Startseite Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(pyren-1-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C54H48N4O2
Artikel Open Access

Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(pyren-1-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C54H48N4O2

  • Jinping Wu , Kaihao Li , Hairong Lan und Yixin Chu ORCID logo EMAIL logo
Veröffentlicht/Copyright: 14. Dezember 2021

Abstract

C54H48N4O2, triclinic, P 1 (no. 2), a = 11.1883(5) Å, b = 13.5364(5) Å, c = 14.3412(5) Å, α = 105.885(3)°, β = 97.710(3)°, γ = 94.126(3)°, Z = 2, V = 2056.64(14) Å3, R gt (F) = 0.0685, wR ref (F2) = 0.1606, T = 293(2) K.

CCDC no.: 2123351

The asymmetric unit of the molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow block
Size: 0.15 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.08 mm−1
Diffractometer, scan mode: SuperNova
θmax, completeness: 29.6°, >99%
N(hkl)measured, N(hkl)unique, Rint: 18,679, 9577, 0.025
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 6192
N(param)refined: 556
Programs: CrysAlisPRO [1], Olex2 [2], SHELX [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
O1 0.33412 (15) 0.98971 (13) 0.19667 (13) 0.0469 (4)
O2 0.78771 (16) 0.73548 (13) 0.24706 (11) 0.0446 (4)
N1 0.48253 (17) 0.88602 (14) 0.22453 (14) 0.0343 (4)
N2 0.40803 (16) 0.82515 (14) 0.25996 (13) 0.0334 (4)
N3 0.9082 (2) 0.90937 (18) 0.58565 (15) 0.0519 (6)
N4 0.89884 (18) 0.29127 (15) 0.02062 (14) 0.0397 (5)
C1 0.4486 (2) 0.74420 (18) 0.27677 (16) 0.0354 (5)
H1 0.522951 0.726360 0.259212 0.043*
C2 0.3809 (2) 0.67975 (17) 0.32272 (16) 0.0336 (5)
C3 0.2820 (2) 0.71470 (18) 0.36679 (17) 0.0397 (6)
H3 0.255214 0.776569 0.361141 0.048*
C4 0.2236 (2) 0.6601 (2) 0.41815 (18) 0.0446 (6)
H4 0.157191 0.685124 0.445767 0.054*
C5 0.2617 (2) 0.56782 (19) 0.42985 (17) 0.0407 (6)
C6 0.2063 (3) 0.5114 (2) 0.48726 (18) 0.0501 (7)
H6 0.141512 0.536260 0.517367 0.060*
C7 0.2459 (3) 0.4237 (2) 0.49844 (19) 0.0544 (7)
H7 0.208539 0.389547 0.536856 0.065*
C8 0.3437 (3) 0.38123 (19) 0.45301 (18) 0.0475 (7)
C9 0.4016 (2) 0.43476 (17) 0.39556 (16) 0.0387 (6)
C10 0.3612 (2) 0.52917 (17) 0.38463 (15) 0.0348 (5)
C11 0.4199 (2) 0.58415 (17) 0.32891 (15) 0.0328 (5)
C12 0.5182 (2) 0.54022 (18) 0.28315 (16) 0.0385 (5)
H12 0.557066 0.574331 0.245476 0.046*
C13 0.5552 (2) 0.45072 (19) 0.29359 (17) 0.0441 (6)
H13 0.619162 0.424749 0.262900 0.053*
C14 0.4993 (2) 0.39459 (18) 0.35034 (17) 0.0425 (6)
C15 0.5376 (3) 0.30220 (19) 0.36274 (19) 0.0543 (7)
H15 0.602553 0.275633 0.333924 0.065*
C16 0.4794 (3) 0.2501 (2) 0.4177 (2) 0.0639 (9)
H16 0.504763 0.188080 0.424359 0.077*
C17 0.3854 (3) 0.2885 (2) 0.4621 (2) 0.0594 (8)
H17 0.348171 0.252560 0.499167 0.071*
C18 0.4385 (2) 0.96950 (17) 0.19860 (16) 0.0353 (5)
C19 0.5426 (2) 1.02476 (17) 0.17440 (16) 0.0350 (5)
C20 0.5477 (2) 1.11366 (19) 0.14404 (18) 0.0440 (6)
H20 0.479004 1.147201 0.135935 0.053*
C21 0.6579 (3) 1.1507 (2) 0.12628 (19) 0.0496 (7)
H21 0.664091 1.210943 0.107167 0.059*
C22 0.7592 (3) 1.0996 (2) 0.13645 (19) 0.0493 (7)
H22 0.832437 1.125507 0.123392 0.059*
C23 0.7534 (2) 1.0100 (2) 0.16586 (17) 0.0432 (6)
H23 0.821363 0.975195 0.171883 0.052*
C24 0.6443 (2) 0.97431 (17) 0.18586 (16) 0.0341 (5)
