Home Crystal structure of ((4-(4-bromophenyl)-1H-pyrrol-3-yl)methyl)ferrocene, C21H16BrFeNO
Article Open Access

Crystal structure of ((4-(4-bromophenyl)-1H-pyrrol-3-yl)methyl)ferrocene, C21H16BrFeNO

  • Wenqiang Tang ORCID logo EMAIL logo , Yanrong Gao , Xiaona Xu and Zhoujing Zhu
Published/Copyright: March 7, 2025

Abstract

C21H16BrFeNO, monoclinic, P21/c (no. 14), a = 14.6736(9) Å, b = 9.5595(6) Å, c = 12.7860(7) Å, β = 105.579(2)°, V = 1727.63(18) Å3, Z = 4, Rgt(F) = 0.0452 wRref(F2) = 0.0919, T = 170 K.

CCDC no.: 2419220

1 Source of materials

To a solution of 1-ferrocenyl-3-(4-bromophenyl)-2-propen-1-one (3.93 g, 10 mmol) and tosylmethyl isocyanide (2.15 g, 11 mmol) in N,N-dimethylformamide (25 mL) was added potassium tert-butoxide (2.24 g, 20 mmol). The mixture was stirred at room temperature for 12 h, until the TLC indicated the reaction was completed. The mixture was diluted with brine, and then extracted with ethyl acetate (3 × 30 mL). The organic phase was washed with brine (30 mL), dried with anhydrous sodium sulphate, and then concentrated under pressure. The title compound was separated by silica-gel column chromatography with ethyl acetate-petroleum ether (25 %) gradient solvent system. The target product was obtained as a white solid. For crystal growth, the product was dissolved in a minimal amount of hot ethanol and slowly cooled to room temperature (Table 1).

Table 1:

Data collection and handling.

Crystal: Red block
Size: 0.19 × 0.13 × 0.08 mm
Wavelength: MoKα radiation (0.71073 Å)
μ: 3.19 mm−1
Diffractometer, scan mode: Bruker APEX II, φ and ω scans
θmax, completeness: 26.4°, 100 %
N(hkl)measured, N(hkl)unique, Rint: 18980, 3524, 0.074
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 2341
N(param)refined: 226
Programs: Bruker, 1 SHELX, 2 , 3 Olex2 4

2 Experimental details

The crystal structure was determined using the SHELXT program, 2 and refinement was performed with the SHELXL program 3 in Olex2 software. 4 Non-hydrogen atoms underwent anisotropic refinement, while hydrogen atoms were positioned based on idealized geometry and refined using a riding model.

3 Comment

Ferrocene derivatives are of interest in organic electronics, catalysis, and material science. 5 The iron(II)-centered sandwich structure of ferrocene, where two cyclopentadienyl anions surround a central metal atom, confers a high degree of stability. 6 , 7 , 8 , 9 , 10 Specifically, the functionalization of ferrocene, such as introducing aromatic rings or heteroatoms, allows for enhanced electronic and chemical characteristics, making it useful in the design of molecular switches, sensors, and catalysts. In this context, the compound ((4-(4-bromophenyl)-1H-pyrrol-3-yl)methyl) ferrocene presents an intriguing example of ferrocene modification, featuring a bromophenyl and a pyrrole group attached to the ferrocene backbone.

The central iron atom (Fe1) is coordinated symmetrically by two cyclopentadienyl rings (C1–C5 and C2–C6), forming a classical sandwich-like structure typical of ferrocene derivatives. The bond lengths between the iron center and the carbon atoms of the cyclopentadienyl rings (Fe–C) are consistent with the typical ferrocene scaffold, averaging around 2.0 Å. These Fe–C bond distances indicate the maintenance of the characteristic electronic structure of the ferrocene core. 11 , 12 , 13 , 14 , 15 , 16

The structure features a (4-(4-bromophenyl)-1H-pyrrol-3-yl)methyl group, which is attached to the ferrocene core via a methylene linker (C11). The pyrrole ring (C11, C12, C13, N1) exhibits planarity, as expected for an aromatic heterocyclic system. The nitrogen atom (N1) is slightly displaced from the plane, likely due to electron-donating effects from the methyl group attached to C13. The pyrrole group, together with the adjacent bromophenyl unit, serves as an electron-rich region that modulates the reactivity of the ferrocene core, potentially allowing for further functionalization or interactions with electrophilic reagents.

