Startseite Naturwissenschaften Crystal structure of poly[diaqua-{μ3-1-(3-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ4O,O′:O′′:O′′′′}manganese(II)] hydrate
Artikel Open Access

Crystal structure of poly[diaqua-{μ3-1-(3-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ4O,O′:O′′:O′′′′}manganese(II)] hydrate

  • Dong Wang , Bo-Bo Han , Ye-Meng Sheng , Yu-Jie Xie , Wen-Duo Zhu und Jiu-Fu Lu ORCID logo EMAIL logo
Veröffentlicht/Copyright: 19. Juni 2025

Abstract

C13H14MnN2O8, triclinic, P 1 (no. 2), a = 6.901(4) Å, b = 8.854(6) Å, c = 12.400(8) Å, α = 72.955(12)°, β = 75.712(11)°, γ = 80.782(11)°, V = 698.7(8) Å3, Z = 2, Rgt(F) = 0.0377, wR ref (F2) = 0.0763, T = 296 K.

CCDC no.: 2337424

The molecular structure is shown in the figure. Table 1 contains the crystallographic data. The list of the atoms including atomic coordinates and displacement parameters can be found in the cif-file attached to this article.

Table 1:

Data collection and handling.

Crystal: Clear light colourless block
Size: 0.15 × 0.12 × 0.11 mm
Wavelength:

μ:
Mo Kα radiation (0.71073 Å)

1.00 mm−1
Diffractometer, scan mode:

θmax, completeness:
Bruker APEX-II, φ and ω scans

25.0°, 99 %
N(hkl)measured, N(hkl)unique, Rint: 3515, 2441, 0.038
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 1829
N(param)refined: 226
Programs: Bruker, 1 Olex2, 2 SHELX 3 , 4

1 Source of material

The mixture of manganese nitrate hexahydrate 28.7 mg (0.1 mmol), 1-(3-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid 27.4 mg (0.1 mmol), NaOH 4 mg (0.1 mmol) and ethyl alcohol (10 mL) were placed in the autoclave lined with PTFE and heated at 110 °C for 48 h, then cooled up to room temperature over 24 h. Viridescent block crystals were collected after cooling to room temperature.

2 Experimental details

Using Olex2, 2 the structure was solved with the ShelXT 3 structure solution program and refined with the ShelXL 4 refinement package.

3 Comment

Pyridazine derivatives constitute a particularly significant class of biologically active heterocycles. These compounds have garnered considerable attention as ligands due to their remarkable structural and synthetic versatility, precise tunability, and selectivity towards transition metal atoms. 5 , 6 Their diverse therapeutic potential, encompassing anticancer, 7 , 8 antidiabetic, 9 , 10 and antibiotic activities, 11 has been extensively documented. Leveraging this understanding, we have achieved the successful synthesis of a novel pyridazine carboxyl derivative, achieved by incorporating a benzene ring adorned with carboxyl groups onto the pyridazine ring. Simultaneously, numerous syntheses of transition metal complexes utilizing this derivative have been documented. 12 , 13 , 14 , 15

The single-crystal X-ray diffraction analysis reveals that the title complex belongs to the triclinic system, P 1‾ space group. The asymmetric unit of it comprises two half Mn2+, one (4-PDCA)2-ligand, two coordinated aqua ligands, and one crystalline water molecule, as depicted in the figure. The Mn1 ion was coordinated to six oxygen atoms from four different ligands, including four chelating symmetric oxygen atoms and two monodentate carboxylic oxygen atoms. Mn2 ion was coordinated to two monodentate carboxylic oxygen atoms from two different ligands and four aqua ligands. Two coordination modes of Mn(II) atoms through bridging ligand links form a two-dimensional double layer framework.


Corresponding author: Jiu-Fu Lu, Shaanxi Key Laboratory of Catalysis, College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, P.R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest: The authors declare no conflicts of interest regarding this article.

  3. Research funding: National Natural Science Foundation of China (82460963) and Project of the Education Department of Xizang (QCZ2016-42).

References

1. BRUKER. SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Suche in Google Scholar

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Sheldrick, G. M. SHELXTL – Integrated space-group and crystal-structure Determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central

4. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

5. Chen, S.; Zhang, M. H.; Feng, S.; Gong, C. Y.; Zhou, Y. X.; Xing, L.; He, B. C.; Wu, Y. J.; Xue, W. Design, Synthesis and Biological Activity of Chalcone Derivatives Containing Pyridazine. Arab. J. Chem. 2023, 16, 104852; https://doi.org/10.1016/j.arabjc.2023.104852.Suche in Google Scholar

6. Liu, C.; Lin, J.; Moslin, R.; Tokarski, J. S.; Muckelbauer, J.; Chang, C.; Tredup, J.; Xie, D.; Park, H.; Li, P.; Wu, D. R.; Strnad, J.; Zupa-Fernandez, A.; Cheng, L.; Chaudhry, C.; Chen, J.; Chen, C.; Sun, H.; Elzinga, P.; D’arienzo, C.; Gillooly, K.; Taylor, T. L.; McIntyre, K. W.; Salter-Cid, L.; Lombardo, L. J.; Carter, P. H.; Aranibar, N.; Burke, J. R.; Weinstein, D. S. Identification of imidazo[1,2-b] Pyridazine Derivatives as Potent, Selective, and Orally Active Tyk2 JH2 Inhibitors. ACS Med. Chem. Lett. 2019, 10, 383–388; https://doi.org/10.1021/acsmedchemlett.9b00035.Suche in Google Scholar PubMed PubMed Central

7. Jaballah, M. Y.; Serya, R. T.; Abouzid, K. Pyridazine Based Scaffolds as Privileged Structures in Anti-cancer Therapy. Drug Resist. Updates 2017, 67, 138–148; https://doi.org/10.1055/s-0042-119992.Suche in Google Scholar PubMed

8. Kota, T. V. R.; Gandham, H.; Sanasi, P. D. Synthesis, Characterization, and Antidiabetic Activity of 6-methoxyimidazo [1,2-b] Pyridazine Derivatives. J. Chin. Chem. Soc. 2019, 66, 630–637; https://doi.org/10.1002/jccs.201800332.Suche in Google Scholar

9. Tsuji, T.; Yamaguchi, M.; Kuroyanagi, J.; Furuzono, S.; Konishi, M.; Terayama, K.; Tanaka, J.; Saito, M.; Kobayashi, Y. Discovery of Novel Pyridazine Derivatives as Glucose Transporter Type 4 (GLUT4) Translocation Activators. Bioorg. Med. Chem. Lett. 2019, 29, 1785–1790; https://doi.org/10.1016/j.bmcl.2019.05.013.Suche in Google Scholar PubMed

10. Singh, B.; Bhatia, R.; Pani, B.; Gupta, D. Synthesis, Crystal Structures and Biological Evaluation of New Pyridazine Derivatives. J. Mol. Struct. 2020, 1200, 127084; https://doi.org/10.1016/j.molstruc.2019.127084.Suche in Google Scholar

11. Huang, P. P.; Wu, T. T.; Tuo, M. Q.; Ge, J.; Huang, P.; Wang, W. Q.; Yang, J. P.; Pan, H. B.; Lu, J. F. Supramolecular Complexes of Co(II), Zn(II) and Mn(II) Based on a Pyridazine Dicarboxylic Derivative: Synthesis, Crystal Structures and Properties. J. Mol. Struct. 2024, 1307, 138061; https://doi.org/10.1016/j.molstruc.2024.138061.Suche in Google Scholar

12. Gao, J. H.; Wang, J. X.; Huang, P. P.; Liu, J.; Zheng, N.; Shi, J.; Xu, H. T.; Yue, S. Y.; Lu, J. F. A New Pyrazine Carboxyl Derivative and Its Two d10 Metal Coordination Polymers: Syntheses, Characterization, DFT and Property. J. Mol. Struct. 2023, 1290, 135935–135946; https://doi.org/10.1016/j.molstruc.2023.135935.Suche in Google Scholar

13. Gao, J. H.; Huang, P. P.; Zhang, Z. J.; Tian, F. W.; Ge, J.; Cao, X. Y.; Liu, J.; Wang, D.; Zheng, N.; Lu, J. F.; Liu, B. A New 3D Cd-MOF with 2fold Interpenetrated as “turn-on/turn-off” Fluorescent Sensor for Selective and Sensitive Detection of Cu2+, Al3+ and Fe3+ Ions. J. Mol. Struct. 2024, 1299, 137162–137171; https://doi.org/10.1016/j.molstruc.2023.137162.Suche in Google Scholar

14. Pan, H. B.; Gao, J. H.; Huang, P. P.; Wang, J. X.; Wu, T. T.; Lu, J. F. Crystal Structure of hexaaquazinc(II) catena-poly[Bis(1-(3-carboxyphenyl)-5-methyl-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ2O,O′)-bis(μ2-1-(3-carboxyphenyl-5-methyl-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ2O:O′)trizinc(II)] Hexahydrate C26H36N4O20Zn2. Z. Kristallogr. N. Cryst. Struct. 2024, 239, 159–161; https://doi.org/10.1515/ncrs-2023–0398.10.1515/ncrs-2023-0398Suche in Google Scholar

15. Liu, W. J.; Wang, D. F.; Cao, X.; Wang, Q. W.; Shen, L. G. Crystal Structure of catena-poly[Triaqua-(μ2–1-(4-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ3-O,O′:O″)cobalt(II)], C12H12N2O8Co. Z. Kristallogr. New Cryst. Struct. 2024, 239, 121–123; https://doi.org/10.1515/ncrs-2023–0465.10.1515/ncrs-2023-0465Suche in Google Scholar

Received: 2025-04-30
Accepted: 2025-06-04
Published Online: 2025-06-19
Published in Print: 2025-10-27

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (S)-N-(10-((2,2-dimethoxyethyl)amino)-1,2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydrobenzo[a]heptalen-7-yl)acetamide, C25H32N2O7
  4. The crystal structure of 6,6′-difluoro-3,3′-dimethyl-5,5′-di(10H-phenoxazin-10-yl)- [1,1′-biphenyl]-2,2′-dicarbonitrile, C40H24F2N4O2
  5. Crystal structure of poly[(di-ethylenediamine-κ2N,N′)cadmium(II) tetradedocyloxidohexavanadate] (V4+/V5+ = 2/1), C4H16CdN4O14V6
  6. The crystal structure of poly[bis(dimethylformamide-κ1N)-(μ4-2′,3,3″,5′-tetrakis(trifluoromethyl)-[1,1′:4′,1″-terphenyl]-4,4″-dicarboxylato-κ4 O,O′: O″,O‴)dicadmium(II)], C27H15CdF12NO5
  7. Crystal structure of bis(μ2-ferrocenylcarboxylato-O,O′)-(μ3-oxido-κ3O:O:O)-bis(μ2-salicyladoximato-κ2N,O,O′)-(μ2-isopropoxo)-tris(isopropoxy-κ1O trititanium(IV)), C48H55N2O13Fe2Ti3
  8. Crystal structure of 3-(diethylamino)-7,9,11-trimethyl-8-phenyl-6H,13H-12λ4,13λ4-chromeno[3′,4′:4,5]pyrrolo[1,2-c]pyrrolo[2,1-f][1,3,2]diazaborinin-6-one, C28H26BF2N3O2
  9. The crystal structure of catena-poly[aqua-μ2-2-nitro-benzene-1,3-dicarboxylato-κ2O,O′)-(1,10-phenanthroline-κ2N,N′)-zinc(II)], C20H13N3O7Zn
  10. Crystal structure of poly[diaqua-{μ3-1-(3-carboxylatophenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylato-κ4O,O′:O′′:O′′′′}manganese(II)] hydrate
  11. Crystal structure of N′-((1-hydroxycyclohexyl)(phenyl)methyl)-2-methoxybenzohydrazide methanol solvate, C22H28N2O4
  12. The cocrystal of caffeic acid — progesterone — water (1/2/1), C51H70O9
  13. Crystal structure of (((oxido(quinolin-6-yl)methoxy)triphenyl-λ5-stibanyl)oxy)(quinolin-7-yl)methanolate
  14. Crystal structure of [(E)-6′-(diethylamino)-2-(2-(((E)-pyren-1-ylmethylene)amino)ethyl)-4′-(2-((E)-1,3,3-trimethylindolin-2-ylidene)ethylidene)-1′,2′,3′,4′-tetrahydrospiro[isoindoline-1,9′-xanthen]-3-one]-methanol, solvate C57H56N4O3
  15. The crystal structure of 1-(acridin-9-yl)pyrrolidine-2,5-dione, C17H22N2O2
  16. Crystal structure of N-(4-acetylphenyl)-2-(6-methoxynaphthalen-2-yl)propanamide, C22H21NO3
  17. The crystal structure of 5,10,15,20-tetrakis(4-(1H-1,2,4-triazol-1-yl)phenyl)porphyrin, C52H34N16
  18. Crystal structure of hexacarbonyl-μ2-[phenylmethanedithiolato-κ4S:S,S′:S′]diiron (Fe–Fe) C13H6Fe2O6S2
  19. Crystal structure of diiodo-bis(1-((2-propyl-1H-benzo[d]imidazol-1-yl)methyl)-1H-benzo[d][1,2,3]triazole-κ1N)cadmium(II), C34H34CdI2N10
  20. Crystal structure of (E)-(3-(3-bromophenyl)acryloyl)ferrocene, C19H15BrFeO
  21. Crystal structure of catena-poly(μ2-6-chloropyridine-2-carboxylato-κ3N,O:O′)(6-chloropyridine-2-carboxylato-κ2O,N)copper(II), C12H6Cl2N2O4Cu
  22. Crystal structure of poly[diaqua-μ 3-(5-(3,5-dicarboxy-2,4,6-trimethylbenzyl)-2,4,6-trimethylisophthalato)-κ 6O,O′:O″,O‴:O‴′,O‴″) terbium(III)-monohydrate], C23H28TbO12
  23. Crystal structure of (E)-2-(((5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene)amino)-3′,6′-dihydroxyspiro[isoindoline-1,9′-xanthen]-3-one – ethanol (1/2), C35H33ClN4O6
  24. The crystal structure of 3-(5-amino-3-phenylisoxazol-4-yl)-4-chloro-3-hydroxyindolin-2-one, C17H12ClN3O3
  25. The crystal structure of dimethylammonium 4-[2-(4-fluorophenyl)-4, 5-diphenyl-1H-imidazol-1-yl]benzenesulfonate, C29H26FN3O3S
  26. Crystal structure of (R)-2-ammonio-3-((5-carboxypentyl)thio)propanoate
  27. Crystal structure of 4-cyclohexyl-5-(thiophen-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione, C12H15N3S2
  28. The crystal structure of 4,6-bis(dimethylamino)-2-fluoroisophthalonitrile, C12H13FN4
  29. Hydrogen bonding in the crystal structure of nicotin-1,1′-dium tetrabromidomanganate(II)
  30. The crystal structure of bis(2-bromobenzyl)(2-((2-oxybenzylidene)amino)-4-methylpentanoato-κ3N, O,O′)tin(IV), C27H27Br2NO3Sn
  31. Crystal structure of (E)-(3-(p-tolyl)acryloyl)ferrocene, C20H18FeO
  32. Crystal structure of (E)-7-fluoro-2-((5-(4-methylpiperazin-1-yl)pyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C21H22FN3O
  33. Crystal structure of (E)-7-methoxy-2-((5-(4-methylpiperazin-1-yl)pyridin-2-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C22H25N3O2
  34. The crystal structure of poly(bis(μ2-1,3,5-tri(1H-imidazol-1-yl)benzene-κ2N:N′)-(μ2-2,3,5,6-tetrafluoroterephthalato-κ2O:O′)-manganese(II), C38H24F4N12O4Mn
  35. Crystal structure of (3,4-dimethoxybenzyl)triphenylphosphonium bromide ethanol solvate, C29H32BrO3P
  36. Crystal structure of tetraethylammonium hydrogencarbonate – (diaminomethylene)thiourea – water (2/1/3)
  37. Crystal structure of N, N-Dimethyl-N′-tosylformimidamide, C10H14N2O2S
  38. The crystal structure of ethyl 2-methyl-5-oxo-4-(2-methoxyphenyl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, C20H23N2O4
  39. Crystal structure of bis(μ2-1,5-bis[(E)-1-(2-hydroxyphenyl)ethylidene] thiocarbonohydrazide)-bis(dimethylformamide)-dizinc(II) dimethylformamide solvate, C40H46N10O6S2Zn2⋅C3H7NO
  40. Crystal structure of azido-κ1N{hydridotris(3-tert-butyl-5-methylpyrazol-1-yl)borato-κ3N,N′,N″}copper(II), C24H40BCuN9
  41. The crystal structure of fac-tricarbonyl(1,10-phenanthroline-κ2N,N′)-(azido-κ1N)rhenium(I), C15H8N5O3Re
  42. Crystal structure of 4-((triphenylphosphonio)methyl)pyridin-1-ium tetrachloridozincate(II), C24H22Cl4NPZn
Heruntergeladen am 26.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0214/html?lang=de
Button zum nach oben scrollen