C25 0.6149 (2) 0.87860 (17) 0.21841 (16) 0.0328 (5)
C26 0.6866 (2) 0.88414 (17) 0.31686 (16) 0.0330 (5)
C27 0.6728 (2) 0.95624 (18) 0.40311 (17) 0.0390 (5)
H27 0.614446 1.001430 0.400478 0.047*
C28 0.7411 (2) 0.96405 (19) 0.49217 (17) 0.0397 (6)
H28 0.726249 1.011867 0.548531 0.048*
C29 0.8340 (2) 0.89971 (19) 0.49862 (17) 0.0389 (5)
C30 0.8449 (2) 0.82428 (18) 0.41275 (17) 0.0395 (6)
H30 0.902786 0.778585 0.414547 0.047*
C31 0.7714 (2) 0.81626 (18) 0.32535 (16) 0.0349 (5)
C32 0.7122 (2) 0.71788 (18) 0.15795 (16) 0.0337 (5)
C33 0.7252 (2) 0.61984 (18) 0.08761 (16) 0.0364 (5)
C34 0.6515 (3) 0.5986 (2) −0.01249 (19) 0.0559 (8)
H34Ca 0.704156 0.613667 −0.056513 0.067*
H34Da 0.622690 0.525382 −0.036291 0.067*
H34Ab 0.700541 0.567066 −0.061009 0.067*
H34Bb 0.582298 0.548644 −0.018017 0.067*
C35Ba 0.5461 (11) 0.6574 (8) −0.0178 (7) 0.051 (3)
H35Aa 0.525230 0.658568 −0.085293 0.061*
H35Ba 0.478240 0.618897 −0.002934 0.061*
C36 0.5556 (3) 0.7594 (2) 0.04227 (19) 0.0561 (8)
H36Ca 0.474502 0.776584 0.051593 0.067*
H36Da 0.588441 0.804768 0.007688 0.067*
H36Ab 0.475398 0.729000 0.044953 0.067*
H36Bb 0.546639 0.823757 0.025963 0.067*
C37 0.6323 (2) 0.78221 (18) 0.14125 (16) 0.0356 (5)
C38 0.7962 (2) 0.55305 (18) 0.11457 (17) 0.0374 (5)
H38 0.841268 0.574905 0.177439 0.045*
C39 0.8090 (2) 0.45141 (18) 0.05553 (17) 0.0387 (5)
H39 0.756906 0.425725 −0.004038 0.046*
C40 0.8906 (2) 0.38986 (17) 0.07941 (16) 0.0343 (5)
C41 0.9908 (2) 0.41401 (17) 0.16859 (16) 0.0349 (5)
C42 1.0533 (2) 0.31640 (18) 0.14716 (17) 0.0349 (5)
C43 1.1511 (2) 0.2904 (2) 0.20137 (19) 0.0452 (6)
H43 1.188825 0.336342 0.260700 0.054*
C44 1.1928 (2) 0.1949 (2) 0.1665 (2) 0.0516 (7)
H44 1.258072 0.176164 0.202710 0.062*
C45 1.1371 (3) 0.1285 (2) 0.0783 (2) 0.0541 (7)
H45 1.165983 0.065040 0.055414 0.065*
C46 1.0384 (2) 0.15332 (19) 0.0218 (2) 0.0483 (6)
H46 1.001742 0.107980 −0.038155 0.058*
C47 0.9974 (2) 0.24822 (18) 0.05879 (17) 0.0374 (5)
C48 0.8183 (3) 0.2421 (2) −0.07009 (19) 0.0560 (7)
H48A 0.736119 0.251969 −0.060946 0.084*
H48B 0.826361 0.169509 −0.089744 0.084*
H48C 0.838844 0.272131 −0.120077 0.084*
C49 0.9394 (2) 0.4290 (2) 0.26535 (17) 0.0470 (6)
H49A 0.900302 0.491149 0.278579 0.070*
H49B 1.004333 0.434368 0.318139 0.070*
H49C 0.881442 0.370977 0.259610 0.070*
C50 1.0793 (2) 0.50680 (19) 0.1719 (2) 0.0478 (6)
H50A 1.103515 0.497838 0.108649 0.072*
H50B 1.149569 0.512080 0.220199 0.072*
H50C 1.040404 0.568773 0.188964 0.072*
C51 0.8813 (3) 0.9735 (2) 0.67850 (18) 0.0535 (7)
H51A 0.911908 0.944513 0.730610 0.064*
H51B 0.793923 0.971170 0.674970 0.064*
C52 0.9345 (3) 1.0833 (2) 0.7042 (2) 0.0659 (8)
H52A 0.906460 1.112255 0.652271 0.099*
H52B 1.021406 1.086892 0.713027 0.099*
H52C 0.909799 1.121720 0.764033 0.099*
C53 1.0319 (3) 0.8737 (2) 0.58758 (19) 0.0523 (7)
H53A 1.054109 0.860830 0.522558 0.063*
H53B 1.090540 0.927951 0.632296 0.063*
C54 1.0c370 (3) 0.7793 (3) 0.6186 (2) 0.0705 (9)
H54A 0.985192 0.723516 0.570933 0.106*
H54B 1.010217 0.790332 0.681165 0.106*
H54C 1.118949 0.762141 0.624126 0.106*
C35Ab 0.6075 (9) 0.6884 (5) −0.0360 (4) 0.0452 (18)
H35Cb 0.545908 0.664819 −0.094150 0.054*
H35Db 0.674172 0.726945 −0.052244 0.054*
  1. aOccupancy: 0.415(14), bOccupancy: 0.585(14).