The bromophenyl group (C14–C16, C18–C21) is attached to the pyrrole ring at position 4. The bond lengths and angles in this aromatic region follow typical values for a substituted phenyl ring, with C–C bond lengths around 1.39 Å and bond angles close to 120°, consistent with the sp2 hybridization of the carbon atoms.

The C11–O1 bond between the pyrrole ring and the oxygen atom (O1) adds a distinctive feature to the structure. The bond length for C11–O1 is approximately 1.236 Å, which is typical for a C–O single bond. The oxygen atom (O1) is positioned in such a way that it could participate in potential hydrogen bonding or dipole-dipole interactions, especially in polar solvents.


Corresponding author: Wenqiang Tang, Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang, Shaanxi, China, E-mail:

Acknowledgments

This work was financially supported by the Scientific Research Project of 2024 Youth Innovation Team of the Shaanxi Province Education Department (24JP016), the 2023 research and development project of the Xianyang Science and Technology Bureau (L2023–ZDYF–SF-030), Key Laboratory of Molecular Imaging and Drug Synthesis of Xianyang city (2021QXNL–PT-0008), School-level Scientific and Technological Innovation Team for Design, Synthesis and Structural Modification of Drug Molecules (2024KCTD04).

References

1. Bruker. SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2012.Search in Google Scholar

2. Sheldrick, G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

5. Štěpnička, P. Forever Young: the First Seventy Years of Ferrocene. Dalton Trans. 2022, 51, 8085–8102; https://doi.org/10.1039/d2dt00903j.Search in Google Scholar PubMed

6. Chen, Z.-F.; Zou, H.-L.; Liang, H.; Yuan, R.-X.; Zhang, Y. Ferrocenecarbaldehyde Isonicotinyl Hydrazide. Appl. Organomet. Chem. 2004, 18, 438–439; https://doi.org/10.1002/aoc.691.Search in Google Scholar

7. Savani, C. J.; Roy, H.; Verma, S. K.; Vennapu, D. R.; Singh, V. K. Synthesis, Characterization and Evaluation of Novel Ferrocenylmethylamine Derivatives as Cytotoxic Agents. Appl. Organomet. Chem. 2021, 35, e6137; https://doi.org/10.1002/aoc.6137.Search in Google Scholar

8. Shameem, M. A.; Esfandiarfard, K.; Öberg, E.; Ott, S.; Orthaber, A. Direct, Sequential, and Stereoselective Alkynylation of C, C-Dibromophosphaalkenes. Chem. – Eur. J. 2016, 22, 10614–10619; https://doi.org/10.1002/chem.201601955.Search in Google Scholar PubMed

9. Peng, Y.-D.; Zhou, L.-S.; Chen, L.-L.; Ma, L.; Zhao, Y.; Zhang, W.-W.; Zuo, J.-L. Ferrocene-isocoumarin Conjugated Molecules: Synthesis, Structural Characterization, Electronic Properties, and DFT–TDDFT Computational Study. Dalton Trans. 2015, 44, 14465–14474; https://doi.org/10.1039/c5dt02169c.Search in Google Scholar PubMed

10. Chamkin, A. A.; Krivykh, V. V.; Nikitin, O. M.; Kreindlin, A. Z.; Shteltser, N. A.; Dolgushin, F. M.; Artyushin, O. I.; Ikonnikov, N. S.; Borisov, Y. A.; Belousov, Y. A.; Ustynyuk, N. A. Direct Phosphination of Ferrocenium Ion with Tertiary Phosphines by the Mechanism of Oxidative Nucleophilic Substitution. Eur. J. Inorg. Chem. 2018, 2018, 4494–4504; https://doi.org/10.1002/ejic.201800961.Search in Google Scholar

