Startseite The crystal structure of 6-(4-bromobenzyl)-1,3,5-trimethyl-7-phenyl-1,5-dihydro-2H-pyrrolo[3,2-d]pyrimidine-2,4(3H)-dione, C22H20BrN3O2
Artikel Open Access

The crystal structure of 6-(4-bromobenzyl)-1,3,5-trimethyl-7-phenyl-1,5-dihydro-2H-pyrrolo[3,2-d]pyrimidine-2,4(3H)-dione, C22H20BrN3O2

  • Orbett T. Alexander , Rajasekhar Donka , Johannes H. van Tonder , Barend C.B. Bezuidenhoudt und Hendrik G. Visser EMAIL logo
Veröffentlicht/Copyright: 9. März 2018

Abstract

C22H20BrN3O2, monoclinic, P21/c (no. 14), a = 15.889(12) Å, b = 16.332(13) Å, c = 7.324(5) Å, β = 94.985(5), V = 1893(2) Å3, Z = 4, Rgt(F) = 0.0295, wRref(F2) = 0.0790, T = 100(2) K.

CCDC no.:: 1558499

The asymmetric unit of the title crystal structure is shown in the figure. Hydrogen atoms are omitted for clarity. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Needle, colorless
Size:0.58 × 0.21 × 0.16 mm
Wavelength:Mo Kα radiation (0.71069 Å)
μ:2.19 mm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω-scans
θmax, completeness:50°, >99%
N(hkl)measured, N(hkl)unique, Rint:72106, 4558, 0.055
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3788
N(param)refined:257
Programs:Bruker programs [1], SHELX [2], DIAMOND [3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Br10.87269(2)0.12325(2)0.45364(3)0.03384(8)
N11.22507(9)0.21902(8)−0.04103(18)0.0190(3)
N21.41962(9)0.15349(9)0.1866(2)0.0198(3)
N31.42448(9)0.29810(8)0.1879(2)0.0214(3)
O11.31760(9)0.37807(7)0.05439(18)0.0263(3)
O21.53312(8)0.22176(8)0.32185(18)0.0291(3)
C11.21240(11)0.13636(10)−0.0528(2)0.0194(3)
C21.28148(11)0.09527(10)0.0320(2)0.0193(3)
C31.33920(10)0.15749(10)0.0978(2)0.0180(3)
C41.30319(10)0.23279(10)0.0516(2)0.0186(3)
C51.34481(11)0.30914(10)0.0931(2)0.0205(3)
C61.46360(11)0.22377(10)0.2375(2)0.0216(3)
C71.16553(11)0.28248(11)−0.1075(2)0.0235(4)
H7A1.14160.2687−0.23150.035*
H7B1.19490.3352−0.10980.035*
H7C1.12000.2863−0.02580.035*
C81.46049(11)0.07487(11)0.2326(3)0.0255(4)
H8A1.43620.05110.33900.038*
H8B1.52120.08340.26150.038*
H8C1.45140.03750.12800.038*
C91.47477(12)0.37172(10)0.2365(3)0.0280(4)
H9A1.50340.36520.35970.042*
H9B1.43750.41960.23430.042*
H9C1.51690.37940.14800.042*
C101.30899(12)−0.12650(12)−0.0957(3)0.0340(5)
H101.3169−0.1579−0.20210.041*
C111.30637(12)−0.16487(11)0.0711(3)0.0363(5)
H111.3125−0.22260.07960.044*
C121.28952(10)0.00488(10)0.0471(2)0.0205(3)
C131.30005(11)−0.04174(11)−0.1088(3)0.0260(4)
H131.3011−0.0156−0.22450.031*
C141.29485(12)−0.11938(11)0.2268(3)0.0338(4)
H141.2927−0.14610.34150.041*
C151.28645(11)−0.03478(11)0.2155(3)0.0269(4)
H151.2786−0.00380.32250.032*
C161.13021(11)0.10044(11)−0.1334(2)0.0239(4)
H16A1.13930.0428−0.16880.029*
H16B1.11020.1312−0.24530.029*
C171.06334(11)0.10373(10)0.0022(2)0.0218(3)
C180.98923(12)0.14876(12)−0.0298(3)0.0285(4)
H180.97820.1765−0.14330.034*
C190.93089(12)0.15402(13)0.1007(3)0.0310(4)
H190.88000.18410.07620.037*
C200.94843(11)0.11474(11)0.2667(3)0.0251(4)
C211.02109(11)0.06872(11)0.3015(3)0.0275(4)
H211.03220.04140.41560.033*
C221.07732(11)0.06286(11)0.1688(3)0.0255(4)
H221.12660.03020.19160.031*

Source of material

To a stirred solution of 1,3-dimethyl-5-(methylamino) uracil (169 mg, 1 mmol) in CH3CN (2 mL) was added 1-(4-bromophenyl)-3-phenyl propargylic alcohol (344 mg, 1.2 mmol, 1.2 eq.) at room temperature under a nitrogen atmosphere. After stirring for ca. 5 min Al(OTf)3 (47 mg, 0.1 mmol, 0.1 eq.), used as catalyst, was added and the reaction mixture heated to reflux for ca. 2 h. Upon completion (monitored by TLC) the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. The crude reaction mixture was extracted with dichloromethane (3 × 25 mL), the organic phases combined, washed with brine (4 × 25 mL) and dried over Na2SO4. The solvent was removed under reduced pressure and the crude product purified by flash column chromatography using n-hexane-ethyl acetate mixture (8:1) to yield the title compound (370 mg, 85%). Crystallization from n-hexane and ethyl acetate yielded grey needle-shaped crystals. Mp 178–180 oC. 1H NMR (300 MHz, CDCl3) δ ppm 2.99 (s, 3H), 3.32 (s, 3H), 3.70 (s, 2H), 3.74 (s, 3H), 6.76 (d, 2H, J = 9.0 Hz), 7.12–7.17 (m, 2H), 7.24–7.29 (m, 5H). 13C NMR (75 MHz, CDCl3) δ ppm 27.9, 29.7, 32.4, 33.2, 110.4, 111.1, 120.5, 128.0, 128.4, 129.4, 131.5, 131.9, 132.2, 133.5, 136.5, 138.3, 152.0, 156.0. HRMS (ESI) calcd for C22H20BrN3O2Na (M + Na)+ 460.0637; found 460.0636.

Experimental details

The aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 and 0.98 Å and Uiso(H) = 1.5 Ueq(C) and 1.2 Ueq(C), respectively. The placement of the H atoms of the methyl group was that of an idealised methyl group according to the electron-density map (AFIX 123 option of the SHELX system [2]). The highest peak is 0.41 e⋅Å−3 and the deepest hole is −0.49 e⋅Å−3

Discussion

The presented scaffold represents a family of alkaloids which potentially translate to be a derivative of xanthines. It is known that the strategic substitutions on the amine nitrogen or the core itself could potentially impact towards a different pharmacological behaviour of the compound. As a result these compounds become selective towards different Adenosine Receptor (ARs) antagonists as perceived with OT-7999 studied for the treatment of glaucoma [4]. Moreover, these heterocycles have proved to be very important prospects in medicinal chemistry and organic synthesis in prompting extensive research on these pyrrole and pyrimidine-containing compounds [5, 6] . They have been found to exhibit active pharmacological properties such as antibacterial [7], antimicrobial [8], antitumor [8, 9] , antimalarial [10], immunosuppressant [11], anti-oxidant [12] and anti-inflammatory [13] activities. To some extent, these pymiridine and pyrrole segments combined, signalled to also exhibit biological activities [14], [15], [16]. It is of these aforementioned statements, that the synthesis of these xanthine based derivatives, from easily accessible precursors, are of paramount importance.