Source of material

All chemicals were of reagent grade and used without further purification. The title compound was synthesized by a four-step reaction according to the references [5], [6], [7].

The synthesis of the first intermediate is a condensation reaction. The detailed steps are as follows: first, cyclohexanone (1.98 mL) was added dropwise to concentrated sulfuric acid (20.0 mL) and cooled down to 0 °C Then, 2-(4-diethylamino-hydroxybenzoyl) benzoic acid (3.00 g, 9.6 mmol) was added in portions under vigorous stirring. The reaction mixture was heated at 90 °C for 3 h, cooled down and poured onto crushed ice (150.0 g). Red precipitate appeared immediately as soon as perchloric acid (2.0 mL, 70%) was added, which was filtered and washed several times with cold water to obtain a red solid. Yield: ca. 94%.

The synthesis of the second intermediate 2-[(E)-2-[9-(2-carboxyphenyl)-6-(diethylamino)-2,3,4,9-tetrahydro-1H-xanthen-4-yl]ethenyl]-1,3,3-trimethyl-3H-indol-1-ium is a condensation reaction, too. The red solid (2.4 g, 6.38 mmol) obtained in the first step and fisher aldehyde (1.28 g, 6.38 mmol) were dissolved in the condensation agent acetic anhydride (35.0 mL), and the reaction mixture was stirred at 50 °C for 0.5 h. Then, the resulting mixture was put into the refrigerator immediately to stop the reaction. After the solvent was evaporated under reduced pressure, the crude product was purified by silica gel chromatography (CH2Cl2/CH3CH2OH=20:1 v/v) to obtain the green microcrystalline, compound 2-[(E)-2-[9-(2-carboxyphenyl)-6-(diethylamino)-2,3,4,9-tetrahydro-1H-xanthen-4-yl]ethenyl]-1,3,3-trimethyl-3H-indol-1-ium. Yield: ca. 50%.

