Abstract
We analyzed the linear mode conversion of incident terahertz (THz) radiation into THz surface plasmon waves (SPWs) over a surface of graphene deposited on the rippled dielectric substrate. Obliquely incident p-polarized laser light imparts oscillatory velocity to the electrons in ripple layer regime. Electron oscillatory velocity beats with ripple surface density to produce a linear current density. We examine the tunable response of mode conversion of incident terahertz radiation with respect to change in Fermi energy of graphene and incident angle. A suitable surface ripple wave number resonantly drives the THz SPW. We observe the THz SPW generation tunability with respect to Fermi energy of graphene and incident angle. The amplitude of THz SPW is increased by lowering the Fermi energy of the graphene sheet.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Maier, S. A. Plasmonics: Fundamentals and Applications; Springer Science and Business Media, 2007.10.1007/0-387-37825-1Suche in Google Scholar
2. Kushwaha, M., Halevi, P. Magnetoplasmons in thin films in the voigt configuration. Phys. Rev. B 1987, 36, 5960. https://doi.org/10.1103/physrevb.36.5960.Suche in Google Scholar PubMed
3. Prabowo, B. A., Purwidyantri, A., Liu, K. C. Surface plasmon resonance optical sensor: a review on light source technology. Biosensors 2018, 8, 80. https://doi.org/10.3390/bios8030080.Suche in Google Scholar PubMed PubMed Central
4. Yesudasu, V., Pradhan, H. S., Pandya, R. J. Recent progress in surface plasmon resonance based sensors: a comprehensive review. Heliyon 2021, 7, 185e06321. https://doi.org/10.1016/j.heliyon.2021.e06321.Suche in Google Scholar PubMed PubMed Central
5. Zhang, Y., Xu, Y., Tian, C., Xu, Q., Zhang, X., Li, Y., Zhang, X., Han, J., Zhang, W. Terahertz spoof surface-plasmon-polariton subwavelength waveguide. Photon. Res. 2018, 6, 18–23. https://doi.org/10.1364/prj.6.000018.Suche in Google Scholar
6. Dazhang, L., Cunningham, J., Byrne, M. B., Khanna, S., Wood, C. D., Burnett, A. D., Ershad, S. M., Linfield, E. H., Davies, A. G. On-chip terahertz goubau-line waveguides with integrated photoconductive emitters and mode-discriminating detectors. Appl. Phys. Lett. 2009, 95, 092903. https://doi.org/10.1063/1.3216579.Suche in Google Scholar
7. Ummethala, S., Harter, T., Koehnle, K., Li, Z., Muehlbrandt, S., Kutuvantavida, Y., Kemal, J., Marin-Palomo, P., Schaefer, J., Tessmann, A., Garlapati, S. K., Bacher, A., Hahn, L., Walther, M., Zwick, T., Randel, S., Freude, W., Koos, C. Thz to optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat. Photonics 2019, 13, 519–524. https://doi.org/10.1038/s41566-019-0475-6.Suche in Google Scholar
8. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D. E., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. https://doi.org/10.1126/science.1102896.Suche in Google Scholar PubMed
9. Horng, J., Chen, C. F., Geng, B., Girit, C., Zhang, Y., Hao, Z., Bechtel, H. A., Martin, M., Zettl, A., Crommie, M. F., Shen, Y. R., Wang, F. Drude conductivity of Dirac fermions in graphene. Phys. Rev. B 2011, 83, 165113. https://doi.org/10.1103/physrevb.83.165113.Suche in Google Scholar
10. Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S., Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. https://doi.org/10.1103/revmodphys.81.109.Suche in Google Scholar
11. Scarfe, S., Cui, W., Luican-Mayer, A., Ménard, J. M. Systematic thz study of the substrate effect in limiting the mobility of graphene. Sci. Rep. 2021, 11, 1–9. https://doi.org/10.1038/s41598-021-87894-5.Suche in Google Scholar PubMed PubMed Central
12. Wang, J., Zhao, R., Yang, M., Liu, Z., Liu, Z. Inverse relationship between carrier mobility and bandgap in graphene. J. Chem. Phys. 2013, 138, 084701. https://doi.org/10.1063/1.4792142.Suche in Google Scholar PubMed
13. Cui, L., Wang, J., Sun, M. Graphene plasmon for optoelectronics. Rev. Phys. 2021, 6, 100054. https://doi.org/10.1016/j.revip.2021.100054.Suche in Google Scholar
14. Wei, W., Chen, N., Nong, J., Lan, G., Wang, W., Yi, J., Tang, L. Grapheneassisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy. Opt. Express 2018, 26, 16903–16916. https://doi.org/10.1364/oe.26.016903.Suche in Google Scholar
15. Wang, Y., Liu, H., Wang, S., Cai, M., Zhang, H., Qiao, Y. Electrical phase control based on graphene surface plasmon polaritons in mid-infrared. Nanomaterials 2020, 10, 576. https://doi.org/10.3390/nano10030576.Suche in Google Scholar PubMed PubMed Central
16. Li, Z., Huang, J., Zhao, Z., Wang, Y., Huang, C., Zhang, Y. Single-layer graphene optical modulator based on arrayed hybrid plasmonic nanowires. Opt. Express 2021, 29, 30104–30113. https://doi.org/10.1364/oe.434916.Suche in Google Scholar
17. Lu, H., Gan, X., Mao, D., Zhao, J. Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides. Photon. Res. 2017, 5, 162–167. https://doi.org/10.1364/prj.5.000162.Suche in Google Scholar
18. Farmani, A., Mir, A. Graphene sensor based on surface plasmon resonance for optical scanning. IEEE Photon. Technol. Lett. 2019, 31, 643–646. https://doi.org/10.1109/lpt.2019.2904618.Suche in Google Scholar
19. El-Khozondar, H. J., El-Khozondar, R. J., Shabat, M. M. Dispersion characteristics and sensitivity properties of graphene surface plasmon sensor. Sens. Lett. 2017, 15, 249–252. https://doi.org/10.1166/sl.2017.3802.Suche in Google Scholar
20. Omar, N. A. S., Fen, Y. W., Saleviter, S., Daniyal, W. M. E. M. M., Anas, N. A. A., Ramdzan, N. S. M., Roshidi, M. D. A. Development of a graphene-based surface plasmon resonance optical sensor chip for potential biomedical application. Materials 2019, 12, 1928. https://doi.org/10.3390/ma12121928.Suche in Google Scholar PubMed PubMed Central
21. Heydari, M. B., Samiei, M. H. V. Analytical study of tm-polarized surface plasmon polaritons in nonlinear multi-layer graphene-based waveguides. Plasmonics 2021, 16, 841–848. https://doi.org/10.1007/s11468-020-01336-y.Suche in Google Scholar
22. Heydari, M. B., Vadjed Samiei, M. H. An analytical study of magnetoplasmons in anisotropic multi-layer structures containing magnetically biased graphene sheets. Plasmonics 2020, 15, 1183–1198. https://doi.org/10.1007/s11468-020-01136-4.Suche in Google Scholar
23. Heydari, M. B., Samiei, M. H. V. New analytical investigation of anisotropic graphene nano-waveguides with bi-gyrotropic cover and substrate backed by a pemc layer. Opt. Quant. Electron. 2020, 52, 1–16. https://doi.org/10.1007/s11082-020-2222-0.Suche in Google Scholar
24. Wu, J., Guo, S., Li, Z., Li, X., Xue, H., Wang, Z. Graphene hybrid surface plasmon waveguide with low loss transmission. Plasmonics 2020, 15, 1621–1627. https://doi.org/10.1007/s11468-020-01181-z.Suche in Google Scholar
25. Singh, P. K., Aizin, G., Thawdar, N., Medley, M., Jornet, J. M. Graphenebased plasmonic phase modulator for terahertz-band communication. In 2016 10th European Conference on Antennas and Propagation (EuCAP). IEEE, 2016, pp. 1–5.10.1109/EuCAP.2016.7481218Suche in Google Scholar
26. Khattak, M. I., Anab, M., Muqarrab, N. A duo of graphene-copper based wideband planar plasmonic antenna analysis for lower region of terahertz (thz) communications. Prog. Electromagn. Res. C 2021, 111, 83–96. https://doi.org/10.2528/pierc21010603.Suche in Google Scholar
27. Elayan, H., Shubair, R. M., Kiourti, A. On graphene-based thz plasmonic nano-antennas. In 2016 16th Mediterranean Microwave Symposium (MMS). IEEE, 2016, pp. 1–3.10.1109/MMS.2016.7803807Suche in Google Scholar
28. He, Z., Li, L., Ma, H., Pu, L., Xu, H., Yi, Z., Cao, X., Cui, W. Graphenebased metasurface sensing applications in terahertz band. Results Phys. 2021, 21, 103795. https://doi.org/10.1016/j.rinp.2020.103795.Suche in Google Scholar
29. Teng, D., Wang, K. Theoretical analysis of terahertz dielectric–loaded graphene waveguide. Nanomaterials 2021, 11, 210. https://doi.org/10.3390/nano11010210.Suche in Google Scholar PubMed PubMed Central
30. Li, G., Liu, Q., Liu, Y., Wei, Y., Weng, R., Zhou, Y., Jiang, L. Enhanced group delay of the pulse reflection with graphene surface plasmon via modified otto configuration. Adv. Condens. Matter Phys. 2017, 2017, 1–8. https://doi.org/10.1155/2017/1569621.Suche in Google Scholar
31. Valuev, I., Belousov, S., Bogdanova, M., Kotov, O., Lozovik, Y. Fdtd subcell graphene model beyond the thin-film approximation. Appl. Phys. A 2017, 123, 1–7. https://doi.org/10.1007/s00339-016-0635-1.Suche in Google Scholar
32. Peres, N., Bludov, Y. V., Ferreira, A., Vasilevskiy, M. I. Exact solution for square-wave grating covered with graphene: surface plasmon-polaritons in the terahertz range. J. Phys. Condens. Matter 2013, 25, 125303. https://doi.org/10.1088/0953-8984/25/12/125303.Suche in Google Scholar PubMed
33. Kumar, P., Kumar, M., Tripathi, V. Linear mode conversion of terahertz radiation into terahertz surface magnetoplasmons on a rippled surface of magnetized n-insb. Opt. Lett. 2016, 41, 1408–1411. https://doi.org/10.1364/ol.41.001408.Suche in Google Scholar PubMed
34. Liu, C. S., Tripathi, V. K. Kinetic magnetoplasmons in graphene and their excitation by laser. J. Nanophotonics 2017, 11, 036015. https://doi.org/10.1117/1.jnp.11.036015.Suche in Google Scholar
35. Ju, L., Geng, B., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel, H. A., Liang, X., Zettl, A., Shen, Y. R., Wang, F. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 2011, 6, 630–634. https://doi.org/10.1038/nnano.2011.146.Suche in Google Scholar PubMed
36. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., Ruoff, R. S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314. https://doi.org/10.1126/science.1171245.Suche in Google Scholar PubMed
37. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y., Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710. https://doi.org/10.1038/nature07719.Suche in Google Scholar PubMed
38. Bhattacharya, A., Devi, K. M., Nguyen, T., Kumar, G. Actively tunable toroidal excitations in graphene based terahertz metamaterials. Opt. Commun. 2020, 459, 124919. https://doi.org/10.1016/j.optcom.2019.124919.Suche in Google Scholar
39. Devi, K. M., Islam, M., Chowdhury, D. R., Sarma, A. K., Kumar, G. Plasmon-induced transparency in graphene-based terahertz metamaterials. Europhys. Lett. 2018, 120, 27005. https://doi.org/10.1209/0295-5075/120/27005.Suche in Google Scholar
40. Yarahmadi, M., Moravvej-Farshi, M. K., Yousefi, L. Subwavelength graphene-based plasmonic thz switches and logic gates. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 725–731. https://doi.org/10.1109/tthz.2015.2459674.Suche in Google Scholar
41. Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., Wang, F., Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67. https://doi.org/10.1038/nature10067.Suche in Google Scholar PubMed
42. Singh, D., Tripathi, V. Surface plasmon excitation at second harmonic over a rippled surface. J. Appl. Phys. 2007, 102, 083301. https://doi.org/10.1063/1.2795575.Suche in Google Scholar
43. Liu, F., Qian, C., Chong, Y. D. Directional excitation of graphene surface plasmons. Opt. Express 2015, 23, 2383–2391. https://doi.org/10.1364/oe.23.002383.Suche in Google Scholar
44. Griffiths, D. J. Introduction to Electrodynamics Fourth Edition; Cambridge University Press: Cambridge, 2017.Suche in Google Scholar
45. Parashar, J., Sharma, A. Second-harmonic generation by an obliquely incident laser on a vacuum-plasma interface. Europhys. Lett. 1998, 41, 389. https://doi.org/10.1209/epl/i1998-00162-1.Suche in Google Scholar
46. Tewari, D., Tripathi, V. Second-harmonic generation of upper-hybrid radiation in a plasma. Phys. Rev. A 1980, 21, 1698. https://doi.org/10.1103/physreva.21.1698.Suche in Google Scholar
47. Liu, C. S., Tripathi, V. K. Diffraction-limited laser excitation of a surface plasma wave and its scattering on a rippled metallic surface. IEEE J. Quant. Electron. 1998, 34, 1503–1507. https://doi.org/10.1109/3.704351.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial
- International conference on energy and advanced materials
- Review
- Analysis of different printing technologies for metallization of crystalline silicon solar cells
- Original Papers
- DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
- Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
- Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
- Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
- Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
- Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
- Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
- Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
- A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
- Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
- Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
- Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
- Impact of top metal electrodes on current conduction in WO3 thin films
- Atomistic simulation of Stoner–Wohlfarth (SW) particle
- Optimization of Coulomb glass system using quenching and annealing at small disorders
- Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
- Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
- Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
- Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
- Thermal properties of AlN (nano) filled LDPE composites
- Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
- Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
- AlGaN/GaN heterostructures for high power and high-speed applications
- Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
- Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
- Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
- Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
- Rotating magnetic field configuration for controlled particle flux in material processing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Editorial
- International conference on energy and advanced materials
- Review
- Analysis of different printing technologies for metallization of crystalline silicon solar cells
- Original Papers
- DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
- Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
- Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
- Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
- Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
- Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
- Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
- Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
- A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
- Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
- Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
- Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
- Impact of top metal electrodes on current conduction in WO3 thin films
- Atomistic simulation of Stoner–Wohlfarth (SW) particle
- Optimization of Coulomb glass system using quenching and annealing at small disorders
- Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
- Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
- Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
- Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
- Thermal properties of AlN (nano) filled LDPE composites
- Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
- Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
- AlGaN/GaN heterostructures for high power and high-speed applications
- Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
- Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
- Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
- Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
- Rotating magnetic field configuration for controlled particle flux in material processing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde