Abstract
Sol–gel derived Sm–Co co-substituted BiFeO3 ceramics (Bi1–xSmFe1–xCo x O3 with x = 0.0, 0.01, 0.02 and 0.03; named as BFO, BSFCO-1, BSFCO-2 and BSFCO-3, respectively) were investigated for structural, vibrational, magnetic and optical properties. Distorted perovskite rhombohedral structure with R3c crystal symmetry has been established in X-ray diffraction (XRD) patterns analysis by Rietveld refinement and detailed structural parameters like lattice constants, unit cell volume, bond angles, bond length etc. have been evaluated. Raman spectra further confirmed typical rhombohedral structure of BiFeO3 by exhibiting 13 clear Raman active phonon (9E + 4A) modes along with second order modes in the wave number range 50–1500 cm−1. Fourier Transform Infrared (FTIR) spectra showed the presence of Fe–O and Bi–O bands and the calculated Fe–O bond length was in good agreement with that obtained from Rietveld analysis. Room temperature magnetization versus magnetic field (M–H) measurement using Vibrating Sample Magnetometer (VSM) showed enhancement of ferromagnetic ordering parameters with increasing Sm–Co content in BiFeO3 samples. The maximum magnetization values increased from 0.237 emu g−1 for BFO sample to 1.167 emu g−1 for BSFCO-3 sample along with increase in remnant magnetization values. The optical property of Bi1–xSmFe1–xCo x O3 samples was investigated by estimating the energy band gap using UV–Visible spectroscopy. The calculated values of energy band gap were varied in the range 2.46 eV–1.81 eV indicating tuning of energy band gap with Sm–Co co-substitution in BiFeO3 sample.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The authors are thankful to JIIT Noida for providing facilities to carry out this research work. One of the authors (Sheetal Sharma) is also thankful JIIT Noida for providing fellowship.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Martin, L. W., Crane, S. P., Chu, Y.-H., Holcomb, M. B., Gajek, M., Huijben, M., Ramesh, R., Balke, N. J. Phys. Condens. Matter 2008, 20, 434220. https://doi.org/10.1088/0953-8984/20/43/434220.Search in Google Scholar
2. Wu, J., Fan, Z., Xiao, D., Zhu, J., Wang, J. Ceramic bulks, thin films and nanostructures. Prog. Mater. Sci. 2016, 84, 335–402. https://doi.org/10.1016/j.pmatsci.2016.09.001.Search in Google Scholar
3. Chandra Sati, P., Arora, M., Chauhan, S., Chhoker, S., Kumar, M. J. Appl. Phys. 2012, 112, 094102. https://doi.org/10.1063/1.4761968.Search in Google Scholar
4. Wei-Ran, W., Da-Peng, X., Wen-Hui, S., Zhan-Hui, D., Yan-Feng, X., Geng-Xin, S. Chin. Phys. Lett. 2005, 22, 2400–2402. https://doi.org/10.1088/0256-307x/22/9/072.Search in Google Scholar
5. Bhushan, B., Das, D., Priyam, A., Vasanthacharya, N. Y., Kumar, S. Mater. Chem. Phys. 2012, 135, 144–149. https://doi.org/10.1016/j.matchemphys.2012.04.037.Search in Google Scholar
6. Alikhanov, N. M.-R., Rabadanov, M. K., Orudzhev, F. F., Gadzhimagomedov, S. K., Emirov, R. M., Sadykov, S. A., Sobola, D., Ramazanov, S. M., Abdulvakhidov, K. G. J. Mater. Sci. Mater. Electron. 2021, 32, 13323–13335. https://doi.org/10.1007/s10854-021-05911-9.10.1007/s10854-021-05911-9Search in Google Scholar
7. Lebeugle, D., Colson, D., Forget, A., Viret, M., Bonville, P., Marucco, J. F., Fusil, S. Phys. Rev. B 2007, 76, 024116–024123. https://doi.org/10.1103/physrevb.76.024116.Search in Google Scholar
8. Chandra Sati, P., Arora, M., Chauhan, S., Kumar, M., Chhoker, S. J. Mater. Sci. Mater. Electron. 2013, 24, 5023–5034. https://doi.org/10.1007/s10854-013-1517-3.Search in Google Scholar