The third reaction is an acylation reaction. The green microcrystalline aforementioned intermediate (1.25 g, 2.24 mmol), catalyst PyBOP (1.4 g, 2.79 mmol) and hydrazine hydrate (2.4 mL) were dispersed in CH2Cl2 (25 mL). The mixture was stirred at room temperature for 4 h. After the solvent was evaporated under reduced pressure, the crude product was purified by neutral alumina column chromatography (CH2Cl2/CH3CH2OH=50:1 v/v) to yield yellow powder, named (4′E)-2-amino-6′-(diethylamino)-4-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9-xanthene]-3-one. Yield: ca. 45%.

The last step of the synthetic protocol is as follows: The yellow powder (0.55 g, 0.96 mmol) obtained from the third step and 1-pyrenecarboxaldehyde (0.33 g, 1.44 mmol) were dispersed in ethanol (25 mL) and refluxed for 4 h, during which a yellow powder appeared. The yellow powder was filtered and washed with ethanol to obtain the title compound. Yield: ca. 40%.

The yellow powder (0.05 mmol, 39.2 mg) was dissolved in a methanol/dichloromethane (v/v = 2:1, 15 mL) to evaporate slowly at room temperature. About one week later, yellow block crystals appeared. Yield: ca. 75%.

Experimental details

The H atoms were added using riding models. Their Uiso values were set to 1.2Ueq of the parent atoms.

Comment

Pyrene and its derivatives are a class of excellent fluorescent materials with stable chemical properties, long fluorescence lifetimes and high quantum yields, which have been used to construct chemical sensors [8, 9]. In addition, pyrene fluorophore can generate two kinds of fluorescence emission and exciton, which can be used to design many excellent heavy metal ion specific fluorescence probes [10, 11]. Up to now, many fluorescence probes based on pyrene have been designed [12, 13], but most of them are in the visible region. Herein, a potential near-infrared rhodamine derivative compound is reported, which combines pyrene with rhodamine skeleton and has N, O strong coordination atoms.

The asymmetric unit of the title compound only contains a neutral molecule in a closed-ring form. All bond lengths and angles are in the expected ranges [14, 15]. The amide C=O bond distance is 1.216(3) Å, indicative of the keto form of the amide. The bond length of C21–N2 is 1.285(3) Å, which shows the existence of the Schiff base C=N [14]. The xanthene least-square plane and the pyrene least-square plane dihedral angle is 68.6°. The dihedral angle between the aroylhydrozone plane and the pyrene plane is only 26.3°, which indicates that if the title compound coordinates with metals, it may be in the opened-ring form. Due to the large ellipsoid of the C35 atom, it was split into two parts with occupancy of 0.585(12) for C35A and 0.415(14) for C35B, respectively.


Corresponding author: Yixin Chu, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 22101076

Funding source: Natural Science Foundation of Henan

Award Identifier / Grant number: 202300410261

Funding source: Henan University of Chinese Medicine

Award Identifier / Grant number: BSJJ2020-01

Funding source: Nursery project of Henan University of Chinese Medicine

Award Identifier / Grant number: MP2020-21

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Natural Science Foundation of China (Project No. 22101076), the Natural Science Foundation of Henan, China (Project No. 202300410261), the Startup Foundation for Doctors of Henan University of Chinese Medicine (Project No. BSJJ2020-01) and the Nursery project of Henan University of Chinese Medicine (Project No. MP2020-21).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. CrysAlisPRO Software system. Version 1. 171. 38. 43f; Rigaku Corporation: Oxford, UK, 2015.Suche in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Suche in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

4. Sheldrick, G. M. SHELXTL – Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar

5. Xu, Z., Wang, H., Chen, Z. Near-infrared fluorescent probe for selective detection of Cu2+ in living cells and in vivo. Spectrochim. Acta, Part A 2019, 216, 404–410; https://doi.org/10.1016/j.saa.2019.03.062.Suche in Google Scholar

6. Xie, J.-Y., Li, C.-Y., Li, Y.-F. A near-infrared chemosensor for determination of trivalent aluminum ions in living cells and tissues. Dyes Pigments 2017, 136, 817–824; https://doi.org/10.1016/j.dyepig.2016.09.046.Suche in Google Scholar