There is one molecule in the asymmetric unit of the title structure (cf. the figure). The crystal structure is stabilized by very weak intra-molecular interactions between O1 and O2, respectively, with hydrogen atoms from neighbouring methyl groups. The atom O1 undergoes bifurcation with two hydrogens from C7 and C9 methyl groups. The core xanthine molecule in the asymmetric unit conforms in a way that is about 8° off from sitting perpendicular to the substituted bromo-benzyl moiety. As a result, the molecule itself hinders any inter-molecular interactions due to the observed steric hindrance (with a dihedral angle of almost perpendicular planes amounting to 81.9°).

Acknowledgements

This work is based on the research supported in part by the National Research Foundation of South Africa for the grant, Unique Grant No. 109014. The authors would like to thank Dr. R. Koen for his valuable input and the University of the Free State for financial support.

References

Bruker, SAINT-Plus (Version 7.12), Bruker AXS Inc., Madison, WI, USA (2004).Suche in Google Scholar

Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Suche in Google Scholar PubMed

Brandenbug, K.; Putz, H.: DIAMOND. Visual Crystal Structure Information System. Version 3.0c. Crystal Impact GbR, Bonn, Germany (2005).Suche in Google Scholar

Jacobson, K. A.: Introduction to adenosine receptors as therapeutic targets. Springer Berlin Heidelberg 193 (2009) 13–16.10.1007/978-3-540-89615-9_1Suche in Google Scholar PubMed PubMed Central

Bean, G. P.: Chemistry of heterocyclic compounds, pyrroles. Jones R. A., Ed. John Wiley & Sons, Inc., New York (1990) 105–294.Suche in Google Scholar

Gilchrist, T. L.: Synthesis of aromatic heterocycles. J. Chem. Soc. Perkin Trans. 1 (1998) 615–628.10.1039/a704493cSuche in Google Scholar

Paliwal, P. K.; Jetti, S. R.; Jain, S.: Green approach towards the facile synthesis of dihydropyrano(c)chromene and pyrano[2,3-d]pyrimidine derivatives and their biological evaluation. Med. Chem. Res. 22 (2013) 2984–2990.10.1007/s00044-012-0288-3Suche in Google Scholar

El-Kalyoubi, S.; Agili, F.: A novel synthesis of fused uracils: indenopyrimidopyridazines, pyrimidopyridazines, and pyrazolopyrimidines for antimicrobial and antitumor evalution. Molecules 21 (2016) 1714.10.3390/molecules21121714Suche in Google Scholar PubMed PubMed Central

El-Kalyoubi, S.; Fayed, E.: Synthesis and evaluation of antitumour activities of novel fused tri-and tetracyclic uracil derivatives. J. Chem. Res. 40 (2016) 771–777.10.3184/174751916X14798125870610Suche in Google Scholar

Mital, A.; Murugesan, D.; Kaiser, M.; Yeates, C.; Gilbert, I. H.: Discovery and optimisation studies of antimalarial phenotypic hits. Eur. J. Med. Chem. 103 (2015) 530–538.10.1016/j.ejmech.2015.08.044Suche in Google Scholar PubMed PubMed Central

Murray, C. M.; Hutchinson, R.; Bantick, J. R.; Belfield, G. P.; Benjamin, A. D.; Brazma, D.; Bundick, R. V.; Cook, I. D.; Craggs, R. I.; Edwards, S.; Evans, L. R.; Harrison, R.; Holness, E.; Jackson, A. P.; Jackson, C. G.; Kingston, L. P.; Perry, M. W. D.; Ross, A. R. J.; Rugman, P. A.; Sidhu, S. S.; Sullivan, M.; Taylor-Fishwick, D. A.; Walker, P. C.; Whitehead, Y. M.; Wilkinson, D. J.; Wright, A.; Donald, D. K.: Monocarboxylate transporter MCT1 is a target for immunosuppression. Nat. Chem. Biol. 1 (2005) 371–376.10.1038/nchembio744Suche in Google Scholar PubMed

Yousefi, A.; Yousefi, R.; Panahi, F.; Sarikhani, S.; Zolghadr, A. R.; Bahaoddini, A.; Khalafi-Nezhad, A.: Novel curcumin-based pyrano[2,3-d]pyrimidine anti-oxidant inhibitors for α-amylase and α-glucosidase: Implications for their pleiotropic effects against diabetes complications. Int. J. Biol. Macromol. 78 (2015) 46–55.10.1016/j.ijbiomac.2015.03.060Suche in Google Scholar PubMed

Choi, Y. H.; Shin, E. M.; Kim, Y. S.; Cai, X. F.; Lee, J. J.; Kim, H. P.: Anti-inflammatory principles from the fruits of evodia rutaecarpa and their cellular action mechanisms. Arch. Pharm. Res. 29 (2006) 293–297.10.1007/BF02968573Suche in Google Scholar PubMed

Singh, P.; Kaur, J.; Singh, G.; Bhatti, R.: Triblock Conjugates: identification of a highly potent antiinflammatory agent. J. Med. Chem. 58 (2015) 5989–6001.10.1021/acs.jmedchem.5b00952Suche in Google Scholar PubMed

Gupta, P. K.; Nassiri, M. R.; Coleman, L. A.; Wotring, L. L.; Drach, J. C.; Townsend, L. B.: Synthesis, cytotoxicity, and antiviral activity of certain 7-[(2-hydroxyethoxy)methyl]pyrrolo[2,3-d]pyrimidine nucleosides related to toyocamycin and sangivamycin. J. Med. Chem. 32 (1989) 1420–1425.10.1021/jm00127a003Suche in Google Scholar PubMed

Suresh, T.; Nandha kumar R.; Mohan, P. S.: Synthesis and antibacterial activities of 1,2,3,4,6,7,8,9-octahydro-1,3,7,9-tetraphenyl 5-pyrrolo-2,4,6,8-tetraoxo-10H, 5H pyrido[2,3-d; 6,5-d′] dipyrimidine. Heterocycl. Commun. 9 (2011) 203–208.10.1515/HC.2003.9.2.203Suche in Google Scholar

Received: 2017-11-13
Accepted: 2018-2-20
Published Online: 2018-3-9
Published in Print: 2018-5-24

©2018 Orbett T. Alexander et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Artikel in diesem Heft

  1. Cover and Frontmatter
  2. Bis(tetraethylammonium) carbonate – boric acid – water (1/2/5), C17H56B2N2O14
  3. Crystal structure of 4-methoxy-6-phenyl-2H-pyran-2-one, C12H10O3
  4. Crystal structure of tris{(3-((E)-(((E)-2-oxidobenzylidene)hydrazono)methyl)-2-oxo-2H-chromen-4-olato-κ3O,N:N′)}dicobalt(III)tris(dimethylformamide), C60H50Co2N9O15
  5. Crystal structure of poly[bis(1-methyl-[4,4′-bipyridin]-1-ium-κN)-tetrakis(μ3-sulfato-κ3O:O′:O′′)trizinc(II)], C22H22Zn3N4O16S4
  6. Crystal structure of (5Z,10Z)-3,13-dichloro-17,18-dioxo-5,11-diphenyl-8,9,17,18-tetrahydro-7H-dibenzo[e,n][1,4,8,12]tetraazacyclopentadecine-16,19-diido-κ4N,N′,N′′,N′′′)copper(II), C31H22N4O2Cl2Cu
  7. Crystal structure of bis{5-methoxy-2-(((2-oxo-2H-chromen-6-yl)imino)methyl)phenolato-κ2N,O}zinc(II), C34H24N2O8Zn
  8. Crystal structure of 2,2′-((((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(azanylylidene))bis(methanylylidene))diphenolato-κ2N4O)nickel(II), C28H22N2O4Ni
  9. Crystal structure of 1,1′-((1E,1′E)-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(azanylylidene))bis(methanylylidene))bis(naphthalen-2-olato)cobalt(II), C36H26N2O4Co
  10. Crystal structure of camptothecin, C20H16N2O4
  11. Crystal structure of (2-(chlorophenyl)-5-methyl-1,3-dioxane-5-carboxylato–κ2O,O′)(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N′′′)nickel(II) perchlorate monohydrate, Ni(C16H36N4)(C12H12O4Cl)ClO4⋅H2O
  12. Crystal structure of 3-(2-chloro-6-methoxyquinolin-3-yl)-5-phenylisoxazole (C19H13ClN2O2)
  13. Crystal structure of tetrakis(μ2-acetato-κ2O:O′)-bis{[(E)-2,6-diisopropyl-N-(pyridin-3-ylmethylene)aniline]copper (II)}, C44H56Cu2N4O8
  14. Crystal structure of diethyl 2-(2-chlorophenyl)-1,3-dioxane-5,5-dicarboxylate, C16H19Cl1O6
  15. Crystal structure of (μ2-2,2′-bipyridine-3,3′-dicarboxylato)-bis(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)-di-nickel(II) perchlorate N,N′-dimethylformamide solvate, C50H92Cl2N12Ni2O14
  16. Crystal structure of catena-poly[triaqua(μ2-1,2-bis(4-pyridyl)ethane-κ2N:N′)-(1,2-bis(4-pyridyl)ethane-κN)nickel(II)] 2-aminonicotinate nitrate – 1,2-bis(4-pyridyl)ethane – water (2/1/8), C36H44N8NiO12
  17. Hydrothermal synthesis and crystal structure of poly[bis(μ2-3-(3,5-dicarboxyphenoxy)phthalato-κ3O,O′:O′′)-(μ2-1,2-di(pyridin-4-yl)ethane-κ2N:N′)copper(II)], C22H14CuNO9
  18. Crystal structure of catena-poly[aqua-(methanol-κO)-bis(μ2-4-(pyridin-4-yl)benzoato-κ2N:O)-bis(triphenylphospine-κP)disilver(I)], C61H52Ag2N2O6P2
  19. The crystal structure of 6-(4-bromobenzyl)-1,3,5-trimethyl-7-phenyl-1,5-dihydro-2H-pyrrolo[3,2-d]pyrimidine-2,4(3H)-dione, C22H20BrN3O2
  20. Synthesis and crystal structure of catena-poly[bis(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetato-κO2O′,O′′)-(μ2-1,4-di(pyridin-4-yl)benzene-κ2N:N′)zinc(II)], C44H32N4ZnCl4O4
  21. Crystal structure of diaqua-bis[N-phenyl-2-(quinolin-8-yloxy)acetamide-κ3-N,O,O′]-nitrato(κ2O,O′)-cerium(III) dinitrate - acetone (1/2), C40H44N7O17Ce
  22. Crystal structure of the 2D coordination polymer poly[aqua(μ2-2,2′-(1,2-phenylene)diacetato-κ3O,O′:O′)-(μ2-4,4′-bis((1H-1,2,4-triazol-1-yl)methyl)-1,1′-biphenyl-κ2N:N′)cobalt(II)], C28H26CoN6O5
  23. Crystal structure of (dimethylformamide-κO)(perchlorato-κ2O,O′){μ2-6,6′-((1,2-phenylenebis(azanylylidene))bis(methanylylidene))bis(4-bromo-2-methoxyphenolate)-κ8N,N′,O:O,O′:O′,O′′,O′′′}sodium(I)nickel(II), C25H23Br2ClN3NaNiO9
  24. The crystal structure of catena-poly[bis((4-aminophenyl)sulfonyl)(pyrimidin-2-yl)amido-κ2N,N′)-bis(μ2-4,4′-bipyridine-N,N′2N:N′)zinc(II) – methanol (1/2), C32H34N10O6S2Zn
  25. Synthesis and crystal structure poly[aqua(μ3-2-(((7-hydroxy-3-(4-hydroxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl)methyl)ammonio)acetate-κ4O,O′:O′′:O′′′) sodium] monohydrate, C18H18NNaO11S
  26. Crystal structure of methyl 4′-amino-3′,5′-diisopropyl-[1,1′-biphenyl]-4-carboxylate, C20H25NO2
  27. Crystal structure of (η6-1-isopropyl-4-methyl benzene)-(N-(2,5-dichlorophenyl)-1-(pyridin-2-yl)methanimine-κ2N,N′)ruthenium(II) perchlorate, C22H22Cl4N2O4Ru
  28. Crystal structure of 2-(2-(1-Chlorocyclopropyl)-3-(2-chlorophenyl)-2-hydroxypropyl)-1H-1,2,4-triazole-3(2H)-thione, C14H15Cl2N3OS
  29. Crystal structure of methyl 4′-amino-3′,5′-dimethyl-[1,1′-biphenyl]-4-carboxylate, C16H17NO2
  30. The crystal structure of 1-(5-ferrocenyl-3-(trifluoromethyl)-1H-pyrazol-1-yl)pentan-1-on, C19H19F3FeN2O
  31. The crystal structure of (3S,12R,20R,24S)-3,12-diacetyl-20,24-epoxy-dammarane-3,12,25-triol acetone solvate, C34H56O6
  32. Crystal structure of methyl 10-(pyridin-4-yl)-anthracene-9-carboxylate, C21H15NO2
  33. Crystal structure of catena-poly[diaqua-bis(di(N2,N6-dihydroxypyridine-2,6-dicarboxamide))potassium(I)]tetrahydrate, C14H25N6O14K
  34. Crystal structure of poly{[μ2-(E)-1,4-bis(1H-benzo[d]imidazol-1-yl)but-2-ene-κ2N:N′][μ3–cyclohexane-1,4-dicarboxylato-κ4O,O′:O′′:O′′′]cadmium(II)}, C26H26CdN4O4
  35. Crystal structure of poly[aqua(μ3-[2,2′-bipyridine]-3,3′-dicarboxylato-κ4N,N′:O:O′)zinc(II)] – dimethylformamide (1/1), C15H15N3O6Zn
  36. The crystal structure of poly[tetraaqua-tris(μ2-2,6-di(1H-imidazol-1-yl)naphthalene-κ2N:N′)-bis(thiophene-2,5-dicarboxylato-κ1O)]dicobalt(II), C30H24CoN6O6S
  37. Crystal structure of (S)-1-(5-(anthracen-9-yl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)propan-1-one, C26H22N2O
  38. Crystal structure of 5-methyl-3,3-diphenyl-1-tosyl-1,2,3,4-tetrahydropyridine, C25H25NO2S
  39. Synthesis and crystal structure of μ-[1,1′-di(mesitylphosphanido)ferrocene]bis[η5-cyclopentadienylnickel(II)] tetrahydrofurane solvate, C42H48FeNi2OP2
  40. Synthesis and crystal structure of (E)-1-(4-(((E)-5-chloro-2-hydroxybenzylidene)amino)phenyl)ethan-1-one O-methyl oxime, C16H15ClN2O2
  41. Crystal structure of bis(1-(phenylsulfonyl)-2-(1-(pyrazin-2-yl)ethylidene)hydrazin-1-ido-κ3N,N′,O)nickel(II), C24H22N8O4S2Ni
  42. Crystal Structure of bis(1-(phenylsulfonyl)-2-(1-(pyrazin-2-yl)ethylidene)hydrazin-1-ido-κ3N,N′,O)copper(II), C24H22N8O4S2Cu
  43. Synthesis and crystal structure of poly[aqua{μ3-(1S,2S)-1-((7-hydroxy-3-(4-hydroxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl)methyl)pyrrolidin-1-ium-2-carboxylato-κ4O,O′:O′′:O′′′}sodium(I)] monohydrate, C21H22NNaO11S
  44. Halogen bonds in the crystal structure of 1,4-diiodotetrafluorobenzene–1,2-bis(4-pyridyl)propane (1/1), C19H14F4I2N2
  45. Crystal structure of bis(μ-N-i-propyl-N-n-propyldithiocarbamato-κ2S:S′) bis(N-i-propyl-N-n-propyldithiocarbamato-κ2S,S′)dizinc(II), C28H56N4S8Zn2
  46. Crystal structure of bis(μ-N-i-propyl-N-n-propyldithiocarbamato-κ3S,S′:S)bis(N-i-propyl-N-n-propyldithiocarbamato-κ2S,S′)dicadmium(II), C28H56Cd2N4S8
  47. Crystal structure of bis(μ2-di-n-butyldithiocarbamato-κ3S,S′:S3S:S:S′)-hexacarbonyl-di-rhenium(I), C24H36N2O6Re2
  48. Crystal structure of 7-(4-methylphenyl)imidazo[1,2-a][1,3,5]triazin-4-amine, C12H11N5
  49. Crystal structure of the co-crystal O-isopropyl phenylcarbamothioate – 4,4′-bipyridine (2/1), C15H17N2OS
  50. Crystal structure of the coordination polymer catena-poly[chlorido-{μ2-2-(((3,5-dimethyl-1H-pyrazol-1-yl)methyl)amino)-3-hydroxybutanoato-κ4N,N,O:O′}copper(II)], C11H16ClCuN2O3
  51. Synthesis and crystal structure of bis(μ2-acetato-κ2O:O′)-di(ethanol)-bis{μ2-5-(N,N′-diethylamine)-5′-methoxyl-2,2′-[ethylenediyldioxybis(nitrilomethylidyne)]diphenolato-κ6O:O,N,N,O′:O′}trinickel(II) – ethanol – acetonitrile (1/2/2), C58H86Ni3N8O18
  52. Crystal structure of the bis((E)-O-ethyl-N-phenylthiocarbamate) – 4,4′-bipyridine co-crystal (2/1), C28H30N4O2S2
  53. Crystal structure of the (E)-O-methyl-N-phenyl-thiocarbamate – 4,4′-bipyridine (1/1), C18H17N3OS
  54. Crystal structure of bis(μ2-diethyldithiocarbamato-κ3S,S′:S′)-bis(tricyclohexylphosphane-κP)dicopper(I), C46H86Cu2N2P2S4
  55. Crystal structure of N-(3-chlorophenyl)ethoxycarbothioamide, C9H10ClNOS
  56. Crystal structure of bis(μ2-pyrrolidine-1-carbodithioato-κ3S,S′:S;κ3S:S:S′)-bis(tricyclohexylphosphane-P)-di-copper(I), C46H82Cu2N2P2S4
  57. Crystal structure of N-(2-chlorophenyl)methoxycarbothioamide, C8H8ClNOS
  58. Crystal structure of chlorido-methanol-(N-(2-(oxy)-3-methoxybenzylidene)pyridine-4-carbohydrazonato-κ3O,N,O′)-(4-methylphenyl)methyl-tin(IV), C23H24ClN3O4Sn
  59. Crystal structure of N-(3-chlorophenyl)(propan-2-yloxy)carbothioamide, C10H12ClNOS
  60. Crystal structure of 1-[(Z)-[4-(4-methoxyphenyl)butan-2-ylidene]amino]-3-phenylurea, C18H21N3O2
  61. A triclinic polymorph of bis(μ-N,N-bis(2-hydroxyethyl)dithiocarbamato-κ3S,S′:S′) bis(N,N-bis(2-hydroxyethyl)dithiocarbamato-κ2S:S′)zinc(II), C20H40N4O8S8Zn2
Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2017-0296/html
Button zum nach oben scrollen