yl)- [1,1′-biphenyl]-2,2′-dicarbonitrile, C40H24F2N4O2
  5. Crystal structure of poly[(di-ethylenediamine-κ2N,N′)cadmium(II) tetradedocyloxidohexavanadate] (V4+/V5+ = 2/1), C4H16CdN4O14V6
  6. The crystal structure of poly[bis(dimethylformamide-κ1N)-(μ4-2′,3,3″,5′-tetrakis(trifluoromethyl)-[1,1′:4′,1″-terphenyl]-4,4″-dicarboxylato-κ4 O,O′: O″,O‴)dicadmium(II)], C27H15CdF12NO5
  7. Crystal structure of bis(μ2-ferrocenylcarboxylato-O,O′)-(μ3-oxido-κ3O:O:O)-bis(μ2-salicyladoximato-κ2N,O,O′)-(μ2-isopropoxo)-tris(isopropoxy-κ1O trititanium(IV)), C48H55N2O13Fe2Ti3
  8. Crystal structure of 3-(diethylamino)-7,9,11-trimethyl-8-phenyl-6H,13H-12λ4,13λ4-chromeno[3′,4′:4,5]pyrrolo[1,2-c]pyrrolo[2,1-f][1,3,2]diazaborinin-6-one, C28H26BF2N3O2
  9. The crystal structure of catena-poly[aqua-μ2-2-nitro-benzene-1,3-dicarboxylato-κ2O,O′)-(1,10-phenanthroline-κ2N,N′)-zinc(II)], C20H13N3O7Zn
  10. Crystal structure of poly[diaqua-{μ3-1-(3-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ4O,O′:O′′:O′′′′}manganese(II)] hydrate
  11. Crystal structure of N′-((1-hydroxycyclohexyl)(phenyl)methyl)-2-methoxybenzohydrazide methanol solvate, C22H28N2O4
  12. The cocrystal of caffeic acid — progesterone — water (1/2/1), C51H70O9
  13. Crystal structure of (((oxido(quinolin-6-yl)methoxy)triphenyl-λ5-stibanyl)oxy)(quinolin-7-yl)methanolate
  14. Crystal structure of [(E)-6′-(diethylamino)-2-(2-(((E)-pyren-1-ylmethylene)amino)ethyl)-4′-(2-((E)-1,3,3-trimethylindolin-2-ylidene)ethylidene)-1′,2′,3′,4′-tetrahydrospiro[isoindoline-1,9′-xanthen]-3-one]-methanol, solvate C57H56N4O3
  15. The crystal structure of 1-(acridin-9-yl)pyrrolidine-2,5-dione, C17H22N2O2
  16. Crystal structure of N-(4-acetylphenyl)-2-(6-methoxynaphthalen-2-yl)propanamide, C22H21NO3
  17. The crystal structure of 5,10,15,20-tetrakis(4-(1H-1,2,4-triazol-1-yl)phenyl)porphyrin, C52H34N16
  18. Crystal structure of hexacarbonyl-μ2-[phenylmethanedithiolato-κ4S:S,S′:S′]diiron (Fe–Fe) C13H6Fe2O6S2
  19. Crystal structure of diiodo-bis(1-((2-propyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κ1N)cadmium(II), C34H34CdI2N10
  20. Crystal structure of (E)-(3-(3-bromophenyl)acryloyl)ferrocene, C19H15BrFeO
  21. Crystal structure of catena-poly(μ2-6-chloropyridine-2-carboxylato-κ3N,O:O′)(6-chloropyridine-2-carboxylato-κ2O,N)copper(II), C12H6Cl2N2O4Cu
  22. Crystal structure of poly[diaqua-μ 3-(5-(3,5-dicarboxy-2,4,6-trimethylbenzyl)-2,4,6-trimethylisophthalato)-κ 6O,O′:O″,O‴:O‴′,O‴″) terbium(III)-monohydrate], C23H28TbO12
  23. Crystal structure of (E)-2-(((5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene)amino)-3′,6′-dihydroxyspiro[isoindoline-1,9′-xanthen]-3-one – ethanol (1/2), C35H33ClN4O6
  24. The crystal structure of 3-(5-amino-3-phenylisoxazol-4-yl)-4-chloro-3-hydroxyindolin-2-one, C17H12ClN3O3
  25. The crystal structure of dimethylammonium 4-[2-(4-fluorophenyl)-4, 5-diphenyl-1H-imidazol-1-yl]benzenesulfonate, C29H26FN3O3S
  26. Crystal structure of (R)-2-ammonio-3-((5-carboxypentyl)thio)propanoate
  27. Crystal structure of 4-cyclohexyl-5-(thiophen-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione, C12H15N3S2
  28. The crystal structure of 4,6-bis(dimethylamino)-2-fluoroisophthalonitrile, C12H13FN4
  29. Hydrogen bonding in the crystal structure of nicotin-1,1′-dium tetrabromidomanganate(II)
  30. The crystal structure of bis(2-bromobenzyl)(2-((2-oxybenzylidene)amino)-4-methylpentanoato-κ3N, O,O′)tin(IV), C27H27Br2NO3Sn
  31. Crystal structure of (E)-(3-(p-tolyl)acryloyl)ferrocene, C20H18FeO
  32. Crystal structure of (E)-7-fluoro-2-((5-(4-methylpiperazin-1-yl)pyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C21H22FN3O
  33. Crystal structure of (E)-7-methoxy-2-((5-(4-methylpiperazin-1-yl)pyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C22H25N3O2
  34. The crystal structure of poly(bis(μ2-1,3,5-tri(1H-imidazol-1-yl)benzene-κ2N:N′)-(μ2-2,3,5,6-tetrafluoroterephthalato-κ2O:O′)-manganese(II), C38H24F4N12O4Mn
  35. Crystal structure of (3,4-dimethoxybenzyl)triphenylphosphonium bromide ethanol solvate, C29H32BrO3P
  36. Crystal structure of tetraethylammonium hydrogencarbonate – (diaminomethylene)thiourea – water (2/1/3)
  37. Crystal structure of N, N-Dimethyl-N′-tosylformimidamide, C10H14N2O2S
  38. The crystal structure of ethyl 2-methyl-5-oxo-4-(2-methoxyphenyl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C20H23N2O4
  39. Crystal structure of bis(μ2-1,5-bis[(E)-1-(2-hydroxyphenyl)ethylidene] thiocarbonohydrazide)-bis(dimethylformamide)-dizinc(II) dimethylformamide solvate, C40H46N10O6S2Zn2⋅C3H7NO
  40. Crystal structure of azido-κ1N{hydridotris(3-tert-butyl-5-methylpyrazol-1-yl)borato-κ3N,N′,N″}copper(II), C24H40BCuN9
  41. The crystal structure of fac-tricarbonyl(1,10-phenanthroline-κ2N,N′)-(azido-κ1N)rhenium(I), C15H8N5O3Re
  42. Crystal structure of 4-((triphenylphosphonio)methyl)pyridin-1-ium tetrachloridozincate(II), C24H22Cl4NPZn
Heruntergeladen am 26.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0228/html
Button zum nach oben scrollen