7. Xie, J.-Y., Li, C.-Y., Li, Y.-F. A near-infrared fluorescent probe with high quantum yield and its application in the selective detection of glutathione in living cells and tissues. Anal. Chem. 2016, 19, 9746–9752; https://doi.org/10.1021/acs.analchem.6b02646.Suche in Google Scholar

8. Zhou, Y., Wang, F. Cu2+-selective ratiometric and “off-on” sensor based on the rhodamine derivative bearing pyrene group. Org. Lett. 2009, 11, 4442–4445; https://doi.org/10.1021/ol901804n.Suche in Google Scholar

9. Chao, J.-B., Song, K.-L., Chao, J.-B. A pyrene-based colorimetric and fluorescent pH probe with large stokes shift and its application in bioimaging. Talanta 2018, 189, 150–156; https://doi.org/10.1016/j.talanta.2018.06.073.Suche in Google Scholar

10. Chao, J.-B., Wang, H.-J. A novel pyrene-based dual multifunctional fluorescent probe for differential sensing of pH and HSO3− and their bioimaging in live cells. New J. Chem. 2018, 42, 3322–3333; https://doi.org/10.1039/c7nj03903d.Suche in Google Scholar

11. Wang, G.-J., Bobkov, G. V., Mikhailov, S. N. Detection of RNA hybridization by pyrene-labeled probes. ChemBioChem 2009, 10, 1175–1185; https://doi.org/10.1002/cbic.200900031.Suche in Google Scholar

12. Chen, Z., Zhou, H.-Q. A medium-controlled fluorescent enhancement probe for Ag+ and Cu2+ derived from pyrene-containing Schiff base. J. Photoch. Photobio A. 2019, 379, 5–10; https://doi.org/10.1016/j.jphotochem.2019.05.007.Suche in Google Scholar

13. Tekuri, V., Sahoo, S. K., Trivedi, D. R. Hg2+ induced hydrolysis of thiazole amine based Schiff base: colorimetric and fluorogenic chemodosimeter for Hg2+ ions in an aqueous medium. Spectrochim. Acta, Part A 2019, 218, 19–26; https://doi.org/10.1016/j.saa.2019.03.106.Suche in Google Scholar

14. Karaoglu, K., Kaya, K., Yilmaz, I. New Chromenylium-cyanine based dual channel chemosensors for copper and hypochlorite sensing. Dyes Pigments 2020, 180, 108445; https://doi.org/10.1016/j.dyepig.2020.108445.Suche in Google Scholar

15. Yuan, J., Cheng, D. Crystal structure of (E)-3′,6′-bis(ethylamino)-2′,7′-dimethyl-2-((pyridin-2-ylmethylene)amino)spiro[isoindoline-1,9′-xanthen]-3-one, C32H31N5O2. Z. Kristallogr. NCS 2019, 234, 149–151.10.1515/ncrs-2018-0239Suche in Google Scholar

Received: 2021-10-04
Accepted: 2021-11-21
Published Online: 2021-12-14
Published in Print: 2022-02-23

