Startseite A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles

  • Manoj Kumar ORCID logo EMAIL logo
Veröffentlicht/Copyright: 22. Februar 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A comparative study on the manifestation of rare earth ions substitution induced alteration in structure, magnetic and optical properties of BiFeO3 nanoparticles was done. Sol-gel technique was employed to synthesize Bi1−xR x FeO3 (x = 0.05 and 0.10; R: Ce3+, Sm3+ and Dy3+) nanoparticles. X-ray diffraction patterns and Raman spectra analysis confirmed substitution driven structural phase transformation from distorted rhombohedral structure to orthorhombic structure for x = 0.10 samples. The enhanced magnetic properties with weak ferromagnetic behaviour were observed with increasing concentration of rare earth ions in BiFeO3 nanoparticles. The improved magnetic characteristics are attributed to many factors such as the uncompensated surface spins in nanoparticles, breaking of spin cycloid with R3+ ions substitution and super exchange interaction between R3+ and Fe3+ ions. The maximum magnetization values of 1.77 emu g−1, 1.87 emu g−1 and 5.5 emu g−1 were observed for x = 0.10 samples with Ce3+, Sm3+ and Dy3+ substitution, respectively. The magnetization increased with increasing difference in ionic radii of host Bi3+ (1.17 Å) ion and dopant Ce3+ (1.14 Å), Sm3+ (1.08 Å) and Dy3+ (1.03 Å) ions. UV–Visible diffuse reflectance spectra showed a sharp absorption in visible region and energy band gap values variation in the range 2.2 eV–2.33 eV.


Corresponding author: Manoj Kumar, Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida-201309, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Scott, J. F. J. Mater. Chem. 2012, 22, 4567–4574. https://doi.org/10.1039/C2JM16137K.Suche in Google Scholar

2. Catalan, G., Scott, J. F. Adv. Mater. 2009, 21, 2463–2485. https://doi.org/10.1002/adma.200802849.Suche in Google Scholar

3. Li, Y., Cao, M. S., Wang, D. W., Yuan, J. RSC Adv. 2015, 5, 77184–77191. https://doi.org/10.1039/C5RA15458H.Suche in Google Scholar

4. Sun, B., Liu, Y., Zhao, W., Chen, P. RSC Adv. 2015, 5, 13513–13518. https://doi.org/10.1039/C4RA14605K.Suche in Google Scholar

5. Arora, M., Kumar, M. Ceram. Int. 2015, 41, 5705–5712. https://doi.org/10.1016/j.ceramint.2014.12.155.Suche in Google Scholar

6. Cheng, Z., Wang, X., Kannan, C. V., Ozawa, K., Kimura, H., Nishida, T., Shrout, T. R. Appl. Phys. Lett. 2006, 88, 132909. https://doi.org/10.1063/1.2191732.Suche in Google Scholar

7. Gabbasova, Z. V., Kuz’min, M. D., Zvezdin, A. K., Dubenko, I. S., Murashov, V. A., Rakov, D. N., Krynetsky, I. B. Phys. Lett. A 1991, 158, 491–498. https://doi.org/10.1016/0375-9601(91)90467-m.Suche in Google Scholar

8. Neaton, J. B., Ederer, C., Waghmare, U. V., Spaldin, N. A., Rabe, K. M. Phys. Rev. B 2005, 71, 014113–014120. https://doi.org/10.1103/physrevb.71.014113.Suche in Google Scholar

9. Mohan, S., Subramanian, B., Bhaumik, I., Gupta, P. K., Jaisankar, S. N. RSC Adv. 2014, 4, 16871–16878. https://doi.org/10.1039/c4ra00137k.Suche in Google Scholar

10. Arora, M., Kumar, M. Mater. Lett. 2014, 137, 285–288. https://doi.org/10.1016/j.matlet.2014.08.140.Suche in Google Scholar

11. Wang, X., Zhang, Y., Wu, Z. Mater. Lett. 2010, 64, 486–488. https://doi.org/10.1016/j.matlet.2009.11.059.Suche in Google Scholar

12. Varshney, D., Sharma, P., Satapathy, S., Gupta, P. K. J. Alloys Compd. 2014, 584, 232–239. https://doi.org/10.1016/j.jallcom.2013.08.159.Suche in Google Scholar

13. Arora, M., Chauhan, S., Sati, P. C., Kumar, M., Chhoker, S. Ceram. Int. 2014, 40, 13347–13356. https://doi.org/10.1016/j.ceramint.2014.05.049.Suche in Google Scholar

14. Kumar, M., Chandra Sati, P., Chhoker, S., Sajal, V. Ceram. Int. 2015, 41, 777–786. https://doi.org/10.1016/j.ceramint.2014.09.002.Suche in Google Scholar

15. Wang, D., Wang, M., Liu, F., Cui, Y., Zhao, Q., Sun, H., Cao, M. Ceram. Int. 2015, 41, 8768–8772. https://doi.org/10.1016/j.ceramint.2015.03.100.Suche in Google Scholar

16. Guo, R., Fang, L., Dong, W., Zheng, F., Shen, M. J. Phys. Chem. C 2010, 114, 21390–21396. https://doi.org/10.1021/jp104660a.Suche in Google Scholar

17. Xu, J., Wang, G., Wang, H., Ding, D., He, Y. Mater. Lett. 2009, 63, 855–857. https://doi.org/10.1016/j.matlet.2009.01.036.Suche in Google Scholar

18. Rao, T. D., Ranjith, R., Asthana, S. J. Appl. Phys. 2014, 115, 124110. https://doi.org/10.1063/1.4869775.Suche in Google Scholar

19. Yang, Y., Sun, J. Y., Zhu, K., Liu, Y. L., Wan, L. J. Appl. Phys. 2008, 103, 093532. https://doi.org/10.1063/1.2913198.Suche in Google Scholar

20. Hermet, P., Goffinet, M., Kreisel, J., Ghosez, P. Phys. Rev. B 2007, 75, 220102(R)–220105(R). https://doi.org/10.1103/physrevb.75.220102.Suche in Google Scholar

21. Singh, M. K., Ryu, S., Jang, H. M. Phys. Rev. B 2005, 72, 132101–132104. https://doi.org/10.1103/physrevb.72.132101.Suche in Google Scholar

22. Yuan, G. L., Or, S. W., Chan, H. L. W., Liu, Z. G. J. Appl. Phys. 2007, 101, 024106. https://doi.org/10.1063/1.2423228.Suche in Google Scholar

23. Pandit, P., Satapathy, S., Gupta, P. K., Sathe, V. G. J. Appl. Phys. 2009, 106, 114105. https://doi.org/10.1063/1.3264836.Suche in Google Scholar

24. Reddy, V. A., Pathak, N. P., Nath, R. J. Alloys Compd. 2012, 543, 206–212. https://doi.org/10.1016/j.jallcom.2012.07.098.Suche in Google Scholar

25. Arora, M., Sati, P. C., Chauhan, S., Chhoker, S., Panwar, A. K., Kumar, M. J. Supercond. Nov. Magnetism 2012, 26, 443–448. https://doi.org/10.1007/s10948-012-1761-4.Suche in Google Scholar

26. Ramachandran, B., Rao, M. S. R. J. Appl. Phys. 2012, 112, 073516. https://doi.org/10.1063/1.4757589.Suche in Google Scholar

27. Zou, J., Jiang, J., Zhang, Y., Ma, J., Wan, Q. Mater. Lett. 2012, 72, 134–136. https://doi.org/10.1016/j.matlet.2011.12.091.Suche in Google Scholar

Received: 2021-12-30
Accepted: 2022-08-03
Published Online: 2023-02-22
Published in Print: 2023-07-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. International conference on energy and advanced materials
  4. Review
  5. Analysis of different printing technologies for metallization of crystalline silicon solar cells
  6. Original Papers
  7. DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
  8. Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
  9. Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
  10. Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
  11. Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
  12. Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
  13. Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
  14. Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
  15. A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
  16. Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
  17. Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
  18. Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
  19. Impact of top metal electrodes on current conduction in WO3 thin films
  20. Atomistic simulation of Stoner–Wohlfarth (SW) particle
  21. Optimization of Coulomb glass system using quenching and annealing at small disorders
  22. Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
  23. Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
  24. Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
  25. Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
  26. Thermal properties of AlN (nano) filled LDPE composites
  27. Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
  28. Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
  29. AlGaN/GaN heterostructures for high power and high-speed applications
  30. Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
  31. Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
  32. Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
  33. Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
  34. Rotating magnetic field configuration for controlled particle flux in material processing applications
  35. News
  36. DGM – Deutsche Gesellschaft für Materialkunde
Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8760/html
Button zum nach oben scrollen