11. Shafir, A.; Fiedler, D.; Arnold, J. Formation of 1 : 1 Complexes of Ferrocene-Containing Salen Ligands with Mg, Ti and Zr. J. Chem. Soc., Dalton Trans. 2002, 555–560; https://doi.org/10.1039/b107066p.Search in Google Scholar

12. Zhang, C.; Zhu, Z.; Tang, W.; Xu, X.; Liu, B. Crystal Structure of (4-(2-Chlorophenyl)-1H-Pyrrol-3-Yl)(ferrocenyl) Methanone, C21H16ClFeNO. Z. Kristallogr. New Cryst. Struct. 2024, 239, 375–377; https://doi.org/10.1515/ncrs-2024-0007.Search in Google Scholar

13. Deck, P. A.; Kroll, C. E.; Gary Hollis, W.; Fronczek, F. R. Conformational Control of Intramolecular Arene Stacking in Ferrocene Complexes Bearing Tert-Butyl and Pentafluorophenyl Substituents. J. Organomet. Chem. 2001, 637–639, 107–115; https://doi.org/10.1016/s0022-328x(01)00878-6.Search in Google Scholar

14. Panaka, S.; Trivedi, R.; Jaipal, K.; Giribabu, L.; Sujitha, P.; Kumar, C. G.; Sridhar, B. Ferrocenyl Chalcogeno (Sugar) Triazole Conjugates: Synthesis, Characterization and Anticancer Properties. J. Organomet. Chem. 2016, 813, 125–130; https://doi.org/10.1016/j.jorganchem.2016.04.011.Search in Google Scholar

15. Ramírez-Gómez, A.; Gutiérrez-Hernández, A. I.; Alvarado- Castillo, M. A.; Toscano, R. A.; Ortega-Alfaro, M. C.; López-Cortés, J. G. Selenoamides as Powerful Scaffold to Build Imidazo[1,5-A]pyridines Using a Grinding Protocol. J. Organomet. Chem. 2020, 919, 121315.10.1016/j.jorganchem.2020.121315Search in Google Scholar

16. Zhang, C.; Zhu, Z.; Tang, W.; Xu, X.; Liu, B. Crystal Structure of (4-(2-chlorophenyl)-1H-pyrrol-3-yl)(ferrocenyl) Methanone. Z. Kristallogr. New Cryst. Struct. 2024, 238, 375; https://doi.org/10.1515/ncrs-2024-0007.Search in Google Scholar

Received: 2025-01-25
Accepted: 2025-02-21
Published Online: 2025-03-07
Published in Print: 2025-06-26