© 2021 Jinping Wu et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of (E)-7-hydroxy-2-((6-methoxypyridin-3-yl)methylene)-3, 4-dihydronaphthalen-1(2H)-one, C17H15NO3
  4. Crystal structure of (E)-7-methoxy-2-((2-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1 (2H)-one, C18H17NO3
  5. The crystal structure of N 6,N 6′-di(pyridin-2-yl)-[2,2′-bipyridine]-6,6′-diamine, C20H16N6
  6. The crystal structure of {N 1,N 2-bis[2,4-dimethyl-6-(4-(tert-butyl)phenyl)(phenyl)methyl]acenaphthylene-1,2-diimino-κ2 N, N′}-dibromido-nickel(II) – dichloromethane(1/2), C64H64Br2Cl4N2Ni
  7. Synthesis and crystal structure of nonacarbonyltris[(2-thia-1,3,5-triaza-7-phosphatricylco[3.3.1.1]decane-κ1 P)-2,2-dioxide]triruthenium(0) – acetonitrile (7/6), C25.71H32.57N9.86O15P3S3Ru3
  8. A new polymorph of 1-(4-nitrophenyl)-1H-benzimidazole (C13H9N3O2)
  9. The crystal structure of 2,2′-((1E,1′E)-(naphthalene-2,3 diylbis(azanylylidene)) bis(methanylylidene))bis(4-methylphenol), C26H22N2O2
  10. The crystal structure of bis(μ2-iodido)-bis(η6-benzene)-bis(iodido)-diosmium(II), C12H12I4Os2
  11. Redetermination of the crystal structure of bis{hydridotris(3,5-dimethylpyrazol-1-yl-κN 3)borato}copper(II), C30H44B2CuN12
  12. Crystal structure of (E)-3-((4-(tert-butyl)phenyl)thio)-4-hydroxypent-3-en-2-one, C15H20O2S
  13. Crystal structure of 2,2′-(p-tolylazanediyl)bis(1-phenylethan-1-one), C23H21NO2
  14. Redetermination of the crystal structure of the crystal sponge the poly[tetrakis(μ3-2,4,6-tris(pyridin-4-yl)-1,3,5-triazine)-dodecaiodidohexazinc(II) nitrobenzene solvate], C72H48I12N24Zn6⋅10(C6H5NO2)
  15. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(6-methylpyridin-2-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C44H45N5O2
  16. Crystal structure of (E)-7-fluoro-2-(3-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one, C17H12F2O1
  17. Crystal structure of tetrabutylammonium sulfanilate – 1-(diaminomethylene)thiourea (1/2)
  18. Crystal structure of [2,2′-{azanediyl)bis[(propane-3,1-diyl)(azanylylidene)methylylidene]} bis(3,5-dichlorophenolato)-κ2O,O′]-isothiocyanato-κN-iron(III), C21H19Cl4FeN4O2S
  19. Crystal structure of (4-chlorophenyl)(4-hydroxyphenyl)methanone, C13H9ClO2
  20. Crystal structure of 6,6′-((pentane-1,3-diylbis(azaneylylidene))bis(methaneylylidene))bis(2,4-dibromolphenolato-κ4 N,N′,O,O′)copper(II),) C19H16Br4CuN2O2
  21. Chlorido-(2,2′-(ethane-bis(5-methoxyphenolato))-κ4 N,N,O,O′)manganese(III) monohydrate, C19H18Cl2CuN2O2
  22. Crystal structure of 2,6-di-tert-butyl-4-(4-methoxybenzylidene)cyclohexa-2,5-dien-1-one, C22H28O2
  23. Crystal structure of [6,6′-(((2,2-dimethylpropane-1,3-diyl)bis(azanylylidene))bis(methanylylidene))bis(2-chlorophenolato)-κ4N,N′,O,O′]copper(II)
  24. Crystal structure of 2-chloro-3-((thiophen-2-ylmethyl)amino)naphthalene-1,4-dione, C30H20O4N2Cl2S2
  25. Crystal structure of bis{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl)borato-κN 3}manganese(II), C30H26B2F18MnN12
  26. Crystal structure of 1-(2-methylphenyl)-2-(2-methylbenzo[b]thienyl)-3,3,4,4,5,5-hexafluorocyclopent-ene, C21H14F6S
  27. Crystal structure of 2-(3-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  28. Crystal structure of 4,5-diiodo-1,3-dimesityl-1H-1,2,3-triazol-3-ium chloride – chloroform (1/1), C21H23Cl4I2N3
  29. Crystal structure of azido-k1 N-{6,6′-((((methylazanediyl)bis(propane-3,1-diyl))bis(azanylylidene))bis(methanylylidene))bis(2,4-dibromophenolato)k5 N,N′,N″,O,O′}cobalt(III)-methanol (1/1)), C21H23Br4CoN6O3
  30. The crystal structure of 2-(4-((carbamimidoylthio)methyl)benzyl)isothiouronium hexafluorophosphate monohydrate, C10H17F6N4OPS2
  31. Crystal structure of 1,1′-(methane-1,1-diyl)bis(3-methyl-1H-imidazol-3-ium) bis(hexafluoridophosphate), C9H14F12N4P2
  32. Crystal structure of (4′E)-6′-(diethylamino)-2-[(E)-[(pyren-1-yl)methylidene]amino]-4′-{2-[(2E)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]ethylidene}-1′,2,2′,3,3′,4′-hexahydrospiro[isoindole-1,9′-xanthene]-3-one, C54H48N4O2
  33. Crystal structure of poly[bis(μ2-2,6-bis(1-imidazoly)pyridine-κ2 N,N′)-bis(thiocyanato-κ1 N)copper(II)] dithiocyanate, C24H18CuN12S2
  34. Cones with a three-fold symmetry constructed from three hydrogen bonded theophyllinium cations that coat [FeCl4] anions in the crystal structure of tris(theophyllinium) bis(tetrachloridoferrate(III)) chloride trihydrate, C21H33Cl9Fe2N12O9
  35. Crystal structure of 14-O-[(4-(4-hydroxypiperidine-1-yl)-6-methylpyrimidine-2-yl)thioacetyl]-mutilin monohydrate, C32H49N3O6S
  36. The crystal structure of (E)-3-chloro-2-(2-(4-methylbenzylidene)hydrazinyl)pyridine, C13H12ClN3
  37. The crystal structure of 4-phenyl-4-[2-(pyridine-4-carbonyl)hydrazinylidene]butanoic acid, C16H15N3O3
  38. The crystal structure of 6-amino-5-carboxypyridin-1-ium pentaiodide monohydrate C6H9I5N2O3
  39. Crystal structure of bis(μ3-oxido)-bis(μ2-2-formylbenzoato-k2O:O′)-bis(2-(dimethoxymethyl)-benzoato-κO)-oktakismethyl-tetratin(IV)
  40. Crystal structure of 2-((E)-(((E)-2-hydroxy-4-methylbenzylidene) hydrazineylidene)methyl)-4-methylphenol, C16H16N2O2
  41. Crystal structure of (E)-amino(2-((5-methylfuran-2-yl)methylene)hydrazinyl) methaniminium nitrate monohydrate, C14H26N10O10
  42. The crystal structure of N′-(2-chloro-6-hydroxybenzylidene)thiophene-2-carbohydrazide monohydrate, C12H11ClN2O3S
  43. Crystal structure of catena-poly[(μ2-1,1′-(biphenyl-4,4-diyl)bis(1H-imidazol)-κ2N:N′)-bis(4-bromobenzoate-κ1O)zinc(II)], C64H44Br4N8O8Zn2
  44. The crystal structure of catena-poly[(1-(4-carboxybenzyl)pyridin-1-ium-4-carboxylato-κ1O)-(μ2-oxalato-κ4 O:O′:O″:O‴)dioxidouranium(VI)], C16H11NO10U
  45. Crystal structure of 3-allyl-4-(2-bromoethyl)-5-(4-methoxyphenyl)-2-phenylfuran, C22H21BrO2
  46. Halogen bonds in the crystal structure of 4,3′:5′,4″-terpyridine — 1,3-diiodotetrafluorobenzene (1/1), C21H11F4I2N3
  47. Crystal structure of 2-(1H-indol-3-yl)ethan-1-aminium 2-(4-acetylphenoxy)acetate, C20H22N2O4
  48. Chalcogen bonds in the crystal structure of 4,7-dibromo-2,1,3-benzoselenadiazole, C6H2Br2N2Se
  49. The crystal structure of 1,4-bis((1H-benzimidazol-2-yl)methyl)-piperazine-2,5-dione dihydrate, C20H22N6O4
  50. The crystal structure of C19H20O8
  51. The crystal structure of KNa3Te8O18·5H2O exhibiting a 2[Te4O9]2− layer
  52. Erratum
  53. Erratum to: Crystal structure of (Z)-3-(6-bromo-1H-indol-3-yl)-1,3-diphenylprop-2-en-1-one, C23H16BrNO
Heruntergeladen am 10.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0383/html?lang=de
Button zum nach oben scrollen