9. Catalan, G., Scott, J. F. Adv. Mater. 2009, 21, 2463–2485. https://doi.org/10.1002/adma.200802849.Search in Google Scholar
10. Pandit, P., Satapathy, S., Gupta, P. K., Sathe, V. G. J. Appl. Phys. 2009, 106, 114105. https://doi.org/10.1063/1.3264836.Search in Google Scholar
11. Liu, Z., Miao, D., Xia, Q., Hermo, L., Wing, S. S. Dev. Dynam. 2007, 236, 2889–2898. https://doi.org/10.1002/dvdy.21302.Search in Google Scholar PubMed
12. Gao, F., Chen, X. Y., Yin, K. B., Dong, S., Ren, Z. F., Yuan, F., Liu, J.-M., Zou, Z. Adv. Mater. 2007, 19, 2889–2892. https://doi.org/10.1002/adma.200602377.Search in Google Scholar
13. Chauhan, S., Kumar, M., Chhoker, S., Katyal, S. C., Jewariya, M., Suma, B. N., Kunte, G. Ceram. Int. 2015, 41, 14306–14314. https://doi.org/10.1016/j.ceramint.2015.07.062.Search in Google Scholar
14. Zhang, H., Liu, W., Wu, P., Hai, X., Guo, M., Xi, X., Gao, J., Wang, X., Guo, F., Xu, X., Wang, C., Chu, W., Wang, S. Nanoscale 2014, 6, 10831–10838. https://doi.org/10.1039/c4nr02557a.Search in Google Scholar PubMed
15. Majumder, S., Dey, S., Bagani, K., Dey, S. K., Banerjee, S., Kumar, S. Dalton Trans. 2015, 44, 7190–7202. https://doi.org/10.1039/c4dt02551b.Search in Google Scholar PubMed
16. Bhadala, F., Suthar, L., Roy, M. Appl. Phys. A 2021, 127, 320–336. https://doi.org/10.1007/s00339-021-04383-2.Search in Google Scholar
17. Rhaman, M. M., Matin, M. A., Hakim, M. A., Islam, M. F. Mater. Sci. Eng., B 2021, 263, 114842. https://doi.org/10.1016/j.mseb.2020.114842.Search in Google Scholar
18. Karimi, S., Reaney, I. M., Han, Y., Pokorny, J., Sterianou, I. J. Mater. Sci. 2009, 44, 5102–5112. https://doi.org/10.1007/s10853-009-3545-1.Search in Google Scholar
19. Ravichandran, A. T., Srinivas, J., Karthick, R., Manikandan, A., Baykal, A. Ceram. Int. 2018, 44, 13247–13252. https://doi.org/10.1016/j.ceramint.2018.04.153.Search in Google Scholar
20. Ravichandran, A. T., Srinivas, J., Manikandan, A., Baykal, A. J. Supercond. Nov. Magnetism 2018, 32, 1663–1670. https://doi.org/10.1007/s10948-018-4842-1.Search in Google Scholar
21. Puhan, A., Bhushan, B., Satpathy, S., Meena, S. S., Nayak, A. K., Rout, D. Appl. Surf. Sci. 2019, 493, 593–604. https://doi.org/10.1016/j.apsusc.2019.07.002.Search in Google Scholar
22. Song, G. L., Zhang, H. X., Wang, T. X., Yang, H., Chang, F. G. J. Magn. Magn Mater. 2012, 324, 2121–2126. https://doi.org/10.1016/j.jmmm.2012.02.024.Search in Google Scholar
23. Puhan, A., Bhushan, B., Meena, S. S., Nayak, A. K., Rout, D. J. Mater. Sci. Mater. Electron. 2021, 32, 7956–7972. https://doi.org/10.1007/s10854-021-05520-6.Search in Google Scholar
24. Esmaili, L., Gholizadeh, A. Mater. Sci. Semicond. Process. 2020, 118, 105179. https://doi.org/10.1016/j.mssp.2020.105179.Search in Google Scholar
25. Pandey, R., Panda, C., Kumar, P., Kar, M. J. Sol. Gel Sci. Technol. 2017, 85, 166–177. https://doi.org/10.1007/s10971-017-4537-2.Search in Google Scholar
26. Chauhan, S., Kumar, M., Chhoker, S., Katyal, S. C. J. Alloys Compd. 2016, 666, 454–467. https://doi.org/10.1016/j.jallcom.2016.01.116.Search in Google Scholar
27. Chaturvedi, S., Shyam, P., Apte, A., Kumar, J., Bhattacharyya, A., Awasthi, A. M., Kulkarni, S. Phys. Rev. B 2016, 93, 174117–174128. https://doi.org/10.1103/physrevb.93.174117.Search in Google Scholar