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of 5,5′-bis(2,4,6-trinitrophenyl)-2,2′-bi(1,3,4-oxadiazole), C16H4N10O14
  4. Crystal structure of catena-poly[(μ3-4,4′-oxydibenzoato- κ5 O,O: O,O:O)-bis(2,4,6-tri(3-pyridine)-1,3,5-triazine-κ1 N)cadmium(II)], C50H32CdN12O5
  5. The crystal structure of 1,4-diazepane-1,4-diium potassium trinitrate, C5H14KN5O9
  6. The crystal structure of benzyl 2,2,5,5-tetramethylthiazolidine-4-carboxylate, C15H21NO2S
  7. Crystal structure of 2-hydroxyethyl-triphenylphosphonium tetracyanidoborate, C24H20BN4OP
  8. The crystal structure of 1-methyl-3-(N-methylnitrous amide–N-methylene) imidazolidine-2,4,5-trione
  9. Crystal structure of N-((3-cyano-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-(2,2,2-trifluoroacetyl)-1H-pyrazol-5-yl)carbamoyl)-2,6-difluorobenzamide, C20H7Cl2F8N5O3S
  10. Crystal structure of 5-(2,2-difluoropropyl)-5-methylbenzo[4,5]imidazo[2,1-a] isoquinolin-6(5H)-one, C20H18F2N2O
  11. The crystal structure of N′,N″-[1,2-bis(4-chlorophenyl)ethane-1,2-diylidene]bis(furan-2- carbohydrazide), C24H16Cl2N4O4
  12. Crystal structure of [(4-bromobenzyl)triphenylphosphonium] tetrabromoantimony(III), [C25H21BrP]+[SbBr4]
  13. Crystal structure of [(4-bromobenzyl)triphenylphosphonium] tetrabromidoindium(III), [C25H21BrP]+[InBr4]
  14. The crystal structure of 4-carboxy-2-oxobutan-1-aminium chloride, C5H10ClNO3
  15. Crystal structure of (4-(4-chlorophenyl)-1H-pyrrole-3-carbonyl)ferrocene, C21H16ClFeNO
  16. The crystal structure of dichlorido(η6-p-cymene)(triphenylarsine)ruthenium(II), C28H29AsCl2Ru
  17. Crystal structure of (Z)-2-hydroxy-N′-(1-(o-tolyl)ethylidene)benzohydrazide, C16H16N2O2
  18. The crystal structure of 10-(1-bromoethyl)-14-(bromomethyl)dibenzo[a, c]acridine, C24H17NBr2
  19. Synthesis and crystal structure of 6-methoxy-7-[(4-methoxyphenyl)methoxy]-2H-1-benzopyran-2-one, C18H16O5
  20. Synthesis and crystal structure of ethyl 4-((4-trifluoromethylbenzyl)amino)benzo, C17H16F3NO2
  21. The crystal structure of (Z)-2-(tert-butyl)-6-(7-(tert-butyl)-5-methylbenzo[d][1,3]oxathiol-2-ylidene)-4-methylcyclohexa-2,4-dien-1-one, C23H28O2S
  22. The crystal structure of (R)-2-aminobutanamide hydrochloride, C4H11ClN2O
  23. Crystal structure of bromido[hydridotris(3-tert-butyl-5-isopropylpyrazolyl)borato-κ3 N,N′,N″]copper(II), C30H52BBrCuN6
  24. Crystal structure of chlorido{hydridotris[3-mesityl-5-methyl-1H-pyrazol-1-yl-κN3]borato}-copper(II) dichloromethane monosolvate
  25. Crystal structure of 4-[3,5-bis(propan-2-yl)-1H-pyrazol-4-yl]pyridine, C14H19N3
  26. Crystal structure of ((4-(4-bromophenyl)-1H-pyrrol-3-yl)methyl)ferrocene, C21H16BrFeNO
  27. Crystal structure of [(4-chlorobenzyl)triphenylphosphonium] dichloridocopper(I), {[C25H21ClP]+[CuCl2]}n
  28. The crystal structure of {Cu(2,9-diisopropyl-4,7-diphenyl-1,10-phenanthroline)[4,5-bis(diphenylphosphino)-9,9-dimethylxanthene]}+ PF6·1.5(EtOAC)
  29. Crystal structure of 3,5-bis(t-butyl)-1H-pyrazol-4-amine, C11H21N3
  30. Crystal structure of [(2,4-dichlorobenzyl)triphenylphosphonium] trichloridocopper(II), [C25H20Cl2P]+[CuCl3]
  31. The crystal structure of dipotassium sulfide, K2S
  32. Crystal structure of (4-(4-methoxyphenyl)-1H-pyrrole-3-carbonyl)ferrocene, C22H19FeNO2
  33. Crystal structure of (E)-6-(4-methylpiperazin-1-yl)-2-(4-(trifluoromethyl)benzylidene)-3, 4-dihydronaphthalen-1(2H)-one, C23H23F3N2O
  34. Crystal structure of (E)-6-morpholino-2-(4-(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C22H20F3NO2
  35. Crystal structure of Ce9Ir37Ge25
  36. The crystal structure of ethyl 6-(2-nitrophenyl)imidazo[2,1-b]thiazole-3-carboxylate, C14H11N3O4S
  37. Crystal structure of (4-(4-isopropylphenyl)-1H-pyrrol-3-yl)(ferrocenyl)methanone, C24H23FeNO
  38. Crystal structure of bis(methylammonium) tetrathiotungstate(VI), (CH3NH3)2[WS4]
  39. Crystal structure of 6,11-dihydro-12H-benzo[e]indeno[1,2-b]oxepin-12-one, C17H12O2
  40. Crystal structure of 3-[(4-phenylpiperidin-1-yl)methyl]-5-(thiophen-2-yl)-2,3-dihydro-1,3,4- oxadiazole-2-thione, C18H19N3OS2
  41. Crystal structure of N-isopropyl-1,8-naphthalimide C15H13NO2
  42. TiNiSi-type EuPdBi
  43. Crystal structure of 1-(p-tolylphenyl)-4-(2-thienoyl)-3-methyl-1H-pyrazol-5-ol, C16H14N2O2S
  44. The crystal structure of 3-(3-carboxypropyl)-2-nitro-1H-pyrrole 1-oxide, C7H9N3O5
  45. The crystal structure of tetraaqua-bis(2-(2-methyl-5-nitro-1H-imidazol-1-yl)acetato-k2O:N)-tetrakis(2-(2-methyl-5-nitro-1H-imidazol-1-yl)acetato-k1N)trizinc(II) hexahydrate C36H52N18O32Zn3
  46. The crystal structure of 4-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-ium 4-hydroxy-3,5-dimethoxybenzoate monohydrate, C25H30FN3O9
  47. Crystal structure of bis(DL-1-carboxy-2-(1H-indol-3-yl)ethan-1-aminium) oxalate — acetic acid (1/2)
  48. Crystal structure of methyl (E)-4-((4-methylphenyl)sulfonamido)but-2-enoate, C12H15NO4S
  49. The crystal structure of actarit, C10H11NO3
  50. The crystal structure of bicyclol, C19H18O9
  51. The crystal structure of topiroxostat, C13H8N6
  52. Crystal structure of 2,2-dichloro-N-methyl-N-(4-p-tolylthiazol-2-yl)acetamide, C13H12Cl2N2OS
  53. Crystal structure of 4-(trifluoromethyl)-7-coumarinyl trifluoromethanesulfonate C11H4F6O5S
  54. Crystal structure of (1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O6)-((Z)-N,N′-bis(2-(dimethylamino)phenyl)carbamimidato-κ1N)potassium(I)
  55. Crystal structure of (Z)-2-(5-((4-(dimethylamino)naphthalen-1-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid, C18H16N2O3S2
  56. Crystal structure of (4-fluorobenzyl)triphenylphosphonium bromide, C25H21BrFP
  57. The crystal structure of dichlorido-[6-(pyridin-2-yl)phenanthridine-κ2N, N′]zinc(II)-chloroform (1/1), C19H13N2ZnCl5
  58. Crystal structure of (E)-(3-(2,4-dichlorophenyl)acryloyl)ferrocene, C19H14Cl2FeO
  59. The crystal structure of (E)-7-chloro-1-cyclopropyl-6-fluoro-3-((2-hydroxybenzylidene)amino)quinolin-4(1H)-one, C19H14ClFN2O2
  60. Crystal structure of 2-bromo-11-(((fluoromethyl)sulfonyl)methyl)-6-methyl-6,11-dihydrodibenzo[c,f][1,2]thiazepine 5,5-dioxide, C16H13BrFNO4S2
  61. Crystal structure of 2-chloro-11-(((fluoromethyl)sulfonyl)methyl)-6-methyl-6,11-dihydrodibenzo[c,f][1,2]thiazepine 5,5-dioxide, C16H13ClFNO4S2
  62. Crystal structure of 5-(2,2-difluoropropyl)-5-methyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline-3-carbonitrile, C20H15F2N3O
Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2025-0049/html?srsltid=AfmBOoqUnUc1qSIZbT2_pG194YfoCQcXi2mlEVofGLBS1XCPxmbwyWL0
Scroll to top button