28. Ramirez, M. O., Kumar, A., Denev, S. A., Chu, Y. H., Seidel, J., Martin, L. W., Yang, S. Y., Rai, R. C., Xue, X. S., Ihlefeld, J. F., Podraza, N. J., Saiz, E., Lee, S., Klug, J., Cheong, S. W., Bedzyk, M. J., Auciello, O., Schlom, D. G., Orenstein, J., Ramesh, R., Musfeldt, J. L., Litvinchuk, A. P., Gopalan, V. Appl. Phys. Lett. 2009, 94, 161905. https://doi.org/10.1063/1.3118576.Search in Google Scholar
29. Fukumura, H., Harima, H., Kisoda, K., Tamada, M., Noguchi, Y., Miyayama, M. J. Magn. Magn Mater. 2007, 310, e367–e369. https://doi.org/10.1016/j.jmmm.2006.10.282.Search in Google Scholar
30. Kumar, M. M., Palkar, V. R., Srinivas, K., Suryanarayana, S. V. Appl. Phys. Lett. 2000, 76, 2764–2766. https://doi.org/10.1063/1.126468.Search in Google Scholar
31. Sati, P. C., Arora, M., Chauhan, S., Kumar, M., Chhoker, S. J. Mater. Sci. Mater. Electron. 2013, 24, 5023–5034. https://doi.org/10.1007/s10854-013-1517-3.Search in Google Scholar
32. Chauhan, S., Kumar, M., Pandey, H., Chhoker, S., Katyal, S. C. J. Alloys Compd. 2019, 811, 151965. https://doi.org/10.1016/j.jallcom.2019.151965.Search in Google Scholar
33. Wang, T., Xu, T., Gao, S., Song, S.-H. Ceram. Int. 2017, 43, 4489–4495. https://doi.org/10.1016/j.ceramint.2016.12.100.Search in Google Scholar
34. Kumar, P., Shankhwar, N., Srinivasan, A., Kar, M. J. Appl. Phys. 2015, 117, 194103. https://doi.org/10.1063/1.4921433.Search in Google Scholar
35. Batoo, K. M., Verma, R., Chauhan, A., Kumar, R., Hadi, M., Aldossary, O. M., Al-Douri, Y. J. Alloys Compd. 2021, 883, 160836. https://doi.org/10.1016/j.jallcom.2021.160836.Search in Google Scholar
36. Pisarev, R. V., Moskvin, A. S., Kalashnikova, A. M., Rasing, T. Phys. Rev. B 2009, 79, 235128–235143. https://doi.org/10.1103/physrevb.79.235128.Search in Google Scholar
37. Sahni, M., Mukhopadhyay, S., Mehra, R. M., Chauhan, S., Chandra Sati, P., Kumar, M., Singh, M., Kumar, N. J. Phys. Chem. Solid. 2021, 152, 109926. https://doi.org/10.1016/j.jpcs.2020.109926.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- International conference on energy and advanced materials
- Review
- Analysis of different printing technologies for metallization of crystalline silicon solar cells
- Original Papers
- DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
- Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
- Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
- Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
- Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
- Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
- Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
- Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
- A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
- Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
- Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
- Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
- Impact of top metal electrodes on current conduction in WO3 thin films
- Atomistic simulation of Stoner–Wohlfarth (SW) particle
- Optimization of Coulomb glass system using quenching and annealing at small disorders
- Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
- Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
- Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
- Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
- Thermal properties of AlN (nano) filled LDPE composites
- Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
- Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
- AlGaN/GaN heterostructures for high power and high-speed applications
- Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
- Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
- Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
- Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
- Rotating magnetic field configuration for controlled particle flux in material processing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Editorial
- International conference on energy and advanced materials
- Review
- Analysis of different printing technologies for metallization of crystalline silicon solar cells
- Original Papers
- DFT investigation of nonlinear optical response of organic compound: acetylsalicylic acid
- Experimental (FT‐Raman, FT‐IR and NMR) and theoretical (DFT) calculations, thermodynamic parameters, molecular docking and NLO (non-linear optical) properties of N‐(2,6‐dimethylphenyl)‐1‐piperazineacetamide
- Investigation of nonlinear optical responses of organic derivative of imidazole: imidazole-2-carboxaldehyde
- Mach–Zehnder interferometric analysis of planar polymer waveguide having an adlayer of WS2 for biosensing applications
- Linear mode conversion of terahertz radiation into terahertz surface plasmon wave over a graphene-free space interface
- Generation of second harmonic terahertz surface plasmon wave over a rippled graphene surface
- Investigation on structural, magnetic and optical properties of Sm–Co Co-substituted BiFeO3 samples
- Synthesis and optical characterization of Sr and Ti doped BiFeO3 multiferroics
- A comparative study on structural, magnetic and optical properties of rare earth ions substituted Bi1−xR x FeO3 (R: Ce3+, Sm3+ and Dy3+) nanoparticles
- Thermal, structural and optical properties of Pb1−xLa x TiO3 prepared using modified sol–gel route
- Biophotonic sensor design for the detection of reproductive hormones in females by using a 1D defective annular photonic crystal
- Spin density wave and antiferromagnetic transition in EuFe2As2: a high field transport and heat capacity study
- Impact of top metal electrodes on current conduction in WO3 thin films
- Atomistic simulation of Stoner–Wohlfarth (SW) particle
- Optimization of Coulomb glass system using quenching and annealing at small disorders
- Analytical modeling of adsorption isotherms for pristine and functionalized carbon nanotubes as gas sensors
- Effect of polymer blending on the electrochemical properties of porous PVDF/PMMA membrane immobilized with organic solvent based liquid electrolyte
- Structural, electronic, and thermal studies of Poly(ethylene oxide) based solid-state polymer electrolyte
- Milling route for the synthesis of nano-aluminium hydroxide for the development of low-density polymer composites
- Thermal properties of AlN (nano) filled LDPE composites
- Thermophysical characterization of mustard husk (MSH) and MSH char synthesized by the microwave pyrolysis of MSH
- Nano structured silver particles as green catalyst for remediation of methylene blue dye from water
- AlGaN/GaN heterostructures for high power and high-speed applications
- Role of interfacial electric field on thermal conductivity of In x Al1−xN/GaN superlattice (x = 0.17)
- Sensitivity assessment of dielectric modulated GaN material based SOI-FinFET for label-free biosensing applications
- Temperature-dependent analysis of heterojunction-free GaN FinFET through optimization of controlling gate parameters and dielectric materials
- Modelling of the exploding wire technique, a novel approach utilized for the synthesis of nanomaterials
- Rotating magnetic field configuration for controlled particle flux in material processing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde